Download citation
Download citation
link to html
Polypyridyl multidentate ligands based on ethyl­enedi­amine backbones are important metal-binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexa­­dentate tpena ligand [systematic name: N,N,N′-tris­(pyridin-2-ylmeth­yl)ethyl­enedi­amine-N′-acetate] reacts with zinc chloride and zinc bromide to form tri­chlorido­[μ-N,N,N′-tris­(pyridin-2-ylmeth­yl)ethyl­enedi­amine-N′-acetato]­di­zinc(II), [Zn2(C22H24N5O2)Cl3], and tri­bro­mido­[μ-N,N,N′-tris­(pyridin-2-ylmeth­yl)ethyl­enedi­amine-N′-acetato]­dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anti­cipated N5O coordination in an irregular six-coordinate site and is linked by an anti carboxyl­ate bridge to a tetra­hedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aqua­tri­bromido­[μ-N,N,N′-tris­(pyridin-2-ylmeth­yl)ethyl­enedi­amine-N′-ace­tato]­dicopper(II)–tri­bromido­[μ-N,N,N′-tris­(pyri­din-2-ylmeth­yl)ethyl­enedi­amine-N′-acetato]­dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena-chelated sites, one a trigonal bipy­ramidal N3Cl2 site and the other a square-planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615023773/lg3178sup1.cif
Contains datablocks I_vCM14088, II_vcm14089, III_vCM14087twin5, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615023773/lg3178I_vCM14088sup2.hkl
Contains datablock I_vCM14088

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615023773/lg3178II_vcm14089sup3.hkl
Contains datablock II_vcm14089

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615023773/lg3178III_vCM14087twin5sup4.hkl
Contains datablock III_vCM14087twin5

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615023773/lg3178sup5.pdf
FT-IR spectra

CCDC references: 1441734; 1441733; 1441732

Introduction top

Polypyridyl multidentate ligands based on ethyl­enedi­amine backbones are an important class of metal-binding agent with particular applications in biomimetics and homogenous catalysis. We have introduced derivatives of this class of ligand which incorporate a single amino acid group and employed them to prepare model complexes for redox-active nonheme sites in metalloenzymes. Functional biomimetic and catalytic reactivity, for example, in the activation of O2 and H2O has been demonstrated (Poulsen et al. 2005; Nielsen et al. 2006; Vad et al., 2011, 2012; Lennartson & McKenzie, 2012; de Sousa et al., 2015; Deville et al., 2015). Dangling pyridines and the carboxyl­ate groups are proposed to assist in proton transfer and the carboxyl­ate group can be either terminal or bridge between metal ions to form oligomers and polymers (Berggren et al., 2009; Egdal et al., 2011). The latter has proved to be an advantage for achieving stability of MnII complexes towards air oxidation. If bridging does not occur, noncoordinated carboxyl O atoms are usually involved in hydrogen bonding in the solid-state structures and these inter­actions may be important for solution state reactivity for example in proton transfers (Vad et al., 2012).

The structures of the redox-stable copper(II) and zinc(II) complexes of the ligand N,N,N'-tris­(pyridin-2-yl­methyl)­ethyl­enedi­amine-N'-acetate (tpena-) reported below are important for predicting the structures of more reactive redox-active systems of earlier transition metal ions. They reveal two new structural prototypes, albeit with identical stoichiometry, thereby illustrating the coordinative flexibility of this ligand (see Scheme).

Experimental top

Synthesis and crystallization top

The copper and zinc halide complexes of N,N,N'-tris­(pyridin-2-yl­methyl)­ethyl­enedi­amine-N'-acetate (tpena-) were prepared by mixing an aqueous solution (1 ml) of Na(tpena)(CH3CH2OH) (0.048 mmol) (Vad et al., 2011) with two equivalents of the appropriate dibromide or dichloride (0.097 mmol) dissolved in MeOH (2 ml). Upon slow evaporation of the solvent, either colourless crystals of the zinc or turquoise crystals of the copper complexes formed over a period of several days. These were isolated by filtration and washed with cold H2O (yields 70–90%). IR (KBr disc): Zn2(tpena)Cl3, νas(COO) = 1602 cm-1. Zn2(tpena)Br3 νas(COO) = 1605 cm-1. Cu2(tpena)Cl3 νas(COO) = 1611 cm-1.

ESI–MS (CH3CN, 10-6 M); [Zn(tpena)]+ m/z 454.121 (calculated: 454.122, C22H24N5O2Zn) appears in the spectrum of both the chloride and the bromide zinc species. Two peaks are seen for the copper species one for the isostoichiometric [Cu(tpena)]+ at m/z 453.119 (453.133, C22H24CuN5O2) and an additional signal for [Cu(tpena-CH2COO-CH2Py)]+ m/z 317.080 (317.083, C15H18CuN4), for which no analog was observed in the spectra of the zinc complexes.

Analysis calculated for Zn2(tpena)Cl3 found (calculated) C22H24Cl3N5O2Zn2: C 41.89 (42.11), H 3.76 (3.85), N 10.91 (11.16). For Zn2(tpena)Br3 found (calculated.) C22H24Br3N5O2Zn2: C 35.26 (34.73), H 3.09 (3.18), N 9.19 (9.20). [Cu2(tpena)Br3][Cu2(tpena)Br3(H2O)]·6.5H2O, which has overall formula Cu2(tpena)Br3(H2O)3.75, analysed as Cu2(tpena)Br3(H2O)2, indicating some loss of water solvate during drying; found (calculated) C22H28Br3Cu2N5O4: C 33.58 (33.30), H 3.28 (3.55), N 8.72 (8.83).

Refinement top

Crystal data, data collection and structure refinement details for Zn2(tpena)Cl3, (I), Zn2(tpena)Br3, (II), and [Cu2(tpena)Br3][Cu2(tpena)Br3(H2O)].6.5H2O, (III), are summarized in Table 1. Complex (II) was refined as a racemic twin with a Flack parameter of 0.244 (13) (Flack, 1983). Complex (III) was found to be twinned by rotation of 180° about reciprocal axis [001]. The data were processed as a two-component twin using TWINABS (Sheldrick, 2012) and refined using a HKLF 5 data set constructed from all observations involving domain 1 [BASF = 0.4366 (8)]. In each structure, all H atoms bonded to C atoms were added in calculated positions, with C—H = 0.99 (CH2) or 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C). Complex (III) contains hydrogen-bonded water molecules. Most of the H atoms were not evident in difference maps but the water O atoms are within hydrogen bonding-distance of each other. Attempts to develop a self-consistent model starting from the acceptors (carbonyls and bromides) that could not be hydrogen-bond donors were only partially successful, suggesting at least some of the H-atom sites may be disordered. These H atoms were not included in the model. One of the water molecules (O12) is disordered about a centre of symmetry and was refined with 50% occupancy.

Results and discussion top

The copper and zinc halides of tpena are prepared easily by direct reaction of the metal salts with Na(tpena) in methanol. Regardless of reaction stoichiometry, i.e. a 1:1 or a 1:2 ligand–metal salt reaction, elemental (CHN) analyses suggested that we had not obtained the desired complexes [M(tpena)]X (M = Cu2+ or Zn2+ and X = Br- or Cl-); where tpena acted as a straightforward hexadentate ligand for a six-coordinated metal ion. The elemental analyses data suggested that the three compounds all have the same tpena–M–Cl 1:2:3 stoichiometry, while at first sight confusingly ESI mass spectra recorded in aceto­nitrile, however, showed simple [M(tpena)]+ at m/z 454.121 and 453.119 as the only ion, or a major ion, for the zinc and copper complexes, respectively (Fig. 1). The presence of a dominant [M(tpena)]+ ion in these spectra was entirely comparable to the spectra for the simple CrIII and CoIII salts containing the [M(tpena)]+ cation (Vad et al., 2011; de Sousa et al., 2015).

Thus, the usual characterization methods gave no indication of the significant structural differences between the copper and zinc complexes that we have found in the solid state. However, close (and retrospective) inspection of IR spectra reveal small differences in the νas(OCO) carbonyl stretches just above 1600 cm-1 . With the hindsight from the crystal structures these are indicative of the anti-µ-OCO arrangement of the bridging carboxyl­ate donor in the zinc complexes and the monodendate terminal carboxyl­ate in the copper complex. Further, the ESI mass spectrum of the copper complex indicates that this complex is more easily fragmented. A prominent daughter ion at m/z 317.080 is due to de­carboxyl­ation and loss of a methyl­pyridyl arm. A proposed structure for the daughter ion is given in Fig. 2.

The complexes crystallized as Zn2(tpena)Cl3, (I), Zn2Br3(tpena), (II), and [Cu2Br3(tpena)][Cu2Br3(tpena)(H2O)].6.5H2O, (III), all containing neutral complex molecules; selected bond length and angle data are presented in Tables 2-4.

The asymmetric unit of complex (I) comprises one Zn2(tpena)Cl3 formula unit (Fig. 3). The Zn1 ion occupies the six-coordinate N5O site with irregular geometry imposed by the five five-membered chelate rings. The second metal ion, Zn2, has an approximately tetra­hedral Cl3O coordination sphere, being linked to the tpena ligand through a single coordinate bond to O2. The carboxyl­ate group acts as an anti-1,3-bridge between the two ZnII ions. The pyridine groups in the N4 plane link the molecules into π-stacked columns generated by symmetry operations (-x+1, -y+1, -z+1) and (-x+2, -y+1, -z+1) (Fig. 4), though the inter­acting rings are not parallel.

The asymmetric unit of complex (II) comprises two independent Zn2Br3(tpena) formula units (Fig. 5), each with the same connectivity as described for chloride complex (I). The two independent molecules are linked by π-stacking between the pyridine groups in the N4 planes [centroid–centroid distances = 3.673 (4) and 3.803 (4) Å], but, in contrast to complex (I), the stacking does not extend through the structure. The crystal packing is dominated by a substantal number of C—H······Br hydrogen bonds in the range 3.58–3.94 Å (Table 5) .

In copper complex (III), there are two independent molecular units, as shown in Fig 6. In contrast to complexes (I) and (II), the central ethyl­enedi­amine section of the tpena ligand is extended, providing two separate tridentate binding sites, i.e. one N3 and one N2O. In each molecule, one CuII ion (Cu1 or Cu3) is in the N3 site [where the N-atom donors are from the bis­(pyridin-2-yl­methyl)­amine group at N4 or N9] with two additional bromide ligands. The geometry at these CuII ions is trigonal bipyramidal, with the pyridine donors axial and τ values (Addison et al., 1984) of 0.60 and 0.38 for Cu1 and Cu3, respectively. The second CuII ion in each molecule (Cu2 or Cu4) is bound by the tpena ligand N2O donor set (amine, pyridine and carboxyl­ate) along with a bromide ion. Atom Cu4 is four-coordinate and approaching square planar [the angle between the N—Cu—N and O—Cu—Br planes is 35.05 (16)°], while atom Cu2 has a coordinated water molecule as the fifth ligand and is closest to square pyramidal (τ = 0.29). There is no convincing π-stacking in complex (III), instead the packing is apparently controlled by hydrogen bonding in columns parallel to the a axis, involving the water molecules, the uncoordinated carboxyl­ate O atoms and some of the bromide ions (Table 6 and Fig 7).

All previously published complexes containing tpena have been ionic species with a 1:1 metal–tpena ratio in which the metal ion binds either all six tpena donors in six or seven-coordinated complexes (Vad et al., 2011; Lennartson & McKenzie, 2012; de Sousa et al., 2015) or releases one pyridine donor to bind an exogenous ligand (Vad et al., 2012; Lennartson & McKenzie, 2012; de Sousa et al., 2015). Carboxyl­ate bridging to another metal ion has also been observed previously in related systems, but in those cases the link has resulted in polynuclear manganese(II) ionic assemblies with all the metal ions in similar environments (Berggren et al., 2009; Egdal et al., 2011). The presence of halides and less oxophilic metal ions has driven the formation of halide complexes and different phases. In the current complexes, the 2:1 metal–tpena stoichiometry and availability of relatively strongly coordinating halide anions provide the conditions required for the isolation of neutral dinuclear compounds. In zinc complexes (I) and (II), tpena acts as a hexadentate ligand and the encapsulated metal binding site is essentially the same as that previously reported for the mononuclear CoIII and CrIII complexes (Vad et al., 2011; de Sousa et al., 2015). The tetra­hedral OX3 coordination of the second zinc ion is quite common (Cambridge Structural Database, Version 5.36; Groom & Allen, 2014). A few examples of M–(OCO)–ZnCl3 linkages involving pendant carboxyl­ate groups are known (Panneerselvam, Lu, Chi, Liao & Chung, 2000; Panneerselvam, Lu, Chi, Tung & Chung, 2000; Barfod et al., 2005) and their geometry is similar to that of complex (I); no bromide analogs of (II) were found.

The structure of (III) is unexpected and is perhaps a consequence of the preference of copper(II) for penta­coordination and the difficulty of accommodating a Jahn–Teller ion in the N5O site. The structure might suggest that the incorporation of stiffening backbones could be advisable when designing catalysts based on ligands of this type if reactivity is dependent on catalytically competent mononuclear metal species.

The separation and purification of polypyridyl ligands, typically from reactions between amines and alkyl halides, in pure forms is often difficult. Sticky brown oils not amenable to chromatography or distillation, containing related ligands, are the standard products. With the introduction of carboxyl­ate groups this problem is only exacerbated since their zwitterionic character introduces considerable separation and purification issues in work up. The isolation and characterisation of Zn2(tpena)Cl3 has opened up for a significant improved methodology for the preparation of the pro-catalyst iron complex, [FeIII2(µ-O)(tpenaH)2](ClO4)4 (Lennartson & McKenzie, 2012). If zinc chloride is used in the final stage of ligand synthesis, Zn2(tpena)Cl3 can be isolated directly from dirty reaction mixtures without prior separation of the tpenaH. A subsequent metathesis reaction in water with the more oxophilic iron(III) results in the clean conversion to [FeIII2(µ-O)(tpenaH)2](ClO4)4 (Fig 8). Zinc-doped products can be an issue reactions like this; however, this is not in this case here due to the inherent and metal-specific structural differences; specifically the requirement of an oxide-bridging group for the diiron(III) complex. It is an elegant metathesis reaction since zinc can simply not form the same oxide-bridged structures as iron. Crystallization is a key however; precipitations will yield a powder containing both [FeIII2(µ-O)(tpenaH)2](ClO4)4 and Zn2(tpena)Cl3 as conveniently checked by ESI mass spectrometry. However, if these precipitates are allowed to stand in their mother liquor, over a few days all the metathesis is completed and large crystals of [FeIII2(µ-O)(tpenaH)2](ClO4)4 are easily recovered.

Structure description top

Polypyridyl multidentate ligands based on ethyl­enedi­amine backbones are an important class of metal-binding agent with particular applications in biomimetics and homogenous catalysis. We have introduced derivatives of this class of ligand which incorporate a single amino acid group and employed them to prepare model complexes for redox-active nonheme sites in metalloenzymes. Functional biomimetic and catalytic reactivity, for example, in the activation of O2 and H2O has been demonstrated (Poulsen et al. 2005; Nielsen et al. 2006; Vad et al., 2011, 2012; Lennartson & McKenzie, 2012; de Sousa et al., 2015; Deville et al., 2015). Dangling pyridines and the carboxyl­ate groups are proposed to assist in proton transfer and the carboxyl­ate group can be either terminal or bridge between metal ions to form oligomers and polymers (Berggren et al., 2009; Egdal et al., 2011). The latter has proved to be an advantage for achieving stability of MnII complexes towards air oxidation. If bridging does not occur, noncoordinated carboxyl O atoms are usually involved in hydrogen bonding in the solid-state structures and these inter­actions may be important for solution state reactivity for example in proton transfers (Vad et al., 2012).

The structures of the redox-stable copper(II) and zinc(II) complexes of the ligand N,N,N'-tris­(pyridin-2-yl­methyl)­ethyl­enedi­amine-N'-acetate (tpena-) reported below are important for predicting the structures of more reactive redox-active systems of earlier transition metal ions. They reveal two new structural prototypes, albeit with identical stoichiometry, thereby illustrating the coordinative flexibility of this ligand (see Scheme).

The copper and zinc halides of tpena are prepared easily by direct reaction of the metal salts with Na(tpena) in methanol. Regardless of reaction stoichiometry, i.e. a 1:1 or a 1:2 ligand–metal salt reaction, elemental (CHN) analyses suggested that we had not obtained the desired complexes [M(tpena)]X (M = Cu2+ or Zn2+ and X = Br- or Cl-); where tpena acted as a straightforward hexadentate ligand for a six-coordinated metal ion. The elemental analyses data suggested that the three compounds all have the same tpena–M–Cl 1:2:3 stoichiometry, while at first sight confusingly ESI mass spectra recorded in aceto­nitrile, however, showed simple [M(tpena)]+ at m/z 454.121 and 453.119 as the only ion, or a major ion, for the zinc and copper complexes, respectively (Fig. 1). The presence of a dominant [M(tpena)]+ ion in these spectra was entirely comparable to the spectra for the simple CrIII and CoIII salts containing the [M(tpena)]+ cation (Vad et al., 2011; de Sousa et al., 2015).

Thus, the usual characterization methods gave no indication of the significant structural differences between the copper and zinc complexes that we have found in the solid state. However, close (and retrospective) inspection of IR spectra reveal small differences in the νas(OCO) carbonyl stretches just above 1600 cm-1 . With the hindsight from the crystal structures these are indicative of the anti-µ-OCO arrangement of the bridging carboxyl­ate donor in the zinc complexes and the monodendate terminal carboxyl­ate in the copper complex. Further, the ESI mass spectrum of the copper complex indicates that this complex is more easily fragmented. A prominent daughter ion at m/z 317.080 is due to de­carboxyl­ation and loss of a methyl­pyridyl arm. A proposed structure for the daughter ion is given in Fig. 2.

The complexes crystallized as Zn2(tpena)Cl3, (I), Zn2Br3(tpena), (II), and [Cu2Br3(tpena)][Cu2Br3(tpena)(H2O)].6.5H2O, (III), all containing neutral complex molecules; selected bond length and angle data are presented in Tables 2-4.

The asymmetric unit of complex (I) comprises one Zn2(tpena)Cl3 formula unit (Fig. 3). The Zn1 ion occupies the six-coordinate N5O site with irregular geometry imposed by the five five-membered chelate rings. The second metal ion, Zn2, has an approximately tetra­hedral Cl3O coordination sphere, being linked to the tpena ligand through a single coordinate bond to O2. The carboxyl­ate group acts as an anti-1,3-bridge between the two ZnII ions. The pyridine groups in the N4 plane link the molecules into π-stacked columns generated by symmetry operations (-x+1, -y+1, -z+1) and (-x+2, -y+1, -z+1) (Fig. 4), though the inter­acting rings are not parallel.

The asymmetric unit of complex (II) comprises two independent Zn2Br3(tpena) formula units (Fig. 5), each with the same connectivity as described for chloride complex (I). The two independent molecules are linked by π-stacking between the pyridine groups in the N4 planes [centroid–centroid distances = 3.673 (4) and 3.803 (4) Å], but, in contrast to complex (I), the stacking does not extend through the structure. The crystal packing is dominated by a substantal number of C—H······Br hydrogen bonds in the range 3.58–3.94 Å (Table 5) .

In copper complex (III), there are two independent molecular units, as shown in Fig 6. In contrast to complexes (I) and (II), the central ethyl­enedi­amine section of the tpena ligand is extended, providing two separate tridentate binding sites, i.e. one N3 and one N2O. In each molecule, one CuII ion (Cu1 or Cu3) is in the N3 site [where the N-atom donors are from the bis­(pyridin-2-yl­methyl)­amine group at N4 or N9] with two additional bromide ligands. The geometry at these CuII ions is trigonal bipyramidal, with the pyridine donors axial and τ values (Addison et al., 1984) of 0.60 and 0.38 for Cu1 and Cu3, respectively. The second CuII ion in each molecule (Cu2 or Cu4) is bound by the tpena ligand N2O donor set (amine, pyridine and carboxyl­ate) along with a bromide ion. Atom Cu4 is four-coordinate and approaching square planar [the angle between the N—Cu—N and O—Cu—Br planes is 35.05 (16)°], while atom Cu2 has a coordinated water molecule as the fifth ligand and is closest to square pyramidal (τ = 0.29). There is no convincing π-stacking in complex (III), instead the packing is apparently controlled by hydrogen bonding in columns parallel to the a axis, involving the water molecules, the uncoordinated carboxyl­ate O atoms and some of the bromide ions (Table 6 and Fig 7).

All previously published complexes containing tpena have been ionic species with a 1:1 metal–tpena ratio in which the metal ion binds either all six tpena donors in six or seven-coordinated complexes (Vad et al., 2011; Lennartson & McKenzie, 2012; de Sousa et al., 2015) or releases one pyridine donor to bind an exogenous ligand (Vad et al., 2012; Lennartson & McKenzie, 2012; de Sousa et al., 2015). Carboxyl­ate bridging to another metal ion has also been observed previously in related systems, but in those cases the link has resulted in polynuclear manganese(II) ionic assemblies with all the metal ions in similar environments (Berggren et al., 2009; Egdal et al., 2011). The presence of halides and less oxophilic metal ions has driven the formation of halide complexes and different phases. In the current complexes, the 2:1 metal–tpena stoichiometry and availability of relatively strongly coordinating halide anions provide the conditions required for the isolation of neutral dinuclear compounds. In zinc complexes (I) and (II), tpena acts as a hexadentate ligand and the encapsulated metal binding site is essentially the same as that previously reported for the mononuclear CoIII and CrIII complexes (Vad et al., 2011; de Sousa et al., 2015). The tetra­hedral OX3 coordination of the second zinc ion is quite common (Cambridge Structural Database, Version 5.36; Groom & Allen, 2014). A few examples of M–(OCO)–ZnCl3 linkages involving pendant carboxyl­ate groups are known (Panneerselvam, Lu, Chi, Liao & Chung, 2000; Panneerselvam, Lu, Chi, Tung & Chung, 2000; Barfod et al., 2005) and their geometry is similar to that of complex (I); no bromide analogs of (II) were found.

The structure of (III) is unexpected and is perhaps a consequence of the preference of copper(II) for penta­coordination and the difficulty of accommodating a Jahn–Teller ion in the N5O site. The structure might suggest that the incorporation of stiffening backbones could be advisable when designing catalysts based on ligands of this type if reactivity is dependent on catalytically competent mononuclear metal species.

The separation and purification of polypyridyl ligands, typically from reactions between amines and alkyl halides, in pure forms is often difficult. Sticky brown oils not amenable to chromatography or distillation, containing related ligands, are the standard products. With the introduction of carboxyl­ate groups this problem is only exacerbated since their zwitterionic character introduces considerable separation and purification issues in work up. The isolation and characterisation of Zn2(tpena)Cl3 has opened up for a significant improved methodology for the preparation of the pro-catalyst iron complex, [FeIII2(µ-O)(tpenaH)2](ClO4)4 (Lennartson & McKenzie, 2012). If zinc chloride is used in the final stage of ligand synthesis, Zn2(tpena)Cl3 can be isolated directly from dirty reaction mixtures without prior separation of the tpenaH. A subsequent metathesis reaction in water with the more oxophilic iron(III) results in the clean conversion to [FeIII2(µ-O)(tpenaH)2](ClO4)4 (Fig 8). Zinc-doped products can be an issue reactions like this; however, this is not in this case here due to the inherent and metal-specific structural differences; specifically the requirement of an oxide-bridging group for the diiron(III) complex. It is an elegant metathesis reaction since zinc can simply not form the same oxide-bridged structures as iron. Crystallization is a key however; precipitations will yield a powder containing both [FeIII2(µ-O)(tpenaH)2](ClO4)4 and Zn2(tpena)Cl3 as conveniently checked by ESI mass spectrometry. However, if these precipitates are allowed to stand in their mother liquor, over a few days all the metathesis is completed and large crystals of [FeIII2(µ-O)(tpenaH)2](ClO4)4 are easily recovered.

Synthesis and crystallization top

The copper and zinc halide complexes of N,N,N'-tris­(pyridin-2-yl­methyl)­ethyl­enedi­amine-N'-acetate (tpena-) were prepared by mixing an aqueous solution (1 ml) of Na(tpena)(CH3CH2OH) (0.048 mmol) (Vad et al., 2011) with two equivalents of the appropriate dibromide or dichloride (0.097 mmol) dissolved in MeOH (2 ml). Upon slow evaporation of the solvent, either colourless crystals of the zinc or turquoise crystals of the copper complexes formed over a period of several days. These were isolated by filtration and washed with cold H2O (yields 70–90%). IR (KBr disc): Zn2(tpena)Cl3, νas(COO) = 1602 cm-1. Zn2(tpena)Br3 νas(COO) = 1605 cm-1. Cu2(tpena)Cl3 νas(COO) = 1611 cm-1.

ESI–MS (CH3CN, 10-6 M); [Zn(tpena)]+ m/z 454.121 (calculated: 454.122, C22H24N5O2Zn) appears in the spectrum of both the chloride and the bromide zinc species. Two peaks are seen for the copper species one for the isostoichiometric [Cu(tpena)]+ at m/z 453.119 (453.133, C22H24CuN5O2) and an additional signal for [Cu(tpena-CH2COO-CH2Py)]+ m/z 317.080 (317.083, C15H18CuN4), for which no analog was observed in the spectra of the zinc complexes.

Analysis calculated for Zn2(tpena)Cl3 found (calculated) C22H24Cl3N5O2Zn2: C 41.89 (42.11), H 3.76 (3.85), N 10.91 (11.16). For Zn2(tpena)Br3 found (calculated.) C22H24Br3N5O2Zn2: C 35.26 (34.73), H 3.09 (3.18), N 9.19 (9.20). [Cu2(tpena)Br3][Cu2(tpena)Br3(H2O)]·6.5H2O, which has overall formula Cu2(tpena)Br3(H2O)3.75, analysed as Cu2(tpena)Br3(H2O)2, indicating some loss of water solvate during drying; found (calculated) C22H28Br3Cu2N5O4: C 33.58 (33.30), H 3.28 (3.55), N 8.72 (8.83).

Refinement details top

Crystal data, data collection and structure refinement details for Zn2(tpena)Cl3, (I), Zn2(tpena)Br3, (II), and [Cu2(tpena)Br3][Cu2(tpena)Br3(H2O)].6.5H2O, (III), are summarized in Table 1. Complex (II) was refined as a racemic twin with a Flack parameter of 0.244 (13) (Flack, 1983). Complex (III) was found to be twinned by rotation of 180° about reciprocal axis [001]. The data were processed as a two-component twin using TWINABS (Sheldrick, 2012) and refined using a HKLF 5 data set constructed from all observations involving domain 1 [BASF = 0.4366 (8)]. In each structure, all H atoms bonded to C atoms were added in calculated positions, with C—H = 0.99 (CH2) or 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C). Complex (III) contains hydrogen-bonded water molecules. Most of the H atoms were not evident in difference maps but the water O atoms are within hydrogen bonding-distance of each other. Attempts to develop a self-consistent model starting from the acceptors (carbonyls and bromides) that could not be hydrogen-bond donors were only partially successful, suggesting at least some of the H-atom sites may be disordered. These H atoms were not included in the model. One of the water molecules (O12) is disordered about a centre of symmetry and was refined with 50% occupancy.

Computing details top

Data collection: APEX2 (Bruker, 2012) for II_vcm14089, III_vCM14087twin5. For all compounds, cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2012) and Mercury (Macrae et al., 2006). Software used to prepare material for publication: SHELXTL (Bruker, 2012) and publCIF (Westrip, 2010) for I_vCM14088; publCIF (Westrip, 2010) for II_vcm14089, III_vCM14087twin5.

Figures top
[Figure 1] Fig. 1. The ESI mass spectra of (a) Zn2(tpena)Br3 and (b) Cu2(tpena)Br3. The ion at m/z 317.080 in part (b) is due to the loss of a CH2Py arm and CO2 [Cu(tpena–CO2-CH2Py)]+. Solvent, acetonitrile, positive mode, 10-6 M.
[Figure 2] Fig. 2. Proposed structure for the daughter ion at m/z 317.080 in the ESI MS spectrum of Cu2(tpena)Br3.
[Figure 3] Fig. 3. Perspective view of Zn2(tpena)Cl3, (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of an arbitrary radius.
[Figure 4] Fig. 4. Packing diagram for complex (I) showing π-stacked columns, where A and B are the centroids of the pyridine rings containing atoms N2 and N3, respectively. The centroid–centroid distances are A···B = 3.844 (2) Å and A···A = 3.986 (3) Å. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z.]
[Figure 5] Fig. 5. The molecular structure of Zn2(tpena)Br3, (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 6] Fig. 6. Perspective view of the two independent molecules of (III). Displacement ellipsoids are drawn at the 50% probability level, and H atoms and uncoordinated water molecules have been omitted for clarity.
[Figure 7] Fig. 7. Hydrogen-bonded columns of water molecules parallel to the a axis in complex (III).
[Figure 8] Fig. 8. The use of a metathesis reaction for preparing pure samples of an oxide-bridged diiron(III) complex.
(I_vCM14088) Trichlorido[µ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dizinc(II) top
Crystal data top
[Zn2(C22H24N5O2)Cl3]F(000) = 1272
Mr = 627.55Dx = 1.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4985 (8) ÅCell parameters from 9964 reflections
b = 11.3423 (10) Åθ = 2.5–26.0°
c = 23.3697 (18) ŵ = 2.28 mm1
β = 98.263 (4)°T = 180 K
V = 2491.6 (4) Å3Rhomb, colourless
Z = 40.31 × 0.19 × 0.15 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5051 independent reflections
Radiation source: fine-focus sealed-tube4340 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.084
thin–slice ω and φ scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.469, Tmax = 0.745k = 1413
77315 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0406P)2 + 4.0296P]
where P = (Fo2 + 2Fc2)/3
5051 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Zn2(C22H24N5O2)Cl3]V = 2491.6 (4) Å3
Mr = 627.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4985 (8) ŵ = 2.28 mm1
b = 11.3423 (10) ÅT = 180 K
c = 23.3697 (18) Å0.31 × 0.19 × 0.15 mm
β = 98.263 (4)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5051 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
4340 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.745Rint = 0.084
77315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.14Δρmax = 0.85 e Å3
5051 reflectionsΔρmin = 0.48 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.66652 (4)0.59825 (3)0.60251 (2)0.02094 (11)
Zn20.30820 (4)0.23885 (3)0.63634 (2)0.02351 (12)
Cl10.14357 (10)0.19496 (9)0.69401 (4)0.0385 (2)
Cl20.52626 (9)0.16828 (9)0.66938 (4)0.0345 (2)
Cl30.22696 (9)0.18402 (8)0.54590 (4)0.0324 (2)
N10.8417 (3)0.7254 (3)0.62309 (12)0.0279 (6)
C10.8453 (4)0.8372 (3)0.60389 (16)0.0345 (8)
H10.77080.86370.57530.041*
C20.9529 (5)0.9145 (4)0.62419 (19)0.0465 (11)
H20.95310.99270.60960.056*
C31.0607 (5)0.8762 (4)0.66625 (19)0.0484 (11)
H31.13520.92820.68150.058*
C41.0586 (4)0.7627 (4)0.68558 (17)0.0382 (9)
H41.13190.73470.71430.046*
C50.9481 (4)0.6887 (3)0.66285 (14)0.0283 (8)
C60.9470 (4)0.5620 (3)0.68158 (14)0.0280 (7)
H6A1.01380.51700.66110.034*
H6B0.98250.55770.72350.034*
N20.7699 (3)0.4872 (2)0.55245 (11)0.0205 (6)
C70.7788 (3)0.4962 (3)0.49628 (13)0.0222 (7)
H70.73410.56120.47540.027*
C80.8506 (4)0.4148 (3)0.46702 (14)0.0261 (7)
H80.85320.42270.42670.031*
C90.9181 (4)0.3222 (3)0.49781 (15)0.0290 (8)
H90.96920.26550.47910.035*
C100.9106 (4)0.3129 (3)0.55629 (15)0.0272 (7)
H100.95730.25000.57820.033*
C110.8346 (3)0.3959 (3)0.58251 (13)0.0227 (7)
C120.8161 (4)0.3865 (3)0.64569 (14)0.0255 (7)
H12A0.72880.34100.64930.031*
H12B0.89820.34400.66720.031*
N30.5252 (3)0.7228 (2)0.56335 (11)0.0237 (6)
C130.4827 (4)0.7363 (3)0.50673 (14)0.0245 (7)
H130.51190.67990.48080.029*
C140.3984 (4)0.8289 (3)0.48440 (16)0.0318 (8)
H140.37170.83750.44390.038*
C150.3537 (4)0.9086 (3)0.52233 (17)0.0383 (9)
H150.29540.97340.50830.046*
C160.3944 (4)0.8937 (3)0.58117 (16)0.0344 (8)
H160.36280.94740.60780.041*
C170.4803 (4)0.8010 (3)0.60065 (15)0.0273 (7)
C180.5345 (4)0.7817 (3)0.66431 (14)0.0285 (8)
H18A0.62360.82670.67530.034*
H18B0.46320.81060.68800.034*
N40.8056 (3)0.5049 (2)0.67066 (11)0.0227 (6)
C190.7306 (4)0.5083 (3)0.72180 (13)0.0262 (7)
H19A0.79870.49090.75700.031*
H19B0.65560.44700.71800.031*
C200.6636 (4)0.6291 (3)0.72779 (13)0.0261 (7)
H20A0.61400.62990.76230.031*
H20B0.73880.69020.73300.031*
N50.5612 (3)0.6555 (2)0.67545 (11)0.0232 (6)
C210.4267 (4)0.5897 (3)0.67386 (14)0.0256 (7)
H21A0.34690.64210.65840.031*
H21B0.41420.56850.71390.031*
C220.4185 (3)0.4788 (3)0.63779 (13)0.0221 (7)
O10.5077 (2)0.4605 (2)0.60434 (9)0.0226 (5)
O20.3147 (3)0.4129 (2)0.64417 (10)0.0296 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0241 (2)0.0201 (2)0.01841 (18)0.00186 (15)0.00241 (14)0.00207 (14)
Zn20.0262 (2)0.0227 (2)0.02098 (19)0.00089 (16)0.00127 (14)0.00260 (14)
Cl10.0316 (5)0.0514 (6)0.0328 (5)0.0075 (4)0.0055 (4)0.0157 (4)
Cl20.0292 (5)0.0429 (5)0.0292 (4)0.0040 (4)0.0037 (3)0.0089 (4)
Cl30.0313 (5)0.0362 (5)0.0272 (4)0.0111 (4)0.0037 (3)0.0084 (3)
N10.0342 (17)0.0266 (16)0.0237 (14)0.0046 (13)0.0071 (12)0.0033 (11)
C10.043 (2)0.028 (2)0.0338 (19)0.0038 (17)0.0086 (16)0.0009 (15)
C20.059 (3)0.030 (2)0.052 (3)0.013 (2)0.015 (2)0.0004 (18)
C30.043 (2)0.048 (3)0.054 (3)0.018 (2)0.008 (2)0.011 (2)
C40.032 (2)0.047 (3)0.035 (2)0.0099 (18)0.0024 (16)0.0059 (17)
C50.0273 (18)0.034 (2)0.0251 (17)0.0026 (15)0.0095 (13)0.0049 (14)
C60.0231 (17)0.037 (2)0.0238 (16)0.0012 (15)0.0020 (13)0.0026 (14)
N20.0208 (14)0.0188 (14)0.0215 (13)0.0005 (11)0.0024 (10)0.0006 (10)
C70.0205 (16)0.0241 (17)0.0214 (15)0.0015 (13)0.0004 (12)0.0000 (12)
C80.0233 (17)0.034 (2)0.0208 (15)0.0014 (15)0.0036 (12)0.0045 (13)
C90.0252 (18)0.030 (2)0.0318 (18)0.0069 (15)0.0052 (14)0.0071 (14)
C100.0250 (18)0.0248 (18)0.0309 (18)0.0046 (14)0.0006 (13)0.0008 (14)
C110.0200 (16)0.0246 (17)0.0231 (15)0.0026 (14)0.0018 (12)0.0007 (13)
C120.0264 (18)0.0251 (18)0.0246 (16)0.0048 (14)0.0027 (13)0.0024 (13)
N30.0272 (15)0.0199 (14)0.0236 (14)0.0001 (12)0.0026 (11)0.0031 (11)
C130.0267 (18)0.0221 (17)0.0243 (16)0.0005 (14)0.0027 (13)0.0002 (13)
C140.034 (2)0.029 (2)0.0315 (18)0.0011 (16)0.0008 (14)0.0031 (15)
C150.047 (2)0.024 (2)0.044 (2)0.0087 (17)0.0020 (17)0.0049 (16)
C160.043 (2)0.0213 (19)0.041 (2)0.0065 (16)0.0109 (16)0.0052 (15)
C170.0309 (19)0.0211 (18)0.0298 (18)0.0025 (15)0.0046 (14)0.0052 (13)
C180.035 (2)0.0234 (18)0.0274 (17)0.0002 (15)0.0052 (14)0.0073 (13)
N40.0238 (15)0.0250 (15)0.0190 (12)0.0004 (12)0.0021 (10)0.0021 (10)
C190.0258 (18)0.0317 (19)0.0207 (15)0.0017 (15)0.0016 (12)0.0019 (13)
C200.0252 (18)0.034 (2)0.0192 (15)0.0028 (15)0.0034 (12)0.0044 (13)
N50.0247 (14)0.0223 (15)0.0226 (13)0.0007 (12)0.0032 (11)0.0042 (11)
C210.0251 (18)0.0268 (18)0.0259 (16)0.0014 (14)0.0066 (13)0.0057 (13)
C220.0259 (18)0.0206 (17)0.0187 (15)0.0024 (14)0.0007 (12)0.0015 (12)
O10.0256 (12)0.0200 (12)0.0227 (11)0.0004 (10)0.0049 (9)0.0037 (9)
O20.0286 (14)0.0234 (13)0.0385 (14)0.0031 (11)0.0107 (10)0.0035 (10)
Geometric parameters (Å, º) top
Zn1—N12.203 (3)C10—H100.9500
Zn1—N22.061 (3)C11—C121.516 (4)
Zn1—N32.069 (3)C12—N41.473 (4)
Zn1—O12.177 (2)C12—H12A0.9900
Zn1—N42.190 (3)C12—H12B0.9900
Zn1—N52.195 (3)N3—C131.336 (4)
Zn2—O21.982 (2)N3—C171.355 (4)
Zn2—Cl12.2618 (10)C13—C141.377 (5)
Zn2—Cl22.2511 (9)C13—H130.9500
Zn2—Cl32.2317 (9)C14—C151.375 (5)
N1—C51.338 (5)C14—H140.9500
N1—C11.346 (5)C15—C161.384 (5)
C1—C21.379 (6)C15—H150.9500
C1—H10.9500C16—C171.368 (5)
C2—C31.383 (6)C16—H160.9500
C2—H20.9500C17—C181.518 (5)
C3—C41.366 (6)C18—N51.470 (4)
C3—H30.9500C18—H18A0.9900
C4—C51.388 (5)C18—H18B0.9900
C4—H40.9500N4—C191.477 (4)
C5—C61.502 (5)C19—C201.526 (5)
C6—N41.480 (4)C19—H19A0.9900
C6—H6A0.9900C19—H19B0.9900
C6—H6B0.9900C20—N51.480 (4)
N2—C71.331 (4)C20—H20A0.9900
N2—C111.349 (4)C20—H20B0.9900
C7—C81.385 (5)N5—C211.475 (4)
C7—H70.9500C21—C221.511 (4)
C8—C91.378 (5)C21—H21A0.9900
C8—H80.9500C21—H21B0.9900
C9—C101.383 (5)C22—O11.250 (4)
C9—H90.9500C22—O21.263 (4)
C10—C111.382 (5)
N2—Zn1—N3119.85 (10)N4—C12—H12A109.6
N2—Zn1—O187.74 (9)C11—C12—H12A109.6
N3—Zn1—O195.22 (10)N4—C12—H12B109.6
N2—Zn1—N480.25 (10)C11—C12—H12B109.6
N3—Zn1—N4159.51 (10)H12A—C12—H12B108.1
O1—Zn1—N489.19 (9)C13—N3—C17118.9 (3)
N2—Zn1—N5158.26 (11)C13—N3—Zn1127.0 (2)
N3—Zn1—N578.60 (10)C17—N3—Zn1114.0 (2)
O1—Zn1—N578.60 (9)N3—C13—C14122.7 (3)
N4—Zn1—N582.70 (10)N3—C13—H13118.7
N2—Zn1—N196.75 (11)C14—C13—H13118.7
N3—Zn1—N194.10 (11)C15—C14—C13118.3 (3)
O1—Zn1—N1165.91 (9)C15—C14—H14120.9
N4—Zn1—N178.48 (11)C13—C14—H14120.9
N5—Zn1—N192.94 (10)C14—C15—C16119.5 (3)
O2—Zn2—Cl3111.52 (8)C14—C15—H15120.3
O2—Zn2—Cl2107.91 (8)C16—C15—H15120.3
Cl3—Zn2—Cl2113.68 (4)C17—C16—C15119.5 (3)
O2—Zn2—Cl1100.32 (8)C17—C16—H16120.3
Cl3—Zn2—Cl1109.17 (4)C15—C16—H16120.3
Cl2—Zn2—Cl1113.46 (4)N3—C17—C16121.1 (3)
C5—N1—C1118.2 (3)N3—C17—C18116.2 (3)
C5—N1—Zn1114.8 (2)C16—C17—C18122.6 (3)
C1—N1—Zn1126.7 (3)N5—C18—C17109.8 (3)
N1—C1—C2122.5 (4)N5—C18—H18A109.7
N1—C1—H1118.7C17—C18—H18A109.7
C2—C1—H1118.7N5—C18—H18B109.7
C1—C2—C3118.7 (4)C17—C18—H18B109.7
C1—C2—H2120.6H18A—C18—H18B108.2
C3—C2—H2120.6C12—N4—C19114.3 (3)
C4—C3—C2119.1 (4)C12—N4—C6110.8 (3)
C4—C3—H3120.4C19—N4—C6112.3 (2)
C2—C3—H3120.4C12—N4—Zn1102.76 (18)
C3—C4—C5119.3 (4)C19—N4—Zn1105.39 (19)
C3—C4—H4120.3C6—N4—Zn1110.6 (2)
C5—C4—H4120.3N4—C19—C20110.7 (3)
N1—C5—C4122.1 (4)N4—C19—H19A109.5
N1—C5—C6117.7 (3)C20—C19—H19A109.5
C4—C5—C6120.2 (3)N4—C19—H19B109.5
N4—C6—C5114.4 (3)C20—C19—H19B109.5
N4—C6—H6A108.7H19A—C19—H19B108.1
C5—C6—H6A108.7N5—C20—C19109.8 (3)
N4—C6—H6B108.7N5—C20—H20A109.7
C5—C6—H6B108.7C19—C20—H20A109.7
H6A—C6—H6B107.6N5—C20—H20B109.7
C7—N2—C11118.9 (3)C19—C20—H20B109.7
C7—N2—Zn1128.0 (2)H20A—C20—H20B108.2
C11—N2—Zn1113.1 (2)C18—N5—C21111.2 (3)
N2—C7—C8122.8 (3)C18—N5—C20114.8 (3)
N2—C7—H7118.6C21—N5—C20112.5 (3)
C8—C7—H7118.6C18—N5—Zn1103.7 (2)
C9—C8—C7118.4 (3)C21—N5—Zn1108.71 (19)
C9—C8—H8120.8C20—N5—Zn1105.24 (19)
C7—C8—H8120.8N5—C21—C22114.2 (3)
C8—C9—C10119.2 (3)N5—C21—H21A108.7
C8—C9—H9120.4C22—C21—H21A108.7
C10—C9—H9120.4N5—C21—H21B108.7
C11—C10—C9119.3 (3)C22—C21—H21B108.7
C11—C10—H10120.3H21A—C21—H21B107.6
C9—C10—H10120.3O1—C22—O2125.9 (3)
N2—C11—C10121.4 (3)O1—C22—C21120.1 (3)
N2—C11—C12117.0 (3)O2—C22—C21113.9 (3)
C10—C11—C12121.7 (3)C22—O1—Zn1115.3 (2)
N4—C12—C11110.2 (3)C22—O2—Zn2126.4 (2)
(II_vcm14089) Tribromido[µ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dizinc(II) top
Crystal data top
[Zn2Br3(C22H24N5O2)]Dx = 1.982 Mg m3
Mr = 760.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9941 reflections
a = 18.7061 (12) Åθ = 2.7–23.0°
b = 13.3342 (9) ŵ = 6.61 mm1
c = 20.4516 (13) ÅT = 180 K
V = 5101.3 (6) Å3Block, colourless
Z = 80.17 × 0.08 × 0.05 mm
F(000) = 2976
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
11284 independent reflections
Radiation source: fine-focus sealed-tube8558 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.081
thin–slice ω and φ scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2423
Tmin = 0.365, Tmax = 0.431k = 1717
127653 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11284 reflectionsΔρmax = 1.26 e Å3
614 parametersΔρmin = 0.61 e Å3
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.245 (12)
Crystal data top
[Zn2Br3(C22H24N5O2)]V = 5101.3 (6) Å3
Mr = 760.93Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 18.7061 (12) ŵ = 6.61 mm1
b = 13.3342 (9) ÅT = 180 K
c = 20.4516 (13) Å0.17 × 0.08 × 0.05 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
11284 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
8558 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.431Rint = 0.081
127653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.078Δρmax = 1.26 e Å3
S = 1.02Δρmin = 0.61 e Å3
11284 reflectionsAbsolute structure: Refined as an inversion twin.
614 parametersAbsolute structure parameter: 0.245 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.51652 (5)0.85593 (6)0.52058 (4)0.0149 (2)
Zn20.32893 (5)1.05847 (6)0.35826 (4)0.0168 (2)
Br10.43284 (5)1.02792 (8)0.29484 (5)0.0322 (2)
Br20.29001 (5)1.22925 (6)0.35104 (5)0.0332 (2)
Br30.23405 (5)0.94323 (7)0.33985 (5)0.0339 (2)
N10.6162 (3)0.8210 (5)0.5730 (3)0.0176 (16)
C10.6226 (5)0.7788 (6)0.6332 (4)0.023 (2)
H10.58060.76690.65810.028*
C20.6875 (5)0.7527 (6)0.6592 (5)0.030 (2)
H20.69060.72390.70160.035*
C30.7479 (5)0.7692 (6)0.6225 (5)0.031 (2)
H30.79340.75070.63920.037*
C40.7427 (5)0.8121 (6)0.5619 (5)0.022 (2)
H40.78420.82280.53610.027*
C50.6757 (4)0.8399 (5)0.5388 (4)0.0176 (18)
C60.6692 (4)0.8887 (6)0.4726 (4)0.0195 (19)
H6A0.70130.94770.47130.023*
H6B0.68610.84070.43910.023*
N20.5234 (3)0.7410 (5)0.4511 (3)0.0161 (15)
C70.5005 (4)0.6454 (6)0.4554 (4)0.0161 (18)
H70.47690.62440.49420.019*
C80.5101 (4)0.5766 (6)0.4052 (4)0.022 (2)
H80.49270.51000.40930.026*
C90.5451 (5)0.6062 (6)0.3494 (5)0.028 (2)
H90.55180.56060.31420.033*
C100.5704 (4)0.7030 (6)0.3452 (5)0.022 (2)
H100.59650.72390.30780.027*
C110.5575 (4)0.7694 (6)0.3956 (4)0.0173 (18)
C120.5759 (4)0.8801 (6)0.3901 (4)0.0192 (18)
H12A0.61630.88880.35940.023*
H12B0.53430.91720.37250.023*
N30.4549 (3)0.8323 (5)0.6038 (3)0.0148 (14)
C130.4144 (4)0.7523 (6)0.6177 (4)0.022 (2)
H130.41480.69690.58840.027*
C140.3721 (4)0.7470 (6)0.6726 (4)0.023 (2)
H140.34530.68820.68210.027*
C150.3696 (4)0.8285 (6)0.7133 (4)0.0218 (19)
H150.33930.82770.75050.026*
C160.4112 (5)0.9126 (6)0.7002 (4)0.024 (2)
H160.40950.96950.72810.029*
C170.4554 (4)0.9119 (6)0.6457 (4)0.0164 (18)
C180.5059 (6)0.9957 (6)0.6296 (5)0.020 (2)
H18A0.48951.05840.65070.024*
H18B0.55420.97970.64640.024*
N40.5957 (3)0.9218 (5)0.4550 (3)0.0170 (15)
C190.5845 (5)1.0319 (7)0.4607 (4)0.023 (2)
H19A0.54231.05210.43450.027*
H19B0.62681.06790.44350.027*
C200.5727 (4)1.0593 (6)0.5321 (4)0.0217 (19)
H20A0.61491.03870.55810.026*
H20B0.56741.13290.53620.026*
N50.5087 (4)1.0098 (5)0.5578 (4)0.0147 (17)
C210.4424 (4)1.0583 (6)0.5336 (4)0.0176 (18)
H21A0.45431.12660.51820.021*
H21B0.40861.06500.57050.021*
C220.4051 (5)1.0019 (6)0.4781 (5)0.017 (2)
O10.4279 (3)0.9160 (4)0.4632 (3)0.0194 (13)
O20.3538 (3)1.0478 (4)0.4532 (3)0.0214 (13)
Zn30.23936 (4)0.64110 (6)0.48274 (4)0.0143 (2)
Zn40.42713 (5)0.44178 (6)0.65074 (4)0.0162 (2)
Br40.52339 (4)0.54973 (6)0.67998 (4)0.0257 (2)
Br50.31994 (4)0.46711 (7)0.71173 (4)0.0252 (2)
Br60.46490 (4)0.26880 (6)0.65729 (4)0.0263 (2)
N60.1355 (3)0.6728 (5)0.4359 (3)0.0148 (15)
C230.1242 (5)0.7156 (6)0.3771 (4)0.025 (2)
H230.16420.72880.34980.031*
C240.0579 (5)0.7407 (6)0.3554 (5)0.030 (2)
H240.05220.76760.31270.036*
C250.0018 (5)0.7274 (6)0.3951 (5)0.028 (2)
H250.04800.74810.38140.034*
C260.0092 (5)0.6825 (7)0.4555 (4)0.021 (2)
H260.02980.66960.48410.025*
C270.0783 (4)0.6569 (5)0.4732 (4)0.0159 (17)
C280.0898 (4)0.6051 (6)0.5389 (4)0.0187 (18)
H28A0.07200.65000.57380.022*
H28B0.06030.54350.53990.022*
N70.2992 (3)0.6594 (5)0.3974 (3)0.0158 (15)
C290.3422 (4)0.7366 (6)0.3811 (4)0.0175 (18)
H290.34300.79430.40830.021*
C300.3849 (4)0.7344 (6)0.3264 (4)0.0200 (19)
H300.41330.79100.31530.024*
C310.3863 (4)0.6482 (6)0.2871 (4)0.0204 (19)
H310.41740.64300.25050.025*
C320.3404 (4)0.5710 (6)0.3039 (4)0.0219 (19)
H320.33840.51260.27730.026*
C330.2975 (4)0.5775 (6)0.3584 (4)0.0168 (17)
C340.2455 (6)0.4961 (5)0.3786 (4)0.015 (2)
H34A0.19640.51420.36480.018*
H34B0.25860.43180.35750.018*
N80.2348 (3)0.7597 (5)0.5497 (3)0.0157 (15)
C350.2587 (4)0.8531 (6)0.5418 (4)0.0203 (19)
H350.27970.87120.50120.024*
C360.2540 (5)0.9247 (6)0.5906 (4)0.0229 (19)
H360.27390.98960.58460.027*
C370.2194 (4)0.8996 (6)0.6484 (4)0.0229 (19)
H370.21330.94850.68170.027*
C380.1945 (4)0.8047 (6)0.6572 (5)0.0215 (19)
H380.17030.78660.69630.026*
C390.2053 (4)0.7337 (6)0.6070 (4)0.0178 (18)
C400.1860 (4)0.6243 (6)0.6167 (4)0.0193 (18)
H40A0.22760.58790.63490.023*
H40B0.14620.61910.64850.023*
N90.2484 (4)0.4857 (5)0.4501 (4)0.0145 (16)
C410.1855 (4)0.4353 (5)0.4796 (4)0.0183 (18)
H41A0.19200.36170.47770.022*
H41B0.14200.45250.45440.022*
C420.1759 (4)0.4677 (7)0.5504 (4)0.0208 (19)
H42A0.13440.43240.56970.025*
H42B0.21900.44940.57590.025*
N100.1644 (3)0.5775 (5)0.5540 (3)0.0146 (15)
C440.3512 (5)0.4995 (5)0.5274 (5)0.015 (2)
C430.3159 (4)0.4406 (6)0.4729 (4)0.0176 (18)
H43A0.34950.43590.43560.021*
H43B0.30630.37170.48850.021*
O30.3294 (3)0.5853 (4)0.5418 (3)0.0187 (13)
O40.4032 (3)0.4543 (4)0.5554 (3)0.0245 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0149 (5)0.0143 (5)0.0154 (5)0.0011 (4)0.0003 (4)0.0014 (4)
Zn20.0171 (5)0.0170 (5)0.0162 (5)0.0004 (4)0.0009 (4)0.0012 (4)
Br10.0265 (5)0.0433 (5)0.0267 (5)0.0071 (5)0.0106 (4)0.0044 (5)
Br20.0410 (6)0.0192 (4)0.0392 (6)0.0071 (4)0.0088 (5)0.0060 (4)
Br30.0244 (5)0.0330 (5)0.0442 (6)0.0057 (4)0.0005 (4)0.0171 (4)
N10.020 (4)0.013 (3)0.020 (4)0.001 (3)0.000 (3)0.000 (3)
C10.027 (5)0.015 (4)0.027 (5)0.000 (4)0.001 (4)0.001 (4)
C20.027 (5)0.033 (5)0.029 (5)0.001 (4)0.010 (5)0.014 (5)
C30.016 (5)0.023 (5)0.053 (6)0.006 (4)0.011 (5)0.005 (4)
C40.020 (5)0.011 (4)0.037 (6)0.000 (4)0.002 (4)0.001 (4)
C50.017 (4)0.012 (4)0.024 (5)0.003 (3)0.002 (4)0.006 (3)
C60.014 (4)0.015 (4)0.030 (5)0.002 (3)0.001 (4)0.001 (4)
N20.015 (4)0.017 (4)0.016 (4)0.001 (3)0.002 (3)0.001 (3)
C70.014 (4)0.012 (4)0.022 (4)0.005 (3)0.001 (4)0.003 (3)
C80.020 (5)0.016 (4)0.030 (5)0.006 (3)0.009 (4)0.007 (4)
C90.028 (5)0.034 (5)0.021 (5)0.014 (4)0.006 (4)0.008 (4)
C100.019 (5)0.027 (5)0.021 (5)0.001 (4)0.002 (4)0.004 (4)
C110.009 (4)0.027 (5)0.016 (4)0.001 (3)0.003 (3)0.005 (4)
C120.022 (4)0.021 (4)0.015 (4)0.005 (4)0.002 (4)0.000 (3)
N30.016 (3)0.015 (3)0.014 (4)0.003 (3)0.004 (3)0.003 (3)
C130.019 (5)0.021 (5)0.026 (5)0.002 (4)0.003 (4)0.003 (4)
C140.019 (4)0.029 (5)0.019 (5)0.003 (4)0.002 (4)0.000 (4)
C150.018 (4)0.035 (5)0.013 (4)0.006 (4)0.009 (4)0.005 (4)
C160.031 (5)0.027 (5)0.016 (5)0.008 (4)0.007 (4)0.004 (4)
C170.015 (4)0.020 (4)0.014 (4)0.005 (3)0.004 (4)0.004 (3)
C180.023 (5)0.020 (5)0.016 (5)0.003 (3)0.006 (5)0.005 (3)
N40.016 (4)0.024 (4)0.012 (3)0.001 (3)0.002 (3)0.003 (3)
C190.027 (5)0.017 (5)0.024 (5)0.001 (4)0.004 (4)0.003 (4)
C200.019 (4)0.014 (4)0.032 (5)0.005 (4)0.002 (4)0.003 (4)
N50.015 (4)0.014 (4)0.015 (4)0.000 (3)0.008 (3)0.002 (3)
C210.016 (4)0.014 (4)0.023 (5)0.001 (3)0.004 (4)0.001 (4)
C220.018 (5)0.027 (6)0.007 (5)0.000 (3)0.001 (4)0.001 (3)
O10.017 (3)0.020 (3)0.021 (3)0.001 (2)0.003 (3)0.005 (3)
O20.016 (3)0.032 (4)0.017 (3)0.006 (3)0.003 (3)0.001 (3)
Zn30.0142 (5)0.0139 (4)0.0150 (5)0.0012 (4)0.0002 (4)0.0006 (4)
Zn40.0164 (5)0.0166 (5)0.0156 (5)0.0021 (4)0.0021 (4)0.0003 (4)
Br40.0217 (5)0.0213 (4)0.0342 (5)0.0025 (3)0.0037 (4)0.0038 (4)
Br50.0210 (5)0.0323 (5)0.0223 (5)0.0037 (4)0.0039 (4)0.0021 (4)
Br60.0315 (5)0.0161 (4)0.0312 (5)0.0030 (4)0.0020 (4)0.0002 (4)
N60.013 (4)0.015 (3)0.017 (4)0.001 (3)0.001 (3)0.003 (3)
C230.026 (5)0.024 (5)0.026 (5)0.001 (4)0.007 (4)0.011 (4)
C240.025 (5)0.035 (5)0.030 (6)0.002 (4)0.004 (5)0.015 (5)
C250.016 (5)0.027 (5)0.042 (6)0.001 (4)0.007 (4)0.008 (4)
C260.016 (5)0.026 (5)0.021 (5)0.002 (4)0.001 (4)0.001 (4)
C270.015 (4)0.013 (4)0.019 (4)0.000 (3)0.004 (4)0.000 (3)
C280.013 (4)0.026 (5)0.017 (4)0.004 (3)0.002 (4)0.006 (3)
N70.019 (4)0.015 (3)0.013 (4)0.002 (3)0.002 (3)0.002 (3)
C290.014 (4)0.018 (4)0.020 (5)0.004 (3)0.002 (4)0.002 (3)
C300.014 (4)0.025 (5)0.022 (5)0.003 (3)0.001 (4)0.009 (4)
C310.018 (4)0.032 (5)0.012 (4)0.001 (4)0.005 (4)0.001 (4)
C320.018 (4)0.030 (5)0.018 (5)0.006 (4)0.005 (4)0.004 (4)
C330.014 (4)0.017 (4)0.019 (4)0.005 (3)0.005 (4)0.002 (4)
C340.022 (5)0.010 (5)0.013 (5)0.000 (3)0.002 (5)0.002 (3)
N80.010 (3)0.019 (4)0.018 (4)0.003 (3)0.001 (3)0.008 (3)
C350.017 (4)0.025 (5)0.019 (4)0.001 (4)0.001 (4)0.005 (4)
C360.020 (5)0.014 (4)0.034 (5)0.002 (3)0.008 (4)0.002 (4)
C370.029 (5)0.018 (4)0.022 (5)0.007 (4)0.006 (4)0.007 (4)
C380.018 (4)0.029 (5)0.018 (4)0.005 (4)0.002 (4)0.003 (4)
C390.016 (4)0.016 (4)0.021 (5)0.006 (3)0.002 (4)0.001 (4)
C400.020 (4)0.022 (4)0.015 (4)0.004 (4)0.003 (4)0.002 (3)
N90.018 (4)0.012 (3)0.014 (4)0.004 (3)0.001 (3)0.001 (3)
C410.018 (4)0.011 (4)0.026 (5)0.001 (3)0.003 (4)0.001 (4)
C420.014 (4)0.020 (5)0.029 (5)0.008 (4)0.001 (4)0.006 (4)
N100.016 (4)0.013 (4)0.016 (4)0.005 (3)0.001 (3)0.002 (3)
C440.017 (5)0.012 (5)0.015 (5)0.001 (3)0.008 (4)0.006 (3)
C430.016 (4)0.014 (4)0.023 (5)0.002 (3)0.001 (4)0.000 (4)
O30.022 (3)0.017 (3)0.017 (3)0.002 (2)0.003 (3)0.003 (2)
O40.025 (3)0.033 (4)0.015 (3)0.013 (3)0.007 (3)0.008 (3)
Geometric parameters (Å, º) top
Zn1—N12.200 (7)Zn3—N62.207 (6)
Zn1—N22.094 (7)Zn3—N72.088 (6)
Zn1—N32.080 (7)Zn3—N82.094 (7)
Zn1—N42.182 (7)Zn3—N92.183 (7)
Zn1—N52.192 (6)Zn3—N102.194 (6)
Zn1—O12.184 (5)Zn3—O32.202 (5)
Zn2—O22.001 (6)Zn4—O42.008 (6)
Zn2—Br12.3721 (13)Zn4—Br42.3816 (12)
Zn2—Br22.3953 (12)Zn4—Br52.3856 (12)
Zn2—Br32.3776 (12)Zn4—Br62.4161 (11)
N1—C51.339 (10)N6—C271.332 (10)
N1—C11.359 (10)N6—C231.347 (10)
C1—C21.370 (12)C23—C241.360 (12)
C1—H10.9500C23—H230.9500
C2—C31.375 (13)C24—C251.391 (13)
C2—H20.9500C24—H240.9500
C3—C41.368 (12)C25—C261.389 (13)
C3—H30.9500C25—H250.9500
C4—C51.390 (11)C26—C271.384 (11)
C4—H40.9500C26—H260.9500
C5—C61.507 (11)C27—C281.524 (11)
C6—N41.489 (10)C28—N101.476 (10)
C6—H6A0.9900C28—H28A0.9900
C6—H6B0.9900C28—H28B0.9900
N2—C71.347 (9)N7—C291.348 (9)
N2—C111.356 (10)N7—C331.352 (9)
C7—C81.390 (11)C29—C301.374 (11)
C7—H70.9500C29—H290.9500
C8—C91.374 (13)C30—C311.404 (11)
C8—H80.9500C30—H300.9500
C9—C101.377 (12)C31—C321.384 (12)
C9—H90.9500C31—H310.9500
C10—C111.380 (11)C32—C331.377 (11)
C10—H100.9500C32—H320.9500
C11—C121.520 (11)C33—C341.516 (11)
C12—N41.485 (10)C34—N91.469 (11)
C12—H12A0.9900C34—H34A0.9900
C12—H12B0.9900C34—H34B0.9900
N3—C131.340 (10)N8—C351.334 (10)
N3—C171.363 (10)N8—C391.341 (10)
C13—C141.375 (11)C35—C361.383 (12)
C13—H130.9500C35—H350.9500
C14—C151.370 (11)C36—C371.389 (12)
C14—H140.9500C36—H360.9500
C15—C161.392 (12)C37—C381.361 (11)
C15—H150.9500C37—H370.9500
C16—C171.387 (11)C38—C391.410 (11)
C16—H160.9500C38—H380.9500
C17—C181.500 (12)C39—C401.516 (11)
C18—N51.482 (12)C40—N101.483 (10)
C18—H18A0.9900C40—H40A0.9900
C18—H18B0.9900C40—H40B0.9900
N4—C191.487 (10)N9—C431.475 (11)
C19—C201.522 (12)N9—C411.484 (11)
C19—H19A0.9900C41—C421.522 (12)
C19—H19B0.9900C41—H41A0.9900
C20—N51.465 (11)C41—H41B0.9900
C20—H20A0.9900C42—N101.482 (10)
C20—H20B0.9900C42—H42A0.9900
N5—C211.484 (11)C42—H42B0.9900
C21—C221.530 (12)C44—O31.249 (9)
C21—H21A0.9900C44—O41.279 (10)
C21—H21B0.9900C44—C431.515 (12)
C22—O21.247 (10)C43—H43A0.9900
C22—O11.259 (9)C43—H43B0.9900
N3—Zn1—N2118.6 (2)N7—Zn3—N8118.7 (2)
N3—Zn1—N4160.0 (2)N7—Zn3—N979.3 (3)
N2—Zn1—N480.6 (3)N8—Zn3—N9156.9 (3)
N3—Zn1—O194.3 (2)N7—Zn3—N10160.7 (2)
N2—Zn1—O187.2 (2)N8—Zn3—N1080.3 (2)
N4—Zn1—O192.1 (2)N9—Zn3—N1083.5 (3)
N3—Zn1—N579.7 (3)N7—Zn3—O395.0 (2)
N2—Zn1—N5157.6 (3)N8—Zn3—O385.9 (2)
N4—Zn1—N583.2 (3)N9—Zn3—O377.8 (3)
O1—Zn1—N578.0 (2)N10—Zn3—O389.7 (2)
N3—Zn1—N192.2 (2)N7—Zn3—N695.0 (2)
N2—Zn1—N197.1 (2)N8—Zn3—N695.9 (2)
N4—Zn1—N179.0 (2)N9—Zn3—N696.7 (3)
O1—Zn1—N1169.4 (2)N10—Zn3—N678.4 (2)
N5—Zn1—N194.9 (3)O3—Zn3—N6167.5 (2)
O2—Zn2—Br1109.13 (16)O4—Zn4—Br4111.24 (18)
O2—Zn2—Br3106.34 (17)O4—Zn4—Br5107.97 (16)
Br1—Zn2—Br3114.46 (5)Br4—Zn4—Br5114.75 (5)
O2—Zn2—Br2101.41 (17)O4—Zn4—Br6101.45 (17)
Br1—Zn2—Br2112.24 (5)Br4—Zn4—Br6110.00 (4)
Br3—Zn2—Br2112.20 (5)Br5—Zn4—Br6110.60 (5)
C5—N1—C1118.5 (7)C27—N6—C23116.9 (7)
C5—N1—Zn1114.2 (5)C27—N6—Zn3115.4 (5)
C1—N1—Zn1127.2 (6)C23—N6—Zn3127.3 (6)
N1—C1—C2122.4 (9)N6—C23—C24122.6 (8)
N1—C1—H1118.8N6—C23—H23118.7
C2—C1—H1118.8C24—C23—H23118.7
C1—C2—C3118.4 (9)C23—C24—C25120.6 (9)
C1—C2—H2120.8C23—C24—H24119.7
C3—C2—H2120.8C25—C24—H24119.7
C4—C3—C2120.2 (9)C26—C25—C24117.1 (8)
C4—C3—H3119.9C26—C25—H25121.4
C2—C3—H3119.9C24—C25—H25121.4
C3—C4—C5119.0 (8)C27—C26—C25118.5 (9)
C3—C4—H4120.5C27—C26—H26120.7
C5—C4—H4120.5C25—C26—H26120.7
N1—C5—C4121.5 (7)N6—C27—C26124.1 (7)
N1—C5—C6118.9 (7)N6—C27—C28117.6 (7)
C4—C5—C6119.6 (7)C26—C27—C28118.3 (7)
N4—C6—C5114.8 (7)N10—C28—C27115.5 (6)
N4—C6—H6A108.6N10—C28—H28A108.4
C5—C6—H6A108.6C27—C28—H28A108.4
N4—C6—H6B108.6N10—C28—H28B108.4
C5—C6—H6B108.6C27—C28—H28B108.4
H6A—C6—H6B107.5H28A—C28—H28B107.5
C7—N2—C11117.9 (7)C29—N7—C33119.0 (7)
C7—N2—Zn1128.9 (6)C29—N7—Zn3128.0 (5)
C11—N2—Zn1113.1 (5)C33—N7—Zn3112.7 (5)
N2—C7—C8122.3 (8)N7—C29—C30122.1 (7)
N2—C7—H7118.8N7—C29—H29118.9
C8—C7—H7118.8C30—C29—H29118.9
C9—C8—C7119.1 (8)C29—C30—C31119.6 (7)
C9—C8—H8120.4C29—C30—H30120.2
C7—C8—H8120.4C31—C30—H30120.2
C8—C9—C10118.9 (8)C32—C31—C30117.1 (8)
C8—C9—H9120.5C32—C31—H31121.5
C10—C9—H9120.5C30—C31—H31121.5
C9—C10—C11119.7 (9)C33—C32—C31121.0 (8)
C9—C10—H10120.2C33—C32—H32119.5
C11—C10—H10120.2C31—C32—H32119.5
N2—C11—C10121.9 (8)N7—C33—C32121.0 (7)
N2—C11—C12116.0 (7)N7—C33—C34115.7 (7)
C10—C11—C12121.9 (7)C32—C33—C34123.3 (7)
N4—C12—C11110.8 (7)N9—C34—C33108.3 (7)
N4—C12—H12A109.5N9—C34—H34A110.0
C11—C12—H12A109.5C33—C34—H34A110.0
N4—C12—H12B109.5N9—C34—H34B110.0
C11—C12—H12B109.5C33—C34—H34B110.0
H12A—C12—H12B108.1H34A—C34—H34B108.4
C13—N3—C17119.4 (7)C35—N8—C39119.0 (7)
C13—N3—Zn1127.4 (5)C35—N8—Zn3127.8 (6)
C17—N3—Zn1113.1 (5)C39—N8—Zn3113.2 (5)
N3—C13—C14122.6 (8)N8—C35—C36122.5 (8)
N3—C13—H13118.7N8—C35—H35118.8
C14—C13—H13118.7C36—C35—H35118.8
C15—C14—C13118.3 (8)C35—C36—C37118.5 (7)
C15—C14—H14120.8C35—C36—H36120.8
C13—C14—H14120.8C37—C36—H36120.8
C14—C15—C16120.3 (8)C38—C37—C36119.8 (8)
C14—C15—H15119.9C38—C37—H37120.1
C16—C15—H15119.9C36—C37—H37120.1
C17—C16—C15118.8 (8)C37—C38—C39118.6 (8)
C17—C16—H16120.6C37—C38—H38120.7
C15—C16—H16120.6C39—C38—H38120.7
N3—C17—C16120.4 (7)N8—C39—C38121.5 (7)
N3—C17—C18116.5 (7)N8—C39—C40117.4 (7)
C16—C17—C18123.1 (7)C38—C39—C40121.1 (7)
N5—C18—C17109.6 (7)N10—C40—C39110.9 (6)
N5—C18—H18A109.8N10—C40—H40A109.5
C17—C18—H18A109.8C39—C40—H40A109.5
N5—C18—H18B109.8N10—C40—H40B109.5
C17—C18—H18B109.8C39—C40—H40B109.5
H18A—C18—H18B108.2H40A—C40—H40B108.1
C12—N4—C19113.9 (6)C34—N9—C43112.7 (7)
C12—N4—C6109.6 (6)C34—N9—C41114.7 (7)
C19—N4—C6113.8 (6)C43—N9—C41111.5 (6)
C12—N4—Zn1103.2 (5)C34—N9—Zn3102.2 (4)
C19—N4—Zn1104.7 (5)C43—N9—Zn3110.9 (5)
C6—N4—Zn1111.0 (5)C41—N9—Zn3104.1 (5)
N4—C19—C20109.4 (7)N9—C41—C42110.6 (6)
N4—C19—H19A109.8N9—C41—H41A109.5
C20—C19—H19A109.8C42—C41—H41A109.5
N4—C19—H19B109.8N9—C41—H41B109.5
C20—C19—H19B109.8C42—C41—H41B109.5
H19A—C19—H19B108.2H41A—C41—H41B108.1
N5—C20—C19110.7 (7)N10—C42—C41110.1 (7)
N5—C20—H20A109.5N10—C42—H42A109.6
C19—C20—H20A109.5C41—C42—H42A109.6
N5—C20—H20B109.5N10—C42—H42B109.6
C19—C20—H20B109.5C41—C42—H42B109.6
H20A—C20—H20B108.1H42A—C42—H42B108.1
C20—N5—C18116.2 (7)C28—N10—C42111.9 (6)
C20—N5—C21111.5 (6)C28—N10—C40109.6 (6)
C18—N5—C21110.8 (7)C42—N10—C40114.7 (6)
C20—N5—Zn1104.1 (5)C28—N10—Zn3111.6 (5)
C18—N5—Zn1103.2 (4)C42—N10—Zn3104.8 (5)
C21—N5—Zn1110.3 (5)C40—N10—Zn3103.8 (4)
N5—C21—C22114.5 (6)O3—C44—O4125.1 (9)
N5—C21—H21A108.6O3—C44—C43120.4 (8)
C22—C21—H21A108.6O4—C44—C43114.6 (7)
N5—C21—H21B108.6N9—C43—C44113.3 (6)
C22—C21—H21B108.6N9—C43—H43A108.9
H21A—C21—H21B107.6C44—C43—H43A108.9
O2—C22—O1127.5 (8)N9—C43—H43B108.9
O2—C22—C21114.4 (7)C44—C43—H43B108.9
O1—C22—C21118.1 (8)H43A—C43—H43B107.7
C22—O1—Zn1117.5 (6)C44—O3—Zn3115.5 (6)
C22—O2—Zn2127.6 (6)C44—O4—Zn4130.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br40.953.123.700 (8)121
C6—H6A···Br3i0.993.123.724 (8)121
C6—H6B···Br2i0.992.813.710 (8)152
C12—H12B···Br10.992.883.853 (8)167
C13—H13···O30.952.383.145 (10)137
C14—H14···Br50.953.053.939 (9)157
C15—H15···Br3ii0.952.763.578 (8)145
C18—H18A···Br6iii0.992.853.764 (8)155
C18—H18B···Br1iv0.993.053.583 (10)115
C19—H19B···Br3i0.992.923.747 (9)141
C26—H26···O4v0.952.543.381 (11)148
C28—H28A···Br6v0.992.853.762 (8)154
C29—H29···O10.952.533.334 (9)142
C34—H34B···Br2ii0.992.773.698 (7)157
C40—H40A···Br50.992.843.801 (8)165
C42—H42A···Br4v0.993.073.900 (8)142
Symmetry codes: (i) x+1/2, y+2, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+2, z+1/2; (v) x1/2, y+1, z.
(III_vCM14087twin5) Aquatribromido[µ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dicopper(II)–tribromido[µ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dicopper(II)–water (1/1/6.5) top
Crystal data top
[Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2OZ = 2
Mr = 1649.66F(000) = 1630
Triclinic, P1Dx = 1.912 Mg m3
a = 11.2516 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0606 (10) ÅCell parameters from 7803 reflections
c = 18.3213 (14) Åθ = 2.4–26.2°
α = 112.087 (3)°µ = 5.71 mm1
β = 94.380 (3)°T = 180 K
γ = 90.486 (3)°Needle, pale blue
V = 2866.1 (4) Å30.20 × 0.11 × 0.05 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
11068 independent reflections
Radiation source: fine-focus sealed-tube7261 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.077
thin–slice ω and φ scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 1413
Tmin = 0.303, Tmax = 0.430k = 1817
11068 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
11068 reflections(Δ/σ)max = 0.001
686 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2Oγ = 90.486 (3)°
Mr = 1649.66V = 2866.1 (4) Å3
Triclinic, P1Z = 2
a = 11.2516 (9) ÅMo Kα radiation
b = 15.0606 (10) ŵ = 5.71 mm1
c = 18.3213 (14) ÅT = 180 K
α = 112.087 (3)°0.20 × 0.11 × 0.05 mm
β = 94.380 (3)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
11068 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
7261 reflections with I > 2σ(I)
Tmin = 0.303, Tmax = 0.430Rint = 0.077
11068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.99 e Å3
11068 reflectionsΔρmin = 0.88 e Å3
686 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.H atoms of the water molecules were not located and are not included in the model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.40326 (9)0.55531 (7)0.18085 (6)0.0173 (2)
Cu20.00160 (9)0.57391 (7)0.30625 (6)0.0177 (2)
Br10.62240 (8)0.53381 (7)0.16191 (6)0.0290 (2)
Br20.25880 (9)0.43804 (6)0.08770 (5)0.0256 (2)
Br30.07600 (9)0.45736 (7)0.35413 (6)0.0337 (3)
N10.4155 (6)0.4927 (4)0.2587 (4)0.0172 (16)
C10.4096 (7)0.3982 (6)0.2432 (6)0.027 (2)
H10.39940.35410.18990.032*
C20.4181 (8)0.3639 (6)0.3029 (5)0.026 (2)
H20.41540.29670.29050.031*
C30.4306 (8)0.4261 (7)0.3804 (6)0.033 (3)
H30.43490.40260.42190.040*
C40.4368 (7)0.5242 (6)0.3974 (5)0.021 (2)
H40.44530.56920.45040.026*
C50.4302 (7)0.5545 (6)0.3340 (5)0.017 (2)
C60.4458 (7)0.6589 (6)0.3450 (5)0.018 (2)
H6A0.42370.70060.39800.022*
H6B0.53020.67410.34090.022*
N20.3931 (6)0.6521 (4)0.1311 (4)0.0206 (17)
C70.3885 (8)0.6315 (6)0.0521 (5)0.024 (2)
H70.38870.56660.01630.028*
C80.3836 (8)0.7044 (7)0.0230 (5)0.026 (2)
H80.38310.68980.03220.031*
C90.3794 (7)0.7961 (6)0.0738 (5)0.024 (2)
H90.37290.84620.05430.029*
C100.3846 (7)0.8171 (6)0.1534 (5)0.023 (2)
H100.38220.88170.18940.027*
C110.3934 (7)0.7424 (6)0.1817 (5)0.017 (2)
C120.4091 (7)0.7620 (6)0.2687 (5)0.018 (2)
H12A0.49420.77790.28810.022*
H12B0.36220.81760.29780.022*
N30.0465 (6)0.4914 (4)0.1950 (4)0.0139 (16)
C130.0614 (7)0.3968 (6)0.1625 (5)0.020 (2)
H130.05000.36150.19570.024*
C140.0924 (7)0.3465 (6)0.0828 (5)0.023 (2)
H140.10360.27870.06200.027*
C150.1066 (8)0.3972 (6)0.0350 (6)0.025 (2)
H150.12640.36450.02020.030*
C160.0918 (7)0.4979 (6)0.0672 (5)0.019 (2)
H160.10100.53450.03490.023*
C170.0633 (7)0.5415 (5)0.1482 (5)0.0138 (19)
C180.0544 (7)0.6486 (6)0.1890 (5)0.0166 (19)
H18A0.02540.67740.15290.020*
H18B0.13430.67310.20320.020*
N40.3688 (6)0.6764 (4)0.2834 (4)0.0154 (16)
C190.2442 (7)0.6811 (6)0.3058 (5)0.019 (2)
H19A0.23570.74140.35170.023*
H19B0.22660.62680.32180.023*
C200.1540 (7)0.6772 (6)0.2375 (5)0.0160 (19)
H20A0.16800.73360.22340.019*
H20B0.16480.61870.19050.019*
N50.0282 (6)0.6766 (4)0.2611 (4)0.0157 (16)
C210.0019 (8)0.7690 (6)0.3243 (5)0.021 (2)
H21A0.08160.78500.31500.025*
H21B0.05500.82080.32260.025*
C220.0199 (7)0.7629 (7)0.4043 (5)0.023 (2)
O10.0330 (5)0.6793 (4)0.4075 (3)0.0194 (13)
O20.0222 (6)0.8370 (4)0.4656 (4)0.0398 (18)
Cu30.70717 (10)0.09427 (7)0.22562 (6)0.0212 (3)
Cu41.13409 (10)0.01614 (7)0.21751 (6)0.0203 (3)
Br40.47160 (8)0.09019 (6)0.25193 (6)0.0282 (2)
Br50.75962 (11)0.13000 (7)0.11421 (6)0.0422 (3)
Br61.04997 (9)0.15919 (6)0.12065 (6)0.0312 (2)
N60.6954 (6)0.0484 (5)0.1715 (4)0.0221 (17)
C230.6770 (8)0.0997 (6)0.0939 (6)0.029 (2)
H230.66770.06710.05840.035*
C240.6709 (8)0.1985 (6)0.0638 (5)0.027 (2)
H240.65980.23350.00840.032*
C250.6813 (8)0.2461 (6)0.1149 (6)0.034 (3)
H250.67690.31420.09560.040*
C260.6983 (8)0.1920 (6)0.1953 (6)0.027 (2)
H260.70560.22290.23200.032*
C270.7044 (7)0.0942 (6)0.2219 (5)0.020 (2)
C280.7169 (8)0.0307 (6)0.3085 (5)0.023 (2)
H28A0.63700.01690.32840.027*
H28B0.76170.06350.33900.027*
N70.7297 (6)0.2275 (5)0.3049 (4)0.0227 (17)
C290.7216 (8)0.3103 (6)0.2910 (6)0.026 (2)
H290.70550.30640.23820.031*
C300.7361 (8)0.3986 (6)0.3508 (6)0.033 (3)
H300.72880.45490.33940.040*
C310.7617 (9)0.4058 (7)0.4281 (6)0.036 (3)
H310.77330.46680.46990.043*
C320.7698 (8)0.3229 (6)0.4433 (6)0.029 (2)
H320.78720.32550.49570.034*
C330.7519 (8)0.2354 (6)0.3800 (5)0.022 (2)
C340.7577 (8)0.1416 (6)0.3937 (5)0.024 (2)
H34A0.82180.14720.43550.029*
H34B0.68110.12820.41160.029*
N81.1389 (6)0.0651 (4)0.1559 (4)0.0178 (16)
C351.1268 (7)0.0387 (6)0.0774 (5)0.025 (2)
H351.11730.02760.04520.030*
C361.1276 (8)0.1046 (6)0.0412 (5)0.026 (2)
H361.11930.08370.01480.031*
C371.1404 (8)0.1997 (6)0.0873 (5)0.024 (2)
H371.13960.24570.06330.029*
C381.1546 (8)0.2298 (6)0.1681 (5)0.025 (2)
H381.16480.29610.20030.029*
C391.1537 (7)0.1612 (6)0.2020 (5)0.0167 (19)
C401.1735 (7)0.1829 (6)0.2884 (5)0.017 (2)
H40A1.26020.18620.30390.021*
H40B1.14140.24610.31810.021*
N90.7818 (6)0.0607 (5)0.3187 (4)0.0193 (17)
C410.9123 (8)0.0428 (6)0.3136 (5)0.024 (2)
H41A0.92300.01290.26440.028*
H41B0.94260.02610.35870.028*
C420.9868 (7)0.1289 (5)0.3140 (5)0.0170 (19)
H42A0.95720.14570.26870.020*
H42B0.97660.18480.36320.020*
N101.1149 (6)0.1089 (5)0.3091 (4)0.0173 (16)
C431.1735 (8)0.0994 (6)0.3815 (5)0.027 (2)
H43A1.11760.11790.42350.032*
H43B1.24460.14370.40100.032*
C441.2112 (8)0.0036 (7)0.3646 (6)0.032 (3)
O31.1880 (5)0.0656 (4)0.2950 (4)0.0292 (16)
O41.2605 (7)0.0207 (5)0.4205 (5)0.062 (2)
O50.1995 (5)0.6110 (4)0.3193 (3)0.0311 (16)
O60.2956 (6)0.3206 (4)0.5363 (3)0.0319 (16)
O70.0772 (5)0.3326 (4)0.4671 (3)0.0292 (16)
O80.3234 (6)0.1477 (5)0.5765 (4)0.0442 (19)
O90.4745 (6)0.2287 (4)0.4432 (4)0.0351 (17)
O100.5598 (6)0.1138 (5)0.5236 (4)0.0429 (19)
O110.4555 (9)0.1661 (7)0.0956 (5)0.094 (3)
O120.1109 (12)0.0290 (8)0.5442 (7)0.038 (3)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0169 (6)0.0168 (5)0.0175 (6)0.0018 (4)0.0010 (5)0.0058 (5)
Cu20.0179 (6)0.0187 (5)0.0179 (6)0.0006 (5)0.0014 (5)0.0085 (5)
Br10.0149 (5)0.0429 (6)0.0292 (6)0.0012 (4)0.0023 (4)0.0136 (5)
Br20.0259 (6)0.0201 (5)0.0273 (5)0.0046 (4)0.0076 (4)0.0071 (4)
Br30.0416 (7)0.0325 (6)0.0337 (6)0.0059 (5)0.0020 (5)0.0212 (5)
N10.014 (4)0.013 (4)0.023 (4)0.002 (3)0.005 (3)0.006 (3)
C10.012 (5)0.038 (6)0.036 (6)0.002 (4)0.004 (4)0.022 (5)
C20.028 (6)0.024 (5)0.028 (6)0.001 (4)0.006 (5)0.014 (5)
C30.015 (6)0.044 (6)0.056 (7)0.013 (5)0.012 (5)0.038 (6)
C40.017 (5)0.031 (5)0.013 (5)0.000 (4)0.002 (4)0.006 (4)
C50.012 (5)0.020 (5)0.015 (5)0.006 (4)0.002 (4)0.004 (4)
C60.009 (5)0.025 (5)0.014 (5)0.004 (4)0.002 (4)0.000 (4)
N20.012 (4)0.012 (4)0.037 (5)0.000 (3)0.004 (3)0.007 (4)
C70.025 (6)0.025 (5)0.018 (5)0.006 (4)0.003 (4)0.007 (4)
C80.019 (6)0.044 (6)0.022 (5)0.007 (5)0.002 (4)0.023 (5)
C90.018 (6)0.031 (5)0.036 (6)0.001 (4)0.001 (4)0.026 (5)
C100.015 (5)0.025 (5)0.031 (6)0.003 (4)0.011 (4)0.013 (4)
C110.007 (5)0.027 (5)0.025 (5)0.000 (4)0.005 (4)0.018 (4)
C120.011 (5)0.018 (4)0.023 (5)0.000 (4)0.007 (4)0.004 (4)
N30.013 (4)0.014 (4)0.016 (4)0.000 (3)0.004 (3)0.007 (3)
C130.011 (5)0.022 (5)0.033 (6)0.005 (4)0.008 (4)0.015 (5)
C140.010 (5)0.016 (5)0.035 (6)0.002 (4)0.009 (4)0.000 (4)
C150.013 (5)0.029 (5)0.033 (6)0.003 (4)0.007 (4)0.009 (5)
C160.011 (5)0.033 (5)0.013 (5)0.008 (4)0.004 (4)0.007 (4)
C170.011 (5)0.011 (4)0.017 (5)0.002 (3)0.010 (4)0.000 (4)
C180.008 (5)0.029 (5)0.019 (5)0.006 (4)0.002 (4)0.015 (4)
N40.013 (4)0.012 (3)0.018 (4)0.002 (3)0.003 (3)0.001 (3)
C190.014 (5)0.025 (5)0.018 (5)0.006 (4)0.004 (4)0.005 (4)
C200.011 (5)0.021 (4)0.020 (5)0.002 (4)0.000 (4)0.013 (4)
N50.009 (4)0.017 (4)0.017 (4)0.002 (3)0.002 (3)0.003 (3)
C210.016 (5)0.016 (5)0.024 (5)0.001 (4)0.000 (4)0.002 (4)
C220.004 (5)0.037 (6)0.021 (5)0.003 (4)0.002 (4)0.005 (5)
O10.016 (4)0.027 (3)0.016 (3)0.004 (3)0.002 (3)0.009 (3)
O20.052 (5)0.034 (4)0.027 (4)0.003 (3)0.010 (4)0.002 (3)
Cu30.0218 (7)0.0166 (5)0.0248 (6)0.0003 (5)0.0058 (5)0.0066 (5)
Cu40.0207 (7)0.0143 (5)0.0272 (6)0.0030 (5)0.0062 (5)0.0087 (5)
Br40.0209 (6)0.0246 (5)0.0360 (6)0.0025 (4)0.0038 (4)0.0076 (4)
Br50.0682 (9)0.0290 (5)0.0333 (6)0.0026 (5)0.0200 (6)0.0132 (5)
Br60.0423 (7)0.0168 (5)0.0332 (6)0.0038 (4)0.0032 (5)0.0081 (4)
N60.018 (4)0.018 (4)0.030 (5)0.001 (3)0.006 (3)0.007 (4)
C230.030 (6)0.029 (5)0.027 (6)0.011 (4)0.006 (5)0.011 (5)
C240.014 (5)0.028 (5)0.031 (6)0.001 (4)0.007 (4)0.002 (5)
C250.030 (6)0.017 (5)0.058 (8)0.000 (4)0.013 (5)0.016 (5)
C260.017 (6)0.022 (5)0.050 (7)0.003 (4)0.007 (5)0.022 (5)
C270.006 (5)0.028 (5)0.029 (6)0.001 (4)0.006 (4)0.012 (5)
C280.012 (5)0.027 (5)0.034 (6)0.000 (4)0.008 (4)0.015 (4)
N70.022 (5)0.017 (4)0.027 (5)0.006 (3)0.006 (4)0.006 (3)
C290.017 (5)0.031 (5)0.038 (6)0.005 (4)0.002 (4)0.021 (5)
C300.033 (7)0.014 (5)0.047 (7)0.003 (4)0.003 (5)0.006 (5)
C310.027 (6)0.022 (5)0.043 (7)0.003 (4)0.009 (5)0.005 (5)
C320.013 (5)0.034 (6)0.031 (6)0.002 (4)0.003 (4)0.004 (5)
C330.014 (5)0.023 (5)0.028 (6)0.002 (4)0.010 (4)0.005 (4)
C340.021 (6)0.031 (5)0.026 (5)0.003 (4)0.012 (4)0.014 (4)
N80.012 (4)0.016 (4)0.022 (4)0.003 (3)0.003 (3)0.003 (3)
C350.015 (5)0.033 (5)0.023 (6)0.006 (4)0.001 (4)0.008 (5)
C360.027 (6)0.033 (6)0.027 (5)0.005 (4)0.008 (4)0.020 (5)
C370.029 (6)0.019 (5)0.033 (6)0.008 (4)0.007 (5)0.017 (4)
C380.025 (6)0.023 (5)0.026 (6)0.003 (4)0.008 (4)0.009 (4)
C390.009 (5)0.016 (4)0.022 (5)0.002 (4)0.008 (4)0.002 (4)
C400.016 (5)0.017 (4)0.022 (5)0.003 (4)0.005 (4)0.011 (4)
N90.009 (4)0.026 (4)0.026 (4)0.000 (3)0.002 (3)0.012 (4)
C410.019 (6)0.025 (5)0.023 (5)0.002 (4)0.003 (4)0.004 (4)
C420.012 (5)0.014 (4)0.023 (5)0.006 (4)0.007 (4)0.004 (4)
N100.003 (4)0.022 (4)0.027 (4)0.001 (3)0.001 (3)0.010 (3)
C430.028 (6)0.024 (5)0.033 (6)0.006 (4)0.004 (5)0.018 (5)
C440.016 (6)0.046 (7)0.049 (7)0.009 (5)0.008 (5)0.036 (6)
O30.021 (4)0.025 (3)0.047 (5)0.001 (3)0.002 (3)0.020 (3)
O40.077 (6)0.050 (5)0.064 (6)0.005 (4)0.034 (5)0.036 (4)
O50.016 (4)0.043 (4)0.027 (4)0.001 (3)0.003 (3)0.006 (3)
O60.027 (4)0.042 (4)0.023 (4)0.001 (3)0.003 (3)0.009 (3)
O70.025 (4)0.030 (4)0.030 (4)0.000 (3)0.003 (3)0.008 (3)
O80.056 (5)0.047 (4)0.037 (4)0.009 (4)0.001 (4)0.024 (4)
O90.027 (4)0.042 (4)0.036 (4)0.010 (3)0.011 (3)0.014 (3)
O100.051 (5)0.042 (4)0.043 (4)0.007 (4)0.006 (4)0.025 (4)
O110.101 (9)0.129 (9)0.076 (7)0.025 (7)0.002 (6)0.065 (7)
O120.056 (10)0.022 (7)0.037 (8)0.000 (6)0.002 (7)0.015 (6)
Geometric parameters (Å, º) top
Cu1—N11.982 (7)Cu3—N61.998 (7)
Cu1—N21.989 (7)Cu3—N71.986 (7)
Cu1—N42.133 (6)Cu3—N92.075 (7)
Cu2—O11.944 (5)Cu3—Br42.7342 (15)
Cu1—Br22.4361 (13)Cu3—Br52.4102 (14)
Cu1—Br12.5228 (14)Cu4—N81.955 (7)
Cu2—N31.970 (6)Cu4—N102.023 (7)
Cu2—N52.046 (6)Cu4—O31.900 (6)
Cu2—O52.309 (6)Cu4—Br62.3496 (14)
Cu2—Br32.3832 (13)N6—C231.337 (11)
N1—C51.340 (10)N6—C271.343 (11)
N1—C11.343 (10)C23—C241.378 (12)
C1—C21.371 (11)C23—H230.9500
C1—H10.9500C24—C251.375 (12)
C2—C31.371 (13)C24—H240.9500
C2—H20.9500C25—C261.387 (13)
C3—C41.391 (12)C25—H250.9500
C3—H30.9500C26—C271.365 (11)
C4—C51.395 (11)C26—H260.9500
C4—H40.9500C27—C281.509 (12)
C5—C61.515 (11)C28—N91.494 (10)
C6—N41.475 (10)C28—H28A0.9900
C6—H6A0.9900C28—H28B0.9900
C6—H6B0.9900N7—C331.340 (11)
N2—C111.326 (10)N7—C291.365 (10)
N2—C71.359 (11)C29—C301.367 (12)
C7—C81.389 (11)C29—H290.9500
C7—H70.9500C30—C311.386 (13)
C8—C91.347 (12)C30—H300.9500
C8—H80.9500C31—C321.381 (12)
C9—C101.369 (12)C31—H310.9500
C9—H90.9500C32—C331.390 (12)
C10—C111.405 (11)C32—H320.9500
C10—H100.9500C33—C341.527 (11)
C11—C121.504 (11)C34—N91.500 (10)
C12—N41.487 (10)C34—H34A0.9900
C12—H12A0.9900C34—H34B0.9900
C12—H12B0.9900N8—C351.336 (10)
N3—C131.325 (10)N8—C391.375 (10)
N3—C171.343 (9)C35—C361.385 (11)
C13—C141.383 (12)C35—H350.9500
C13—H130.9500C36—C371.362 (11)
C14—C151.364 (12)C36—H360.9500
C14—H140.9500C37—C381.371 (12)
C15—C161.409 (11)C37—H370.9500
C15—H150.9500C38—C391.392 (11)
C16—C171.388 (11)C38—H380.9500
C16—H160.9500C39—C401.489 (11)
C17—C181.500 (10)C40—N101.471 (10)
C18—N51.474 (10)C40—H40A0.9900
C18—H18A0.9900C40—H40B0.9900
C18—H18B0.9900N9—C411.498 (10)
N4—C191.485 (10)C41—C421.535 (11)
C19—C201.532 (11)C41—H41A0.9900
C19—H19A0.9900C41—H41B0.9900
C19—H19B0.9900C42—N101.477 (10)
C20—N51.513 (10)C42—H42A0.9900
C20—H20A0.9900C42—H42B0.9900
C20—H20B0.9900N10—C431.492 (10)
N5—C211.488 (9)C43—C441.534 (12)
C21—C221.501 (11)C43—H43A0.9900
C21—H21A0.9900C43—H43B0.9900
C21—H21B0.9900C44—O41.240 (11)
C22—O21.248 (10)C44—O31.271 (11)
C22—O11.292 (10)
N1—Cu1—N2163.4 (3)O1—C22—C21118.1 (7)
N1—Cu1—N481.7 (3)C22—O1—Cu2113.7 (5)
N2—Cu1—N482.1 (3)N7—Cu3—N6164.5 (3)
N1—Cu1—Br295.53 (19)N7—Cu3—N982.7 (3)
N2—Cu1—Br297.3 (2)N6—Cu3—N982.1 (3)
N4—Cu1—Br2127.66 (18)N7—Cu3—Br596.3 (2)
N1—Cu1—Br190.5 (2)N6—Cu3—Br597.4 (2)
N2—Cu1—Br192.5 (2)N9—Cu3—Br5141.93 (19)
N4—Cu1—Br1113.38 (18)N7—Cu3—Br491.0 (2)
Br2—Cu1—Br1118.91 (5)N6—Cu3—Br488.7 (2)
O1—Cu2—N3166.6 (2)N9—Cu3—Br499.52 (19)
O1—Cu2—N583.8 (2)Br5—Cu3—Br4118.54 (5)
N3—Cu2—N584.0 (3)O3—Cu4—N8156.6 (3)
O1—Cu2—O586.6 (2)O3—Cu4—N1086.3 (3)
N3—Cu2—O588.4 (2)N8—Cu4—N1084.2 (3)
N5—Cu2—O592.0 (2)O3—Cu4—Br698.34 (19)
O1—Cu2—Br393.36 (17)N8—Cu4—Br6100.6 (2)
N3—Cu2—Br399.98 (19)N10—Cu4—Br6149.85 (19)
N5—Cu2—Br3148.96 (19)C23—N6—C27119.2 (7)
O5—Cu2—Br3118.76 (16)C23—N6—Cu3127.5 (6)
C5—N1—C1119.1 (7)C27—N6—Cu3113.3 (6)
C5—N1—Cu1113.8 (5)N6—C23—C24121.8 (9)
C1—N1—Cu1127.1 (6)N6—C23—H23119.1
N1—C1—C2121.3 (8)C24—C23—H23119.1
N1—C1—H1119.3C25—C24—C23119.4 (9)
C2—C1—H1119.3C25—C24—H24120.3
C3—C2—C1120.4 (8)C23—C24—H24120.3
C3—C2—H2119.8C24—C25—C26118.2 (8)
C1—C2—H2119.8C24—C25—H25120.9
C2—C3—C4119.0 (8)C26—C25—H25120.9
C2—C3—H3120.5C27—C26—C25120.0 (9)
C4—C3—H3120.5C27—C26—H26120.0
C3—C4—C5117.9 (8)C25—C26—H26120.0
C3—C4—H4121.0N6—C27—C26121.4 (8)
C5—C4—H4121.0N6—C27—C28115.7 (8)
N1—C5—C4122.3 (7)C26—C27—C28122.9 (8)
N1—C5—C6115.1 (7)N9—C28—C27108.8 (7)
C4—C5—C6122.6 (7)N9—C28—H28A109.9
N4—C6—C5108.8 (6)C27—C28—H28A109.9
N4—C6—H6A109.9N9—C28—H28B109.9
C5—C6—H6A109.9C27—C28—H28B109.9
N4—C6—H6B109.9H28A—C28—H28B108.3
C5—C6—H6B109.9C33—N7—C29117.5 (8)
H6A—C6—H6B108.3C33—N7—Cu3115.4 (5)
C11—N2—C7120.3 (7)C29—N7—Cu3127.1 (6)
C11—N2—Cu1114.8 (6)N7—C29—C30122.0 (9)
C7—N2—Cu1124.9 (6)N7—C29—H29119.0
N2—C7—C8120.6 (8)C30—C29—H29119.0
N2—C7—H7119.7C29—C30—C31119.9 (9)
C8—C7—H7119.7C29—C30—H30120.1
C9—C8—C7119.4 (9)C31—C30—H30120.1
C9—C8—H8120.3C32—C31—C30119.0 (9)
C7—C8—H8120.3C32—C31—H31120.5
C8—C9—C10120.1 (8)C30—C31—H31120.5
C8—C9—H9120.0C31—C32—C33118.2 (9)
C10—C9—H9120.0C31—C32—H32120.9
C9—C10—C11119.5 (8)C33—C32—H32120.9
C9—C10—H10120.2N7—C33—C32123.4 (8)
C11—C10—H10120.2N7—C33—C34116.2 (7)
N2—C11—C10120.0 (8)C32—C33—C34120.4 (8)
N2—C11—C12118.3 (7)N9—C34—C33110.1 (7)
C10—C11—C12121.6 (8)N9—C34—H34A109.6
N4—C12—C11110.0 (6)C33—C34—H34A109.6
N4—C12—H12A109.7N9—C34—H34B109.6
C11—C12—H12A109.7C33—C34—H34B109.6
N4—C12—H12B109.7H34A—C34—H34B108.2
C11—C12—H12B109.7C35—N8—C39118.5 (7)
H12A—C12—H12B108.2C35—N8—Cu4128.3 (6)
C13—N3—C17118.3 (7)C39—N8—Cu4113.2 (6)
C13—N3—Cu2128.9 (6)N8—C35—C36122.4 (8)
C17—N3—Cu2112.8 (5)N8—C35—H35118.8
N3—C13—C14123.6 (8)C36—C35—H35118.8
N3—C13—H13118.2C37—C36—C35118.8 (9)
C14—C13—H13118.2C37—C36—H36120.6
C15—C14—C13118.1 (8)C35—C36—H36120.6
C15—C14—H14121.0C36—C37—C38120.7 (8)
C13—C14—H14121.0C36—C37—H37119.7
C14—C15—C16120.1 (8)C38—C37—H37119.7
C14—C15—H15120.0C37—C38—C39118.6 (8)
C16—C15—H15120.0C37—C38—H38120.7
C17—C16—C15117.2 (8)C39—C38—H38120.7
C17—C16—H16121.4N8—C39—C38121.0 (8)
C15—C16—H16121.4N8—C39—C40114.4 (7)
N3—C17—C16122.7 (7)C38—C39—C40124.5 (7)
N3—C17—C18116.0 (7)N10—C40—C39110.9 (7)
C16—C17—C18121.3 (7)N10—C40—H40A109.5
N5—C18—C17110.3 (6)C39—C40—H40A109.5
N5—C18—H18A109.6N10—C40—H40B109.5
C17—C18—H18A109.6C39—C40—H40B109.5
N5—C18—H18B109.6H40A—C40—H40B108.0
C17—C18—H18B109.6C28—N9—C41108.8 (6)
H18A—C18—H18B108.1C28—N9—C34112.6 (6)
C6—N4—C19107.8 (6)C41—N9—C34112.1 (6)
C6—N4—C12112.9 (6)C28—N9—Cu3103.6 (5)
C19—N4—C12113.4 (6)C41—N9—Cu3112.4 (5)
C6—N4—Cu1101.2 (4)C34—N9—Cu3107.1 (5)
C19—N4—Cu1115.2 (5)N9—C41—C42113.5 (7)
C12—N4—Cu1105.9 (5)N9—C41—H41A108.9
N4—C19—C20111.8 (7)C42—C41—H41A108.9
N4—C19—H19A109.3N9—C41—H41B108.9
C20—C19—H19A109.3C42—C41—H41B108.9
N4—C19—H19B109.3H41A—C41—H41B107.7
C20—C19—H19B109.3N10—C42—C41112.1 (6)
H19A—C19—H19B107.9N10—C42—H42A109.2
N5—C20—C19110.1 (6)C41—C42—H42A109.2
N5—C20—H20A109.6N10—C42—H42B109.2
C19—C20—H20A109.6C41—C42—H42B109.2
N5—C20—H20B109.6H42A—C42—H42B107.9
C19—C20—H20B109.6C40—N10—C42108.2 (6)
H20A—C20—H20B108.1C40—N10—C43112.9 (6)
C18—N5—C21114.4 (6)C42—N10—C43113.5 (7)
C18—N5—C20108.2 (6)C40—N10—Cu4105.3 (5)
C21—N5—C20111.8 (6)C42—N10—Cu4109.3 (5)
C18—N5—Cu2104.4 (5)C43—N10—Cu4107.2 (5)
C21—N5—Cu2105.4 (5)N10—C43—C44111.2 (7)
C20—N5—Cu2112.5 (4)N10—C43—H43A109.4
N5—C21—C22110.9 (7)C44—C43—H43A109.4
N5—C21—H21A109.5N10—C43—H43B109.4
C22—C21—H21A109.5C44—C43—H43B109.4
N5—C21—H21B109.5H43A—C43—H43B108.0
C22—C21—H21B109.5O4—C44—O3124.6 (9)
H21A—C21—H21B108.1O4—C44—C43117.4 (9)
O2—C22—O1121.5 (8)O3—C44—C43118.0 (8)
O2—C22—C21120.4 (8)C44—O3—Cu4115.6 (6)

Experimental details

(I_vCM14088)(II_vcm14089)(III_vCM14087twin5)
Crystal data
Chemical formula[Zn2(C22H24N5O2)Cl3][Zn2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O
Mr627.55760.931649.66
Crystal system, space groupMonoclinic, P21/nOrthorhombic, Pca21Triclinic, P1
Temperature (K)180180180
a, b, c (Å)9.4985 (8), 11.3423 (10), 23.3697 (18)18.7061 (12), 13.3342 (9), 20.4516 (13)11.2516 (9), 15.0606 (10), 18.3213 (14)
α, β, γ (°)90, 98.263 (4), 9090, 90, 90112.087 (3), 94.380 (3), 90.486 (3)
V3)2491.6 (4)5101.3 (6)2866.1 (4)
Z482
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.286.615.71
Crystal size (mm)0.31 × 0.19 × 0.150.17 × 0.08 × 0.050.20 × 0.11 × 0.05
Data collection
DiffractometerBruker–Nonius X8 APEXII CCDBruker–Nonius X8 APEXII CCDBruker–Nonius X8 APEXII CCD
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Multi-scan
(SADABS; Krause et al., 2015)
Multi-scan
(TWINABS; Sheldrick, 2012)
Tmin, Tmax0.469, 0.7450.365, 0.4310.303, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
77315, 5051, 4340 127653, 11284, 8558 11068, 11068, 7261
Rint0.0840.0810.077
(sin θ/λ)max1)0.6290.6690.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.14 0.040, 0.078, 1.02 0.054, 0.114, 1.00
No. of reflections50511128411068
No. of parameters307614686
No. of restraints010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.481.26, 0.610.99, 0.88
Absolute structure?Refined as an inversion twin.?
Absolute structure parameter?0.245 (12)?

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL (Bruker, 2012) and Mercury (Macrae et al., 2006), SHELXTL (Bruker, 2012) and publCIF (Westrip, 2010), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I_vCM14088) top
Zn1—N12.203 (3)Zn2—O21.982 (2)
Zn1—N22.061 (3)Zn2—Cl12.2618 (10)
Zn1—N32.069 (3)Zn2—Cl22.2511 (9)
Zn1—O12.177 (2)Zn2—Cl32.2317 (9)
N2—Zn1—N3119.85 (10)N3—Zn1—N194.10 (11)
N2—Zn1—O187.74 (9)O1—Zn1—N1165.91 (9)
N3—Zn1—O195.22 (10)N4—Zn1—N178.48 (11)
N2—Zn1—N480.25 (10)N5—Zn1—N192.94 (10)
N3—Zn1—N4159.51 (10)O2—Zn2—Cl3111.52 (8)
O1—Zn1—N489.19 (9)O2—Zn2—Cl2107.91 (8)
N2—Zn1—N5158.26 (11)Cl3—Zn2—Cl2113.68 (4)
N3—Zn1—N578.60 (10)O2—Zn2—Cl1100.32 (8)
O1—Zn1—N578.60 (9)Cl3—Zn2—Cl1109.17 (4)
N4—Zn1—N582.70 (10)Cl2—Zn2—Cl1113.46 (4)
N2—Zn1—N196.75 (11)
Selected geometric parameters (Å, º) for (II_vcm14089) top
Zn1—N12.200 (7)Zn3—N62.207 (6)
Zn1—N22.094 (7)Zn3—N72.088 (6)
Zn1—N32.080 (7)Zn3—N82.094 (7)
Zn1—N42.182 (7)Zn3—N92.183 (7)
Zn1—N52.192 (6)Zn3—N102.194 (6)
Zn1—O12.184 (5)Zn3—O32.202 (5)
Zn2—O22.001 (6)Zn4—O42.008 (6)
Zn2—Br12.3721 (13)Zn4—Br42.3816 (12)
Zn2—Br22.3953 (12)Zn4—Br52.3856 (12)
Zn2—Br32.3776 (12)Zn4—Br62.4161 (11)
N3—Zn1—N2118.6 (2)N7—Zn3—N8118.7 (2)
N3—Zn1—N4160.0 (2)N7—Zn3—N979.3 (3)
N2—Zn1—N480.6 (3)N8—Zn3—N9156.9 (3)
N3—Zn1—O194.3 (2)N7—Zn3—N10160.7 (2)
N2—Zn1—O187.2 (2)N8—Zn3—N1080.3 (2)
N4—Zn1—O192.1 (2)N9—Zn3—N1083.5 (3)
N3—Zn1—N579.7 (3)N7—Zn3—O395.0 (2)
N2—Zn1—N5157.6 (3)N8—Zn3—O385.9 (2)
N4—Zn1—N583.2 (3)N9—Zn3—O377.8 (3)
O1—Zn1—N578.0 (2)N10—Zn3—O389.7 (2)
N3—Zn1—N192.2 (2)N7—Zn3—N695.0 (2)
N2—Zn1—N197.1 (2)N8—Zn3—N695.9 (2)
N4—Zn1—N179.0 (2)N9—Zn3—N696.7 (3)
O1—Zn1—N1169.4 (2)N10—Zn3—N678.4 (2)
N5—Zn1—N194.9 (3)O3—Zn3—N6167.5 (2)
O2—Zn2—Br1109.13 (16)O4—Zn4—Br4111.24 (18)
O2—Zn2—Br3106.34 (17)O4—Zn4—Br5107.97 (16)
Br1—Zn2—Br3114.46 (5)Br4—Zn4—Br5114.75 (5)
O2—Zn2—Br2101.41 (17)O4—Zn4—Br6101.45 (17)
Br1—Zn2—Br2112.24 (5)Br4—Zn4—Br6110.00 (4)
Br3—Zn2—Br2112.20 (5)Br5—Zn4—Br6110.60 (5)
Selected geometric parameters (Å, º) for (III_vCM14087twin5) top
Cu1—N11.982 (7)Cu3—N61.998 (7)
Cu1—N21.989 (7)Cu3—N71.986 (7)
Cu1—N42.133 (6)Cu3—N92.075 (7)
Cu2—O11.944 (5)Cu3—Br42.7342 (15)
Cu1—Br22.4361 (13)Cu3—Br52.4102 (14)
Cu1—Br12.5228 (14)Cu4—N81.955 (7)
Cu2—N31.970 (6)Cu4—N102.023 (7)
Cu2—N52.046 (6)Cu4—O31.900 (6)
Cu2—O52.309 (6)Cu4—Br62.3496 (14)
Cu2—Br32.3832 (13)
N1—Cu1—N2163.4 (3)N5—Cu2—Br3148.96 (19)
N1—Cu1—N481.7 (3)O5—Cu2—Br3118.76 (16)
N2—Cu1—N482.1 (3)N7—Cu3—N6164.5 (3)
N1—Cu1—Br295.53 (19)N7—Cu3—N982.7 (3)
N2—Cu1—Br297.3 (2)N6—Cu3—N982.1 (3)
N4—Cu1—Br2127.66 (18)N7—Cu3—Br596.3 (2)
N1—Cu1—Br190.5 (2)N6—Cu3—Br597.4 (2)
N2—Cu1—Br192.5 (2)N9—Cu3—Br5141.93 (19)
N4—Cu1—Br1113.38 (18)N7—Cu3—Br491.0 (2)
Br2—Cu1—Br1118.91 (5)N6—Cu3—Br488.7 (2)
O1—Cu2—N3166.6 (2)N9—Cu3—Br499.52 (19)
O1—Cu2—N583.8 (2)Br5—Cu3—Br4118.54 (5)
N3—Cu2—N584.0 (3)O3—Cu4—N8156.6 (3)
O1—Cu2—O586.6 (2)O3—Cu4—N1086.3 (3)
N3—Cu2—O588.4 (2)N8—Cu4—N1084.2 (3)
N5—Cu2—O592.0 (2)O3—Cu4—Br698.34 (19)
O1—Cu2—Br393.36 (17)N8—Cu4—Br6100.6 (2)
N3—Cu2—Br399.98 (19)N10—Cu4—Br6149.85 (19)
Hydrogen-bond geometry (Å, º) for (II_vcm14089) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br40.953.123.700 (8)121
C6—H6A···Br3i0.993.123.724 (8)121
C6—H6B···Br2i0.992.813.710 (8)152
C12—H12B···Br10.992.883.853 (8)167
C13—H13···O30.952.383.145 (10)137
C14—H14···Br50.953.053.939 (9)157
C15—H15···Br3ii0.952.763.578 (8)145
C18—H18A···Br6iii0.992.853.764 (8)155
C18—H18B···Br1iv0.993.053.583 (10)115
C19—H19B···Br3i0.992.923.747 (9)141
C26—H26···O4v0.952.543.381 (11)148
C28—H28A···Br6v0.992.853.762 (8)154
C29—H29···O10.952.533.334 (9)142
C34—H34B···Br2ii0.992.773.698 (7)157
C40—H40A···Br50.992.843.801 (8)165
C42—H42A···Br4v0.993.073.900 (8)142
Symmetry codes: (i) x+1/2, y+2, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+2, z+1/2; (v) x1/2, y+1, z.
Hydrogen-bond distances (Å) for (III) top
Hydrogen bondD···AHydrogen bondD···A
O5 ···O6i2.764 (8)O9···Br43.335 (6)
O5···Br1ii3.199 (6)O9···O102.794 (9)
O6···O82.973 (8)O10···O4iii2.813 (10)
O6···O92.770 (8)O10···O82.885 (10)
O7···O62.717 (8)O11···Br43.455 (8)
O7···Br33.275 (6)O11···Br53.480 (10)
O8···O4ii3.052 (10)O12···O2i2.575 (14)
O8···O122.860 (15)O12···O2iv2.834 (13)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+2, -y, -z+1; (iv) x, y-1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds