Download citation
Download citation
link to html
Diammonium carbonate hydrogen peroxide monosolvate, 2NH4+·CO32-·H2O2, (I), and dicaesium carbonate hydrogen peroxide tris­olvate, 2Cs+·CO32-·3H2O2, (II), were crystallized from 98% hydrogen peroxide. In (I), the carbonate anions and peroxide solvent mol­ecules are arranged on twofold axes. The peroxide mol­ecules act as donors in only two hydrogen bonds with carbonate groups, forming chains along the a and c axes. In the structure of (II), there are three independent Cs+ ions, two of them residing on twofold axes, as are two of the four peroxide mol­ecules, one of which is disordered. Both structures comprise complicated three-dimensional hydro­gen-bonded networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112006701/lg3077sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112006701/lg3077Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112006701/lg3077IIsup3.hkl
Contains datablock II

Comment top

The structures of peroxosolvates formed by simple inorganic salts have been intensively studied to establish correlations between crystal packing and stability. Significant interest has been shown in the oxalates (Pedersen, 1972a,b; Adams et al., 1976, 1980a,b; Adams & Pritchard, 1976), phosphates (Adams & Ramdas, 1978; Oeckler & Montbrun, 2008) and sulfates (Adams et al., 1978; Adams & Pritchard, 1978; Pritchard et al., 2005) of alkali metals (Adams et al., 1980a,b; Oeckler & Montbrun, 2008; Adams et al., 1978; Adams & Pritchard, 1978; Pritchard et al., 2005) and of ammonium (Pedersen, 1972a,b) and guanidinium (Adams et al., 1976; Adams & Pritchard, 1976; Adams & Ramdas, 1978) cations. These substances were considered potential H2O2 carriers. Special attention has been paid to Na2CO3.1.5H2O2, one of the most important industrially produced bleaching and oxidation agents (Jakob et al., 2005; McKillop & Sanderson, 2000). The structure of Na2CO3.1.5H2O2 has been determined several times under various conditions (Adams & Pritchard, 1977; Carrondo et al., 1977; Pritchard & Islam, 2003). The unusual peroxosolvate potassium hydroxopercarbonate {K[H(O2)CO2].H2O2} was studied not long ago (Adam & Mehta, 1998). It should be noted that hydrogen bonding plays a predominant role in the formation of the structures of both organic and inorganic peroxosolvates.

However, in all the above-cited works, the target peroxosolvates were crystallized from dilute (30 or 50%) hydrogen peroxide. Some time ago, we introduced concentrated (96–98%) peroxide as a medium for peroxosolvate synthesis (Churakov et al., 2005). This method allowed us to synthesize several peroxosolvates that were not available from less concentrated H2O2, namely Ph4AsCl.2H2O2 (Churakov et al., 2005), glycine C2H5NO2.1.5H2O2 (Churakov et al., 2009), isoleucine C6H13NO2.H2O2 and β-alanine C3H7NO2.2H2O2 (Prikhodchenko et al., 2011). Furthermore, the use of highly concentrated hydrogen peroxide solved the problem of partial substitution of H2O2 by water molecules in the crystal structures (Pedersen, 1972b; Churakov et al., 2005, 2009; Prikhodchenko et al., 2011). Herein, the structures of diammonium carbonate hydrogen peroxide monosolvate, (I), and dicaesium carbonate hydrogen peroxide trisolvate, (II), both crystallized from 98% peroxide, are presented.

In the structure of (I), both independent carbonate anions and both independent H2O2 solvent molecules are arranged on twofold axes. In the peroxide molecules, the O—O distances (see Table 1) are close to those observed previously in the accurately determined structures of crystalline H2O2 [1.461 (3) Å; Savariault & Lehmann, 1980] and urea perhydrate [1.4573 (8) Å; Fritchie & McMullan, 1981]. Partial substitutional disorder of hydrogen peroxide by water molecules (Pedersen, 1972b) was not observed, as no residual peaks with intensities greater than 0.16 e Å3 were present in the hydrogen peroxide molecule region (Churakov et al., 2009; Prikhodchenko et al., 2011). The H2O2 molecules containing atoms O1 and H1 (denoted molecule 1) and atoms O2 and H2 (denoted molecule 2) have a skew geometry (C2 symmetry), with H—O—O—H torsion angles of -133 (2) and 137 (2)°, respectively. The carbonate anions are planar due to crystallographic symmetry. The ammonium cations are tetrahedral [H—N—H angles = 104.2 (11)–113.7 (12)°], and the N—H bond lengths range from 0.859 (15) to 0.893 (13) Å.

Both peroxide molecules 1 and 2 are involved as donors in only two almost linear hydrogen bonds with adjacent carbonate anions (Table 2). These hydrogen bonds are of medium strength (see Table 2) and are somewhat longer than those found for similar hydrogen bonds in the structure of Na2CO3.1.5H2O2 [2.5569 (10)–2.6022 (8) Å at 100 K; Pritchard & Islam, 2003]. Compound (I) is a rare example of a structure in which the solvent H2O2 molecules serve only as donors in hydrogen bonds (Churakov et al., 2005; Thierbach et al., 1980). Usually, hydrogen peroxide molecules are involved in both donor and acceptor interactions, forming six (two donors and four acceptors) (Fritchie & McMullan, 1981; Adams & Ramdas, 1979), five (two donors and three acceptors) (Adams & Ramdas, 1978; Prikhodchenko et al., 2011), four (two donors and two acceptors) (Pedersen, 1972a; Churakov et al., 2009; Prikhodchenko et al., 2011) or three (two donors and one acceptor) (Mak & Lam, 1978; Prikhodchenko et al., 2011) hydrogen bonds in the structures of peroxosolvates.

The two hydrogen bonds between peroxide molecules 1 and 2 and the carbonate groups form chains along the a and c axes, respectively (Fig. 1). These chains are crosslinked by ammonium cations via relatively weak ammonium–carbonate N—H···O hydrogen bonds, resulting in a three-dimensional network (Fig. 2). [Text altered to avoid repetition - please check]

It should be noted that anhydrous (NH4)2CO3 and its hydrates are not known. Commercially available `ammonium carbonate' represents a mixture of ammonium bicarbonate and ammonium carbamate. In contrast, the structure of ammonium bicarbonate is well known (Brooks & Alcock, 1950). Compound (I) may be considered as an environmentally friendly hydrogen-peroxide-containing reagent.

The crystals of (II) were obtained by cooling a saturated solution (room temperature) of caesium carbonate in 98% hydrogen peroxide to 255 K. Compound (II) also crystallizes from 30 or 50% hydrogen peroxide (Dobrynina & Dzyatkevich, 1967; Jones & Griffith, 1980). However, the crystals of (II) grown from dilute H2O2 solutions were of poor quality and not suitable for single-crystal X-ray structural investigations. A preliminary study of (II) revealed an orthorhombic unit cell with dimensions a = 5.926, b = 8.444 and c = 17.827 Å, in good agreement with the values previously found for Rb2CO3.3H2O2 (a = 5.65, b = 8.15 and c = 18.01 Å) from powder diffraction data (Bakulina et al., 1972). However, all attempts to solve the structure of (II) using that unit cell failed. Further detailed examination showed that the actual unit cell possesses a doubled parameter along the b axis. Finally, the orientation of the axes was changed according to the space-group choice.

Compound (II) is an example of a structure in which the hydrogen peroxide simultaneously coordinates an alkali metal and serves as a donor in hydrogen bonds to oxyacid ions. In the structure of (II), the three Cs+ ions are crystallographically independent. Cation Cs1 occupies a general position, and the other two Cs+ ions lie on twofold axes. Cations Cs1, Cs2 and Cs3 possess irregular coordination polyhedra with coordination numbers 13, 10, and 14, respectively. The Cs—O distances vary within the range 3.0558 (18)–3.5127 (18) Å. There are four independent peroxide molecules in (II), two of them arranged on twofold axes. One of these is orientationally disordered over two positions with an occupancy ratio of 0.812 (7):0.188 (7) (Fig. 3b). Both the major and minor components of the disordered molecule are anchored to the same carbonate and Cs+ ions. The same type of disorder was previously observed in both polymorphs of Na2CO3.1.5H2O2 (Adams & Pritchard, 1977; Carrondo et al., 1977; Pritchard & Islam, 2003). The O—O bond lengths are in the range 1.464 (3)–1.470 (3) Å (Table 3). All of the peroxide O atoms (except O6) coordinate three Cs+ cations (Fig. 3). Atom O6 is bonded to only one Cs+ ion.

All peroxide molecules are involved as donors in only two hydrogen bonds with adjacent carbonate anions (Table 4). No hydrogen bonds were observed between peroxide molecules. The maximum allowed number of hydrogen bonds (six) are formed by the carbonate ion (Fig. 4). These hydrogen bonds are almost linear [167 (3)–179 (3)°], and the O···O separations are in the range 2.596 (2)–2.656 (3) Å. As expected, the carbonate–peroxide C—O···O angles are close to the ideal value of 120° for sp2-hybridized carbonate O atoms serving as donors of lone electron pairs.

In the crystal structure, the hydrogen peroxide molecules and carbonate anions are linked by hydrogen bonds in a complicated three-dimensional-network (Fig. 5). Cs+ cations fill the cavities in this extended framework.

Related literature top

For related literature, see: Adam & Mehta (1998); Adams & Pritchard (1976, 1977, 1978); Adams & Ramdas (1978, 1979); Adams et al. (1980a, 1980b); Adams, Pritchard & Thomas (1976, 1978); Bakulina et al. (1972); Brooks & Alcock (1950); Carrondo et al. (1977); Churakov et al. (2005, 2009); Dobrynina & Dzyatkevich (1967); Fritchie & McMullan (1981); Jakob et al. (2005); Jones & Griffith (1980); Maass & Hatcher (1920); Mak & Lam (1978); McKillop & Sanderson (2000); Oeckler & Montbrun (2008); Pedersen (1972a, 1972b); Prikhodchenko et al. (2011); Pritchard & Islam (2003); Pritchard et al. (2005); Savariault & Lehmann (1980); Schumb et al. (1955); Thierbach et al. (1980); Wolanov et al. (2010).

Experimental top

Ammonium carbamate, ammonium hydrocarbonate, caesium carbonate and 50% hydrogen peroxide were purchased from Sigma–Aldrich (CAS No. 506-87-6). The 98% hydrogen peroxide was prepared by an extraction method from serine peroxosolvate (Wolanov et al., 2010). The handling procedures for concentrated hydrogen peroxide are described in detail elsewhere (danger of explosion; Schumb et al., 1955; Maass & Hatcher, 1920).

Colourless crystals of (I) and (II) were obtained by cooling saturated solutions (room temperature) of anhydrous ammonium carbamate, NH4COONH2, and anhydrous caesium carbonate, Cs2CO3, in 98% H2O2 (H2O2–H2O molar ratio of approximately 26:1) to 255 K. Tiny crystals of (I) also crystallize from a saturated solution (room temperature) of ammonium hydrocarbonate NH4HCO3 in 30% H2O2 at 255 K. The crystals of (I) and (II) are stable for several hours in open air.

The crystals were extracted from the mother liquor using a plastic spatula and covered immediately with inert oil to prevent contact with atmospheric moisture. They were then rapidly mounted on the top of a hair fibre and transferred to a cold nitrogen stream inside the diffractometer cabinet.

Refinement top

In (I), all H atoms were found in a difference Fourier synthesis and refined isotropically. In (II), atom O2B belonging to the minor disorder component [occupancy 0.188 (7)] was refined isotropically. All H atoms (except disordered atom H2B) were found in a difference Fourier synthesis and refined with Uiso(H) = 1.5Ueq(O) and equal O—H distances. Atom H2B was placed in a line between atoms O2B and O11 at a distance of 0.90 Å from O2B, and refined using a riding model with Uiso(H2B) = 1.5Ueq(O2B).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Hydrogen-bonded (dotted lines) chains formed by the hydrogen peroxide molecules and carbonate anions in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1/2, y, -z + 3/2; (ii) x + 1, y, z; (iii) -x + 3/2, y, -z + 3/2; (iv) -x + 1/2, y, -z + 1/2; (v) x, y, -z + 1; (vi) -x + 1/2, y, -z - 1/2.]
[Figure 2] Fig. 2. The crystal packing in the structure of (I), viewed along the b axis. Hydrogen bonds are shown as dotted lines.
[Figure 3] Fig. 3. The coordination environment of the four independent hydrogen peroxide molecules in (II), showing (a) the H1—O1—O1i—H1i molecule, (b) the minor part of the disordered H2—O2—O2ii—H2ii site (open bonds), (c) the H3—O3—O4—H4 molecule and (d) the H5—O5—O6—H6 molecule. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 3/2, -y - 1/2, z; (ii) -x + 3/2, -y + 3/2, z.]
[Figure 4] Fig. 4. The hydrogen bonds (dashed lines) formed by the carbonate anions in (II). The H2—O2—O2—H2 molecule is disordered over two positions. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 1, -z + 1/2; (iii) x - 1/2, y + 1/2, -z; (iv) -x + 1, -y, -z; (v) -x + 1, -y + 1, -z.]
[Figure 5] Fig. 5. The structure of (II), showing how the Cs+ ions fill the cavities in the hydrogen-bonded three-dimensional network formed by the carbonate ions and hydrogen peroxide molecules.
(I) Diammonium carbonate hydrogen peroxide monosolvate top
Crystal data top
2NH4+·CO32·H2O2F(000) = 280
Mr = 130.11Dx = 1.537 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 3976 reflections
a = 7.5657 (9) Åθ = 3.4–31.0°
b = 9.9027 (12) ŵ = 0.16 mm1
c = 7.5819 (9) ÅT = 150 K
β = 98.050 (2)°Block, colourless
V = 562.45 (12) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1349 independent reflections
Radiation source: fine-focus sealed tube1256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.940, Tmax = 0.970k = 1313
5575 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
1349 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2NH4+·CO32·H2O2V = 562.45 (12) Å3
Mr = 130.11Z = 4
Monoclinic, P2/nMo Kα radiation
a = 7.5657 (9) ŵ = 0.16 mm1
b = 9.9027 (12) ÅT = 150 K
c = 7.5819 (9) Å0.40 × 0.20 × 0.20 mm
β = 98.050 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1349 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1256 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.970Rint = 0.018
5575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.12Δρmax = 0.25 e Å3
1349 reflectionsΔρmin = 0.28 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Reflection 0 2 2 was omitted since it was shadowed by beam stop.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25000.49722 (12)0.75000.0117 (2)
O110.25000.62777 (8)0.75000.01472 (19)
O120.23366 (8)0.43251 (6)0.60176 (8)0.01538 (16)
C20.25000.99784 (11)0.25000.0115 (2)
O210.25000.86692 (8)0.25000.01431 (19)
O220.10173 (8)1.06223 (6)0.24039 (8)0.01540 (16)
N10.01578 (10)0.77268 (8)0.49210 (10)0.01475 (17)
N20.50642 (10)0.27396 (8)0.49087 (10)0.01502 (17)
O10.21872 (10)0.05271 (8)0.83718 (10)0.0292 (2)
O20.16038 (9)0.53849 (8)0.27668 (10)0.02511 (19)
H10.115 (2)0.0185 (15)0.8065 (19)0.030 (3)*
H20.1875 (19)0.5078 (15)0.381 (2)0.032 (3)*
H110.0656 (19)0.7167 (13)0.4437 (18)0.025 (3)*
H120.0873 (17)0.7223 (12)0.5667 (17)0.020 (3)*
H130.0754 (19)0.8060 (14)0.4141 (19)0.027 (3)*
H140.0360 (17)0.8350 (13)0.5530 (17)0.022 (3)*
H210.5714 (19)0.3208 (15)0.4270 (19)0.028 (3)*
H220.4527 (17)0.2106 (13)0.4213 (17)0.022 (3)*
H230.4269 (17)0.3243 (13)0.5360 (17)0.020 (3)*
H240.5757 (18)0.2322 (12)0.5795 (18)0.022 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0081 (5)0.0141 (5)0.0131 (5)0.0000.0022 (4)0.000
O110.0160 (4)0.0117 (4)0.0160 (4)0.0000.0007 (3)0.000
O120.0174 (3)0.0160 (3)0.0128 (3)0.0000 (2)0.0023 (2)0.0025 (2)
C20.0136 (5)0.0132 (5)0.0080 (5)0.0000.0021 (4)0.000
O210.0157 (4)0.0107 (4)0.0166 (4)0.0000.0025 (3)0.000
O220.0133 (3)0.0152 (3)0.0178 (3)0.0027 (2)0.0025 (2)0.0003 (2)
N10.0145 (4)0.0146 (4)0.0153 (3)0.0008 (3)0.0026 (3)0.0001 (3)
N20.0153 (3)0.0150 (4)0.0149 (3)0.0006 (3)0.0027 (3)0.0010 (3)
O10.0194 (4)0.0462 (5)0.0233 (4)0.0100 (3)0.0073 (3)0.0120 (3)
O20.0202 (4)0.0371 (4)0.0192 (4)0.0082 (3)0.0065 (3)0.0076 (3)
Geometric parameters (Å, º) top
C1—O121.2846 (8)N2—H210.871 (15)
C1—O111.2928 (14)N2—H220.881 (13)
C2—O221.2835 (8)N2—H230.886 (13)
C2—O211.2965 (14)N2—H240.893 (14)
N1—H110.871 (14)O1—O1i1.4652 (14)
N1—H120.881 (13)O1—H10.855 (15)
N1—H130.859 (15)O2—O2ii1.4685 (13)
N1—H140.893 (13)O2—H20.843 (15)
O12i—C1—O12120.15 (11)H12—N1—H14109.5 (12)
O12i—C1—O11119.92 (5)H13—N1—H14113.7 (12)
O12—C1—O11119.92 (5)H21—N2—H22107.2 (12)
O22—C2—O22ii120.42 (10)H21—N2—H23112.4 (11)
O22—C2—O21119.79 (5)H22—N2—H23110.5 (12)
O22ii—C2—O21119.79 (5)H21—N2—H24110.3 (12)
H11—N1—H12104.2 (11)H22—N2—H24107.1 (11)
H11—N1—H13111.3 (13)H23—N2—H24109.1 (12)
H12—N1—H13109.0 (12)O1i—O1—H198.9 (9)
H11—N1—H14108.8 (12)O2ii—O2—H298.3 (10)
H1—O1—O1i—H1i133 (2)H2—O2—O2ii—H2ii137 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22iii0.855 (15)1.816 (15)2.6683 (10)175.0 (14)
O2—H2···O120.843 (15)1.823 (16)2.6648 (10)175.9 (15)
N1—H11···O12iii0.871 (14)1.948 (14)2.7965 (10)164.4 (12)
N1—H12···O110.881 (13)1.961 (13)2.8376 (9)173.7 (11)
N1—H13···O210.859 (15)2.029 (15)2.8795 (8)170.7 (13)
N1—H14···O22iv0.893 (13)1.989 (13)2.8429 (10)159.5 (12)
N2—H21···O11v0.871 (15)2.096 (15)2.9361 (9)161.8 (13)
N2—H22···O22vi0.881 (13)1.921 (13)2.7817 (10)165.0 (12)
N2—H23···O120.886 (13)1.934 (14)2.8136 (10)171.9 (12)
N2—H24···O21v0.893 (14)1.974 (14)2.8615 (9)172.0 (12)
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1/2, y1, z+1/2.
(II) Dicaesium carbonate hydrogen peroxide trisolvate top
Crystal data top
2Cs+·CO32·3H2O2F(000) = 1552
Mr = 427.88Dx = 3.182 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 6366 reflections
a = 17.820 (2) Åθ = 2.3–30.5°
b = 5.9357 (8) ŵ = 8.18 mm1
c = 16.888 (2) ÅT = 173 K
V = 1786.3 (4) Å3Block, colourless
Z = 80.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2154 independent reflections
Radiation source: fine-focus sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2323
Tmin = 0.234, Tmax = 0.373k = 77
16916 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0121P)2 + 2.8879P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2154 reflectionsΔρmax = 0.88 e Å3
134 parametersΔρmin = 0.48 e Å3
16 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00131 (5)
Crystal data top
2Cs+·CO32·3H2O2V = 1786.3 (4) Å3
Mr = 427.88Z = 8
Orthorhombic, PccnMo Kα radiation
a = 17.820 (2) ŵ = 8.18 mm1
b = 5.9357 (8) ÅT = 173 K
c = 16.888 (2) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1841 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.373Rint = 0.030
16916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01816 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.88 e Å3
2154 reflectionsΔρmin = 0.48 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Reflections 0 2 0, 0 4 0, and 3 1 4 were omitted since they were partially shadowed by beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.568970 (11)0.74369 (2)0.128088 (8)0.01521 (7)
Cs20.75000.25000.127336 (10)0.01535 (8)
Cs30.25000.75000.121872 (11)0.01560 (8)
O10.71862 (11)0.1703 (3)0.01451 (11)0.0229 (4)
H10.6953 (19)0.218 (5)0.0285 (16)0.034*
O2A0.71933 (13)0.6673 (4)0.23817 (13)0.0234 (8)0.812 (7)
H2A0.698 (2)0.705 (7)0.2835 (17)0.035*0.812 (7)
O2B0.7192 (5)0.8325 (16)0.2378 (6)0.021 (3)*0.188 (7)
H2B0.69800.80890.28540.032*0.188 (7)
O30.59079 (10)0.2527 (3)0.19456 (11)0.0200 (4)
H30.5430 (13)0.221 (5)0.1906 (19)0.030*
O40.60188 (12)0.2502 (3)0.28048 (12)0.0254 (4)
H40.5860 (18)0.389 (4)0.291 (2)0.038*
O50.62291 (10)0.3401 (3)0.00515 (11)0.0217 (4)
H50.5996 (17)0.438 (5)0.0248 (17)0.033*
O60.56758 (11)0.1565 (3)0.00480 (11)0.0228 (4)
H60.5308 (16)0.222 (5)0.0297 (19)0.034*
C10.41505 (16)0.2589 (4)0.12783 (12)0.0133 (6)
O110.34326 (12)0.2563 (3)0.12443 (8)0.0184 (4)
O120.45348 (9)0.3638 (3)0.07507 (10)0.0168 (4)
O130.44913 (9)0.1551 (3)0.18450 (10)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.01616 (11)0.01374 (10)0.01572 (10)0.00010 (5)0.00007 (5)0.00007 (5)
Cs20.01148 (12)0.02110 (14)0.01347 (12)0.00129 (7)0.0000.000
Cs30.01448 (13)0.01901 (13)0.01332 (12)0.00027 (7)0.0000.000
O10.0164 (9)0.0319 (10)0.0204 (9)0.0035 (8)0.0001 (8)0.0060 (8)
O2A0.0156 (13)0.0359 (17)0.0186 (11)0.0054 (10)0.0004 (9)0.0104 (10)
O30.0144 (9)0.0250 (10)0.0206 (9)0.0024 (7)0.0009 (7)0.0037 (7)
O40.0276 (10)0.0247 (11)0.0239 (10)0.0046 (8)0.0103 (8)0.0021 (8)
O50.0146 (9)0.0274 (10)0.0231 (10)0.0009 (8)0.0011 (7)0.0080 (8)
O60.0213 (10)0.0182 (9)0.0288 (10)0.0014 (8)0.0060 (8)0.0018 (7)
C10.0075 (12)0.0177 (15)0.0149 (14)0.0000 (8)0.0001 (7)0.0008 (8)
O110.0099 (9)0.0300 (11)0.0155 (9)0.0010 (7)0.0009 (6)0.0026 (7)
O120.0137 (8)0.0193 (8)0.0174 (8)0.0006 (7)0.0020 (7)0.0055 (7)
O130.0136 (8)0.0251 (9)0.0179 (8)0.0019 (7)0.0035 (7)0.0080 (7)
Geometric parameters (Å, º) top
Cs1—O33.1471 (18)Cs3—O113.3690 (19)
Cs1—O123.1813 (17)Cs3—O11i3.4346 (18)
Cs1—O6i3.2156 (18)Cs3—O1iii3.441 (2)
Cs1—O13ii3.2246 (18)Cs3—O2Aii3.467 (3)
Cs1—O3i3.2466 (17)Cs3—O2Bv3.473 (10)
Cs1—O2A3.293 (2)O1—O1vi1.465 (4)
Cs1—O2B3.299 (9)O1—H10.88 (2)
Cs1—O53.313 (2)O2A—O2Avii1.469 (5)
Cs1—O1i3.3244 (19)O2A—H2A0.89 (2)
Cs1—O6iii3.363 (2)O2B—O2Bvii1.470 (15)
Cs1—O13i3.3810 (18)O2B—H2B0.9000
Cs1—O4ii3.414 (2)O3—O41.464 (3)
Cs1—O12iii3.5127 (18)O3—H30.87 (2)
Cs2—O33.0558 (18)O4—H40.89 (2)
Cs2—O53.1101 (18)O5—O61.470 (3)
Cs2—O2Biv3.150 (10)O5—H50.88 (2)
Cs2—O2A3.152 (2)O6—H60.87 (2)
Cs2—O13.188 (2)C1—O111.281 (4)
Cs3—O4ii3.112 (2)C1—O121.285 (3)
Cs3—O5iii3.1649 (19)C1—O131.290 (3)
O3—Cs1—O1261.58 (4)O5x—Cs3—O11xii79.06 (5)
O3—Cs1—O6i159.65 (5)O5iii—Cs3—O11xii101.94 (5)
O12—Cs1—O6i110.66 (5)O11xi—Cs3—O11xii121.48 (6)
O3—Cs1—O13ii60.74 (5)O11—Cs3—O11xii58.50 (6)
O12—Cs1—O13ii95.51 (4)O11i—Cs3—O11xii178.56 (5)
O6i—Cs1—O13ii139.38 (5)O4ii—Cs3—O1iii102.51 (5)
O3—Cs1—O3i136.36 (6)O4ix—Cs3—O1iii119.52 (5)
O12—Cs1—O3i146.55 (4)O5x—Cs3—O1iii62.62 (5)
O6i—Cs1—O3i61.03 (5)O5iii—Cs3—O1iii63.42 (5)
O13ii—Cs1—O3i79.89 (5)O11xi—Cs3—O1iii57.19 (4)
O3—Cs1—O2A64.56 (5)O11—Cs3—O1iii123.98 (4)
O12—Cs1—O2A126.00 (5)O11i—Cs3—O1iii45.20 (4)
O6i—Cs1—O2A118.48 (6)O11xii—Cs3—O1iii136.17 (4)
O13ii—Cs1—O2A60.31 (5)O4ii—Cs3—O1x119.52 (5)
O3i—Cs1—O2A80.53 (5)O4ix—Cs3—O1x102.51 (5)
O3—Cs1—O2B81.22 (17)O5x—Cs3—O1x63.42 (5)
O12—Cs1—O2B142.80 (17)O5iii—Cs3—O1x62.62 (5)
O6i—Cs1—O2B104.37 (18)O11xi—Cs3—O1x123.98 (4)
O13ii—Cs1—O2B63.64 (18)O11—Cs3—O1x57.19 (4)
O3i—Cs1—O2B63.89 (15)O11i—Cs3—O1x136.17 (4)
O2A—Cs1—O2B17.11 (16)O11xii—Cs3—O1x45.20 (4)
O3—Cs1—O561.19 (5)O1iii—Cs3—O1x95.97 (6)
O12—Cs1—O559.92 (4)O4ii—Cs3—O2Aii60.32 (5)
O6i—Cs1—O598.48 (5)O4ix—Cs3—O2Aii76.86 (5)
O13ii—Cs1—O5121.75 (4)O5x—Cs3—O2Aii117.01 (5)
O3i—Cs1—O5148.75 (5)O5iii—Cs3—O2Aii118.04 (5)
O2A—Cs1—O591.04 (5)O11xi—Cs3—O2Aii56.47 (5)
O2B—Cs1—O5103.41 (15)O11—Cs3—O2Aii122.34 (5)
O3—Cs1—O1i104.41 (5)O11i—Cs3—O2Aii44.77 (5)
O12—Cs1—O1i117.74 (5)O11xii—Cs3—O2Aii133.86 (5)
O6i—Cs1—O1i61.02 (5)O1iii—Cs3—O2Aii85.00 (5)
O13ii—Cs1—O1i132.19 (4)O1x—Cs3—O2Aii179.03 (4)
O3i—Cs1—O1i87.73 (5)O4ii—Cs3—O2Aix76.86 (5)
O2A—Cs1—O1i72.19 (6)O4ix—Cs3—O2Aix60.32 (5)
O2B—Cs1—O1i69.41 (18)O5x—Cs3—O2Aix118.04 (5)
O5—Cs1—O1i61.10 (5)O5iii—Cs3—O2Aix117.01 (5)
O3—Cs1—O6iii119.38 (4)O11xi—Cs3—O2Aix122.34 (5)
O12—Cs1—O6iii57.92 (4)O11—Cs3—O2Aix56.47 (5)
O6i—Cs1—O6iii55.11 (6)O11i—Cs3—O2Aix133.86 (5)
O13ii—Cs1—O6iii127.69 (4)O11xii—Cs3—O2Aix44.77 (5)
O3i—Cs1—O6iii98.83 (5)O1iii—Cs3—O2Aix179.03 (4)
O2A—Cs1—O6iii171.86 (5)O1x—Cs3—O2Aix85.00 (5)
O2B—Cs1—O6iii159.08 (17)O2Aii—Cs3—O2Aix94.04 (8)
O5—Cs1—O6iii85.36 (4)O4ii—Cs3—O2Bxiii76.82 (16)
O1i—Cs1—O6iii99.69 (5)O4ix—Cs3—O2Bxiii60.32 (13)
O3—Cs1—O13i130.27 (4)O5x—Cs3—O2Bxiii103.24 (17)
O12—Cs1—O13i100.52 (5)O5iii—Cs3—O2Bxiii134.12 (13)
O6i—Cs1—O13i68.11 (4)O11xi—Cs3—O2Bxiii44.98 (17)
O13ii—Cs1—O13i77.18 (4)O11—Cs3—O2Bxiii133.62 (17)
O3i—Cs1—O13i46.06 (4)O11i—Cs3—O2Bxiii56.17 (13)
O2A—Cs1—O13i117.03 (5)O11xii—Cs3—O2Bxiii122.65 (13)
O2B—Cs1—O13i103.84 (15)O1iii—Cs3—O2Bxiii88.00 (16)
O5—Cs1—O13i151.91 (4)O1x—Cs3—O2Bxiii161.54 (15)
O1i—Cs1—O13i123.94 (4)O2Aii—Cs3—O2Bxiii18.15 (14)
O6iii—Cs1—O13i66.66 (4)O2Aix—Cs3—O2Bxiii91.13 (15)
O3—Cs1—O4ii87.67 (4)O4ii—Cs3—O2Bv60.32 (13)
O12—Cs1—O4ii63.79 (4)O4ix—Cs3—O2Bv76.82 (16)
O6i—Cs1—O4ii106.10 (5)O5x—Cs3—O2Bv134.12 (13)
O13ii—Cs1—O4ii57.91 (4)O5iii—Cs3—O2Bv103.24 (17)
O3i—Cs1—O4ii86.56 (4)O11xi—Cs3—O2Bv133.62 (17)
O2A—Cs1—O4ii118.16 (5)O11—Cs3—O2Bv44.98 (17)
O2B—Cs1—O4ii117.91 (17)O11i—Cs3—O2Bv122.65 (13)
O5—Cs1—O4ii123.40 (4)O11xii—Cs3—O2Bv56.17 (13)
O1i—Cs1—O4ii167.06 (5)O1iii—Cs3—O2Bv161.54 (15)
O6iii—Cs1—O4ii69.79 (4)O1x—Cs3—O2Bv88.00 (16)
O13i—Cs1—O4ii45.66 (4)O2Aii—Cs3—O2Bv91.13 (15)
O3—Cs1—O12iii101.20 (4)O2Aix—Cs3—O2Bv18.15 (14)
O12—Cs1—O12iii61.49 (5)O2Bxiii—Cs3—O2Bv93.9 (3)
O6i—Cs1—O12iii60.34 (4)O1vi—O1—Cs2111.81 (13)
O13ii—Cs1—O12iii156.59 (4)O1vi—O1—Cs1iv120.87 (14)
O3i—Cs1—O12iii121.36 (4)Cs2—O1—Cs1iv85.19 (4)
O2A—Cs1—O12iii128.25 (5)O1vi—O1—Cs3iii110.14 (12)
O2B—Cs1—O12iii132.07 (16)Cs2—O1—Cs3iii78.71 (5)
O5—Cs1—O12iii44.72 (4)Cs1iv—O1—Cs3iii128.90 (6)
O1i—Cs1—O12iii63.62 (4)O1vi—O1—H199 (2)
O6iii—Cs1—O12iii45.39 (4)Cs2—O1—H1146 (2)
O13i—Cs1—O12iii109.54 (4)Cs1iv—O1—H193 (2)
O4ii—Cs1—O12iii110.01 (4)Cs3iii—O1—H176 (2)
O3viii—Cs2—O3136.38 (7)O2Avii—O2A—Cs2113.34 (16)
O3viii—Cs2—O5viii64.50 (5)O2Avii—O2A—Cs1120.88 (17)
O3—Cs2—O5viii157.43 (5)Cs2—O2A—Cs185.07 (5)
O3viii—Cs2—O5157.43 (5)O2Avii—O2A—Cs3v111.11 (15)
O3—Cs2—O564.50 (5)Cs2—O2A—Cs3v79.41 (6)
O5viii—Cs2—O596.87 (7)Cs1—O2A—Cs3v127.71 (7)
O3viii—Cs2—O2Bvii67.83 (15)O2Avii—O2A—H2A99 (3)
O3—Cs2—O2Bvii86.41 (17)Cs2—O2A—H2A142 (3)
O5viii—Cs2—O2Bvii113.67 (17)Cs1—O2A—H2A96 (3)
O5—Cs2—O2Bvii112.60 (15)Cs3v—O2A—H2A70 (3)
O3viii—Cs2—O2Biv86.41 (17)O2Bvii—O2B—Cs2i113.2 (7)
O3—Cs2—O2Biv67.83 (15)O2Bvii—O2B—Cs1119.9 (7)
O5viii—Cs2—O2Biv112.60 (15)Cs2i—O2B—Cs186.2 (2)
O5—Cs2—O2Biv113.67 (17)O2Bvii—O2B—Cs3ii111.0 (6)
O2Bvii—Cs2—O2Biv107.4 (4)Cs2i—O2B—Cs3ii79.4 (2)
O3viii—Cs2—O2Aviii67.31 (5)Cs1—O2B—Cs3ii128.7 (2)
O3—Cs2—O2Aviii86.82 (5)O2Bvii—O2B—H2B102.1
O5viii—Cs2—O2Aviii97.62 (6)Cs2i—O2B—H2B136.5
O5—Cs2—O2Aviii130.94 (5)Cs1—O2B—H2B97.8
O2Bvii—Cs2—O2Aviii103.67 (17)Cs3ii—O2B—H2B64.4
O2Biv—Cs2—O2Aviii20.01 (16)O4—O3—Cs2104.05 (12)
O3viii—Cs2—O2A86.82 (5)O4—O3—Cs1112.30 (11)
O3—Cs2—O2A67.31 (5)Cs2—O3—Cs189.26 (5)
O5viii—Cs2—O2A130.95 (5)O4—O3—Cs1iv110.44 (11)
O5—Cs2—O2A97.62 (6)Cs2—O3—Cs1iv88.73 (4)
O2Bvii—Cs2—O2A20.01 (16)Cs1—O3—Cs1iv136.36 (6)
O2Biv—Cs2—O2A103.67 (17)O4—O3—H3102 (2)
O2Aviii—Cs2—O2A107.15 (9)Cs2—O3—H3151 (2)
O3viii—Cs2—O1viii93.63 (5)Cs1—O3—H393 (2)
O3—Cs2—O1viii112.38 (5)Cs1iv—O3—H370 (2)
O5viii—Cs2—O1viii67.07 (5)O3—O4—Cs3v129.75 (14)
O5—Cs2—O1viii66.21 (5)O3—O4—Cs1v109.15 (12)
O2Bvii—Cs2—O1viii73.01 (19)Cs3v—O4—Cs1v121.11 (6)
O2Biv—Cs2—O1viii179.59 (17)O3—O4—Cs253.34 (10)
O2Aviii—Cs2—O1viii159.91 (6)Cs3v—O4—Cs276.41 (5)
O2A—Cs2—O1viii76.73 (6)Cs1v—O4—Cs2162.46 (6)
O3viii—Cs2—O1112.38 (5)O3—O4—H498 (2)
O3—Cs2—O193.63 (5)Cs3v—O4—H4100 (2)
O5viii—Cs2—O166.21 (5)Cs1v—O4—H469 (2)
O5—Cs2—O167.07 (5)Cs2—O4—H4112 (2)
O2Bvii—Cs2—O1179.59 (17)O6—O5—Cs2111.33 (12)
O2Biv—Cs2—O173.01 (19)O6—O5—Cs3iii110.62 (12)
O2Aviii—Cs2—O176.73 (6)Cs2—O5—Cs3iii84.24 (5)
O2A—Cs2—O1159.91 (6)O6—O5—Cs1110.12 (12)
O1viii—Cs2—O1106.60 (7)Cs2—O5—Cs185.40 (5)
O4ii—Cs3—O4ix116.01 (8)Cs3iii—O5—Cs1139.00 (6)
O4ii—Cs3—O5x165.00 (5)O6—O5—H5100 (2)
O4ix—Cs3—O5x75.66 (5)Cs2—O5—H5147 (2)
O4ii—Cs3—O5iii75.66 (5)Cs3iii—O5—H593 (2)
O4ix—Cs3—O5iii165.00 (5)Cs1—O5—H575 (2)
O5x—Cs3—O5iii94.65 (7)O5—O6—Cs1iv123.87 (12)
O4ii—Cs3—O11xi114.28 (5)O5—O6—Cs1iii110.95 (11)
O4ix—Cs3—O11xi64.86 (5)Cs1iv—O6—Cs1iii124.89 (6)
O5x—Cs3—O11xi60.58 (4)O5—O6—H6100 (2)
O5iii—Cs3—O11xi120.57 (4)Cs1iv—O6—H692 (2)
O4ii—Cs3—O1164.86 (5)Cs1iii—O6—H672 (2)
O4ix—Cs3—O11114.28 (5)O11—C1—O12120.5 (2)
O5x—Cs3—O11120.57 (4)O11—C1—O13119.9 (2)
O5iii—Cs3—O1160.58 (4)O12—C1—O13119.7 (2)
O11xi—Cs3—O11178.53 (5)C1—O11—Cs3118.89 (14)
O4ii—Cs3—O11i65.33 (5)C1—O11—Cs3iv119.61 (14)
O4ix—Cs3—O11i113.83 (5)Cs3—O11—Cs3iv121.48 (6)
O5x—Cs3—O11i101.94 (5)C1—O12—Cs1119.56 (14)
O5iii—Cs3—O11i79.06 (5)C1—O12—Cs1iii121.90 (14)
O11xi—Cs3—O11i58.50 (6)Cs1—O12—Cs1iii118.51 (5)
O11—Cs3—O11i121.48 (6)C1—O13—Cs1v127.10 (15)
O4ii—Cs3—O11xii113.83 (5)C1—O13—Cs1iv115.67 (14)
O4ix—Cs3—O11xii65.33 (5)Cs1v—O13—Cs1iv117.23 (5)
H1—O1—O1vi—H1vi67 (5)H3—O3—O4—H483 (3)
H2A—O2A—O2Avii—H2Avii58 (6)H5—O5—O6—H665 (3)
H2B—O2B—O2Bvii—H2Bvii47.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y1/2, z+1/2; (vi) x+3/2, y1/2, z; (vii) x+3/2, y+3/2, z; (viii) x+3/2, y+1/2, z; (ix) x1/2, y+1, z+1/2; (x) x1/2, y+1/2, z; (xi) x+1/2, y+3/2, z; (xii) x+1/2, y+1/2, z; (xiii) x1/2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11xiv0.88 (2)1.77 (2)2.642 (2)167 (3)
O2A—H2A···O11ii0.89 (2)1.74 (2)2.628 (3)175 (4)
O2B—H2B···O11ii0.901.722.619 (10)178
O3—H3···O130.87 (2)1.72 (2)2.596 (2)179 (3)
O4—H4···O13ii0.89 (2)1.75 (2)2.637 (3)177 (3)
O5—H5···O12iii0.88 (2)1.73 (2)2.603 (2)173 (3)
O6—H6···O120.87 (2)1.79 (2)2.656 (3)177 (3)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (xiv) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula2NH4+·CO32·H2O22Cs+·CO32·3H2O2
Mr130.11427.88
Crystal system, space groupMonoclinic, P2/nOrthorhombic, Pccn
Temperature (K)150173
a, b, c (Å)7.5657 (9), 9.9027 (12), 7.5819 (9)17.820 (2), 5.9357 (8), 16.888 (2)
α, β, γ (°)90, 98.050 (2), 9090, 90, 90
V3)562.45 (12)1786.3 (4)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.168.18
Crystal size (mm)0.40 × 0.20 × 0.200.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.940, 0.9700.234, 0.373
No. of measured, independent and
observed [I > 2σ(I)] reflections
5575, 1349, 1256 16916, 2154, 1841
Rint0.0180.030
(sin θ/λ)max1)0.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.12 0.018, 0.047, 1.12
No. of reflections13492154
No. of parameters115134
No. of restraints016
H-atom treatmentAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.280.88, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected geometric parameters (Å, º) for (I) top
C1—O121.2846 (8)O1—O1i1.4652 (14)
C1—O111.2928 (14)O1—H10.855 (15)
C2—O221.2835 (8)O2—O2ii1.4685 (13)
C2—O211.2965 (14)O2—H20.843 (15)
O12i—C1—O12120.15 (11)O22—C2—O21119.79 (5)
O12i—C1—O11119.92 (5)O22ii—C2—O21119.79 (5)
O12—C1—O11119.92 (5)O1i—O1—H198.9 (9)
O22—C2—O22ii120.42 (10)O2ii—O2—H298.3 (10)
H1—O1—O1i—H1i133 (2)H2—O2—O2ii—H2ii137 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22iii0.855 (15)1.816 (15)2.6683 (10)175.0 (14)
O2—H2···O120.843 (15)1.823 (16)2.6648 (10)175.9 (15)
N1—H11···O12iii0.871 (14)1.948 (14)2.7965 (10)164.4 (12)
N1—H12···O110.881 (13)1.961 (13)2.8376 (9)173.7 (11)
N1—H13···O210.859 (15)2.029 (15)2.8795 (8)170.7 (13)
N1—H14···O22iv0.893 (13)1.989 (13)2.8429 (10)159.5 (12)
N2—H21···O11v0.871 (15)2.096 (15)2.9361 (9)161.8 (13)
N2—H22···O22vi0.881 (13)1.921 (13)2.7817 (10)165.0 (12)
N2—H23···O120.886 (13)1.934 (14)2.8136 (10)171.9 (12)
N2—H24···O21v0.893 (14)1.974 (14)2.8615 (9)172.0 (12)
Symmetry codes: (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1/2, y1, z+1/2.
Selected geometric parameters (Å, º) for (II) top
O1—O1i1.465 (4)O4—H40.89 (2)
O1—H10.88 (2)O5—O61.470 (3)
O2A—O2Aii1.469 (5)O5—H50.88 (2)
O2A—H2A0.89 (2)O6—H60.87 (2)
O2B—O2Bii1.470 (15)C1—O111.281 (4)
O2B—H2B0.9000C1—O121.285 (3)
O3—O41.464 (3)C1—O131.290 (3)
O3—H30.87 (2)
O1i—O1—H199 (2)O6—O5—H5100 (2)
O2Aii—O2A—H2A99 (3)O5—O6—H6100 (2)
O2Bii—O2B—H2B102.1O11—C1—O12120.5 (2)
O4—O3—H3102 (2)O11—C1—O13119.9 (2)
O3—O4—H498 (2)O12—C1—O13119.7 (2)
H1—O1—O1i—H1i67 (5)H3—O3—O4—H483 (3)
H2A—O2A—O2Aii—H2Aii58 (6)H5—O5—O6—H665 (3)
H2B—O2B—O2Bii—H2Bii47.8
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11iii0.88 (2)1.77 (2)2.642 (2)167 (3)
O2A—H2A···O11iv0.89 (2)1.74 (2)2.628 (3)175 (4)
O2B—H2B···O11iv0.901.722.619 (10)178.4
O3—H3···O130.87 (2)1.72 (2)2.596 (2)179 (3)
O4—H4···O13iv0.89 (2)1.75 (2)2.637 (3)177 (3)
O5—H5···O12v0.88 (2)1.73 (2)2.603 (2)173 (3)
O6—H6···O120.87 (2)1.79 (2)2.656 (3)177 (3)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds