Download citation
Download citation
link to html
The title compound, a hydro­thermally synthesized strontium copper(II) phosphate(V) (2.88/3.12/4), is isotypic with Sr3Cu3(PO4)4, obtained previously by solid-state reaction, but not with Sr3Cu3(PO4)4, obtained previously by the hydro­thermal method. A surplus of copper was observed by both structural and chemical analysis, and the formula obtained by the structural analysis is in full agreement with results of the EDX (energy-dispersive X-ray diffraction) analysis. The structure consists of layers of Cu3O12 groups which are linked via the PO4 tetra­hedra. The Cu3O12 groups are formed by one Cu1O4 and two Cu2O5 coordination polyhedra sharing corners. The central Cu1 atom of the Cu3O12 group is located at an inversion centre (special position 2a). The unique structural feature of the title compound is the presence of 12% Cu in the Sr1 site (special position 2b, site symmetry \overline{1}). Moreover, disordered Sr2 atoms were observed: a main site (Sr2a, 90%) and a less occupied site (Sr2b, 10%) are displaced by 0.48 (3) Å along the b axis. Such substitutional and positional disorder was not observed previously in similar compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110007146/lg3029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110007146/lg3029Isup2.hkl
Contains datablock I

Comment top

Natural and synthetic metal phosphates often form tetrahedral–octahedral framework structures with potentially interesting physical and chemical properties (e.g. ionic conductivity, ion exchange and catalytic activity). An ongoing extensive study on the low-temperature hydrothermal synthesis, crystallography and properties of compounds in the insufficiently known AO–CuO–X2O5–H2O (A = Cd2+, Sr2+, X = As5+, P5+) system has already yielded a couple of interesting structures (Šutović et al., 2009; Đordević et al., 2008; Stojanović et al., 2008). This contribution reports on the hydrothermal synthesis and crystal structure of the title compound, (I), and its relationship to similar structures. Selected bond lengths and angles for (I) are listed in Table 1.

The title compound, (I), belongs to the group of compounds adopting the general formula A3B3(XO4)4, where A = Ca2+, Pb2+, Sr2+, B = Cu2+, X = As5+, P5+ (Belik et al., 2002; Effenberger, 1999; Osterloh & Müller-Buschbaum, 1994). Some examples with mixed B cations, Ca3Cu2Ni(PO4)4 and Ca3CuNi2(PO4)4, are also known (Pomjakushin et al., 2007). In all these crystal structures B3O12 groups are linked to XO4 tetrahedra (Fig. 1), forming layers with A cations between them. In (I) these layers are approximately parallel with the (101) planes (Fig. 2a).

The title compound is isotypic with Sr3Cu3(PO4)4 (Belik et al., 2002) obtained as a polycrystalline material by solid-state reaction, as well as with Ca3Cu3(PO4)4 (Anderson et al., 1981), Ca3Cu3(AsO4)4 (Osterloh & Müller-Buschbaum, 1994) and Sr3Cu2Ni(PO4)4 (Pomjakushin et al., 2007). All these compounds crystallize in the space group P21/c (No. 14) with Z = 2, but they are described in different settings: P21/c for Sr3Cu3(PO4)4, P21/a for Ca3Cu3(PO4)4, Ca3Cu3(AsO4)4 and Sr3Cu2Ni(PO4)4, and P21/n for (I).

On the other hand, (I) differs from Sr3Cu3(PO4)4 synthesized earlier [previously] by the hydrothermal method and reported in the space group C2/c (No. 15) with Z = 4 (Effenberger, 1999). Although the unit-cell parameters and volumes of (I), Sr3Cu3(PO4)4 (Belik et al., 2002) and the transformed unit cell of Sr3Cu3(PO4)4 (Effenberger, 1999) are almost identical (Table 2), there is a noticeable difference in the stacking sequences of the layers. In the isotypic structures that crystallize in the space group P21/c, the succeeding layers are identical and the Cu3O12 groups are arranged in a herringbone-like pattern (Fig. 2a). However, in the non-isotypic Sr3Cu3(PO4)4 (Effenberger, 1999) the succeeding layers form an ABABAB stacking sequence and the Cu3O12 groups are oriented parallel to each other due to the translation symmetry (Fig. 2b).

During the crystal structure refinement of (I) it was observed that the average M1—O distance of 2.49 (2) Å is significantly shorter than the distance of 2.58 Å calculated from the ionic radii (Shannon, 1976), suggesting possible incorporation of the Cu atom in the Sr1 site. As a consequence, the sum of bond valences (Wills, 2009) for the Sr1 atom showed an oversaturation [Σνij(Sr1) = 2.21 v.u.]. In order to check this result, the chemical composition of the title compound was determined by EDX [energy-dispersive X-ray diffraction] analysis. It confirmed a copper enrichment in the investigated crystal compared to the Sr:Cu = 1:1 atomic ratio expected for Sr3Cu3(PO4)4. A new refinement showed that the special M1 position is occupied by 0.88 (3) Sr1 and 0.12 Cu11. At the same time, considering 12% of Cu in the M1 site resulted in an ideal bond valence sum of 2.02 v.u. In this way, the formula calculated from the structure refinement and the formula obtained by chemical analysis are in full agreement.

The M1 site is surrounded by six O atoms forming a 4+2 coordination polyhedron, which can be described as a deformed, slightly elongated octahedron (Fig. 1, Table 1). The ratio of average short to long bond distances is 2.464/2.544 Å. It is worth noticing that the corresponding ratios for isotypic and non-isotypic Sr3Cu3(PO4)4 are very similar (2.446/2.519 and 2.465/2.570, respectively). This implies that similar substitution of Cu for Sr could also be expected, but it was [has not been?] not reported.

Additionally, the structure refinements showed that the Sr2 cations in the general M2 site are split into two positions: a main Sr2a site [site-occupancy factor (SOF) = 0.90 (1)] and a less occupied Sr2b site [SOF = 0.10 (1)]. The Sr2a is coordinated with nine O atoms and the coordination polyhedron has the form of a slightly distorted tricapped trigonal prism with Sr2a—O distances in the range 2.487 (5)–2.989 (6) Å. The Sr2b cation is displaced for[by?] 0.48 (3) Å along the b axis, so that O4vi [symmetry code: (vi) -x, -y - 1, -z] and O8iii [symmetry code: (iii) -x + 1/2, y - 3/2, -z - 1/2] [are]were moved to the longer distances of 3.14 (2) and 3.24 (2) Å [respectively?] from Sr2b. Therefore, Sr2b cations are coordinated by 5+2+2 O atoms which form highly distorted coordination polyhedron with distances ranging from 2.351 (14) to 3.24 (2) Å. The <Sr2a—O> and <Sr2b—O> distances of 2.70 (6) and 2.75 (11) Å, respectively, are close to the sum of the ionic radii of 2.71 for nine-coordinated Sr (Shannon, 1976). The valence requirements of Sr2a are well satisfied by nine oxygens with a bond valence sum of 2.04, but the valence sum for the Sr2b atom [Σνij(Sr2b)= 2.19 v.u.] suggests an oversaturation if all nine ligands are considered. Neglecting the longest two distances gives an improved bond valence sum of 2.08 v.u. for Sr2b. For CN = 7 the <Sr2b—O> distance is 2.63 (9), while that calculated from the ionic radii (Shannon, 1976) is 2.61 Å.

Related literature top

For related literature, see: Anderson et al. (1981); Belik et al. (2002); Effenberger (1999); Osterloh & Müller-Buschbaum (1994); Pomjakushin et al. (2007); Shannon (1976); Stojanović et al. (2008); Wills (2009); Đordević et al. (2008); Šutović et al. (2009).

Experimental top

During our efforts to synthesize single crystals in the system SrO–CuO–P2O5–H2O, the new, title compound was obtained hydrothermally from a mixture of Sr(OH)2.8H2O (Merck, >97%), Cu(OH)2.2H2O (Merck, >99%) and (NH4)2HPO4 (LobaChemie, >99%) with a molar ratio 1:3:2. The mixture was transferred into a Teflon vessel and filled to approximately 70% of its volume with distilled water. The initial pH of the mixture was 8. Finally the vessel was enclosed in a stainless steel autoclave. The autoclave containing the reactant solution was tightly sealed, placed in a furnace and kept at 473 K for 9 d; it was then spontaneously cooled to room temperature. The resulting product was filtered, washed thoroughly with distilled water and dried in air at room temperature. The title compound crystallized as transparent blue needles (yield circa 30%) of up to 0.4 mm in length together with crystals of the starting material and a light blue powder. The X-ray diffraction pattern of the polycrystalline powder revealed that the strong peaks predominantly correspond to the title compound. Cu2(PO4)(OH) (libethenite) and Cu5(PO4)2(OH)4 (reichenbachite) were present in smaller quantities. Additional weak peaks indicated the existence of crystalline compound(s) that were not identified.

Quantitative chemical analysis, which was performed using a JEOL JSM-6610 LV SEM connected with an Oxford INCA Energy 350 EDX analysis unit, confirmed the presence of Cu and Sr in the average atomic ratio Cu/Sr = 1.08.

Refinement top

The M1 site was refined as a mixed (Sr1, Cu11) site, constraining to full occupancy. Attempts to refine the positional and displacement parameters for Cu112+ and Sr12+ at M1 independently failed because the refinement became unstable. Therefore, identical fractional coordinates and displacement parameters for both atoms were applied. Site occupancies of 0.88 (3) and 0.12 (3) were obtained for Sr1 and Cu11, respectively.

The positional disorder with split positions and the same anisotropic displacement parameters for Sr2a and Sr2b were included in the structure model and their sum was fixed at four atoms per unit cell. Site-occupancy refinements of the Sr2a and Sr2b sites gave values of 0.90 (1) and 0.10 (1) for Sr2a and Sr2b, respectively.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the Sr2.88Cu3.12(PO4)4 structure with the atomic labeling scheme. Displacement ellipsoids are plotted at the 50 % probability level. The Sr2b–O bonds are represented by a dashed line. Symmetry codes: (i) x, y+1, z; (ii) x-1/2, -y-1/2, z-1/2; (iii) -x+1/2, y-3/2, -z-1/2; (iv) -x, -y, -z; (v) -x+1/2, y-1/2, -z-1/2; (vi) -x, -y-1, -z; (vii) x, y-1, z; (viii) -x+1, -y+1, -z; (ix) -x, -y+1, -z; (x) -x+1, -y, -z; (xi) x-1/2, -y+1/2, z+1/2.
[Figure 2] Fig. 2. Stacking sequence of layers in (a) Sr2.88Cu3.12(PO4)4, and (b) nonisotypyc Sr3Cu3(PO4)4 (Effenberger,1999) as viewed along the b axis. The large black and grey spheres represent M1 and M2 atoms, while the small black and grey spheres represent Cu1 and Cu2 atoms, respectively. In (a) Sr2a and Sr2b atoms are hachured horizontally and vertically, respectively. P1O4 (grey) and P2O4 (black) coordination tetrahedra are shaded.
strontium copper(II) phosphate(V) (2.88/3.12/4) top
Crystal data top
Sr2.88Cu3.12(PO4)4F(000) = 776
Mr = 830.50Dx = 4.028 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11396 reflections
a = 9.2077 (18) Åθ = 0.4–35.0°
b = 4.9369 (10) ŵ = 16.46 mm1
c = 15.074 (3) ÅT = 295 K
β = 92.15 (3)°Needle, blue
V = 684.8 (2) Å30.10 × 0.01 × 0.01 mm
Z = 2
Data collection top
Nonius Kappa CCD diffractomer1400 independent reflections
Radiation source: fine-focus sealed tube1178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.829, Tmax = 0.853k = 66
5148 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Secondary atom site location: difference Fourier map
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0165P)2 + 11.1976P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1400 reflectionsΔρmax = 1.53 e Å3
126 parametersΔρmin = 0.93 e Å3
Crystal data top
Sr2.88Cu3.12(PO4)4V = 684.8 (2) Å3
Mr = 830.50Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2077 (18) ŵ = 16.46 mm1
b = 4.9369 (10) ÅT = 295 K
c = 15.074 (3) Å0.10 × 0.01 × 0.01 mm
β = 92.15 (3)°
Data collection top
Nonius Kappa CCD diffractomer1400 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
1178 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.853Rint = 0.039
5148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0165P)2 + 11.1976P]
where P = (Fo2 + 2Fc2)/3
S = 1.12Δρmax = 1.53 e Å3
1400 reflectionsΔρmin = 0.93 e Å3
126 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.50000.50000.00000.0170 (5)0.88 (3)
Cu110.50000.50000.00000.0170 (5)0.12 (3)
Sr2A0.04372 (10)1.0377 (8)0.23640 (6)0.0110 (4)0.904 (12)
Sr2B0.0432 (11)0.940 (5)0.2358 (7)0.0110 (4)0.096 (12)
Cu10.00000.00000.00000.0101 (3)
Cu20.17577 (9)0.52566 (18)0.12108 (5)0.0123 (2)
P10.14870 (18)0.4918 (3)0.08774 (11)0.0080 (3)
P20.36904 (19)0.0224 (4)0.16324 (11)0.0139 (4)
O10.0100 (5)0.3082 (10)0.0815 (3)0.0170 (11)
O20.2350 (5)0.4476 (11)0.0041 (3)0.0165 (11)
O30.0952 (6)0.7867 (10)0.0927 (3)0.0190 (11)
O40.2359 (5)0.4196 (11)0.1711 (3)0.0210 (12)
O50.3769 (6)0.3334 (11)0.1436 (3)0.0201 (12)
O60.4110 (5)0.0148 (10)0.2619 (3)0.0139 (10)
O70.2139 (5)0.0676 (11)0.1484 (4)0.0207 (12)
O80.4836 (6)0.1257 (12)0.1087 (4)0.0271 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0094 (6)0.0289 (7)0.0126 (6)0.0007 (4)0.0020 (3)0.0071 (4)
Cu110.0094 (6)0.0289 (7)0.0126 (6)0.0007 (4)0.0020 (3)0.0071 (4)
Sr2A0.0107 (3)0.0121 (13)0.0099 (3)0.0009 (4)0.0014 (2)0.0007 (4)
Sr2B0.0107 (3)0.0121 (13)0.0099 (3)0.0009 (4)0.0014 (2)0.0007 (4)
Cu10.0152 (6)0.0057 (6)0.0092 (5)0.0007 (5)0.0025 (4)0.0006 (4)
Cu20.0119 (4)0.0159 (5)0.0089 (4)0.0023 (3)0.0002 (3)0.0007 (3)
P10.0082 (8)0.0078 (8)0.0080 (8)0.0005 (7)0.0010 (6)0.0004 (7)
P20.0098 (9)0.0225 (10)0.0093 (8)0.0001 (7)0.0000 (7)0.0010 (7)
O10.020 (3)0.015 (3)0.015 (3)0.004 (2)0.002 (2)0.000 (2)
O20.011 (2)0.028 (3)0.010 (2)0.004 (2)0.0025 (19)0.002 (2)
O30.027 (3)0.015 (3)0.015 (3)0.003 (2)0.002 (2)0.000 (2)
O40.016 (3)0.032 (3)0.015 (3)0.000 (2)0.007 (2)0.004 (2)
O50.021 (3)0.019 (3)0.021 (3)0.001 (2)0.004 (2)0.002 (2)
O60.015 (2)0.017 (3)0.010 (2)0.002 (2)0.0012 (18)0.001 (2)
O70.013 (3)0.026 (3)0.024 (3)0.004 (2)0.001 (2)0.003 (2)
O80.020 (3)0.035 (3)0.026 (3)0.002 (2)0.006 (2)0.006 (3)
Geometric parameters (Å, º) top
Sr1—O2i2.457 (5)P1—O21.532 (5)
Sr1—O22.457 (5)P1—O31.540 (5)
Sr1—O82.471 (6)P1—O11.566 (5)
Sr1—O8i2.471 (6)P2—O81.502 (6)
Sr1—O5ii2.542 (5)P2—O71.520 (5)
Sr1—O5iii2.542 (5)P2—O61.561 (5)
Sr2A—O4iv2.487 (5)P2—O51.565 (6)
Sr2A—O6v2.525 (6)O1—Cu2vi2.124 (5)
Sr2A—O3vi2.555 (6)O1—Sr2Aviii2.697 (5)
Sr2A—O5vii2.618 (6)O1—Sr2Bviii2.958 (19)
Sr2A—O1viii2.697 (5)O2—Cu2ii1.948 (5)
Sr2A—O7ix2.724 (5)O3—Cu1ii1.934 (5)
Sr2A—O4viii2.791 (6)O3—Sr2Bvi2.351 (14)
Sr2A—O8v2.935 (7)O3—Sr2Avi2.555 (6)
Sr2A—O6vii2.989 (6)O3—Cu2vi2.854 (5)
Sr2B—O3vi2.351 (14)O4—Sr2Bxi2.429 (12)
Sr2B—O4iv2.429 (12)O4—Sr2Axi2.487 (5)
Sr2B—O5vii2.477 (13)O4—Sr2Aviii2.791 (6)
Sr2B—O6vii2.56 (2)O4—Sr2Bviii3.14 (2)
Sr2B—O7ix2.665 (12)O4—Sr2Bvi3.29 (2)
Sr2B—O6v2.95 (2)O5—Sr2Bxii2.477 (13)
Sr2B—O1viii2.958 (19)O5—Cu11ix2.542 (5)
Sr2B—O4viii3.14 (2)O5—Sr1ix2.542 (5)
Sr2B—O8v3.24 (2)O5—Sr2Axii2.618 (5)
Sr2B—O4vi3.29 (2)O6—Cu2xii1.920 (5)
Cu1—O3x1.934 (5)O6—Sr2Axiii2.525 (6)
Cu1—O3ix1.934 (5)O6—Sr2Bxii2.56 (2)
Cu1—O1vi1.956 (5)O6—Sr2Bxiii2.95 (2)
Cu1—O11.956 (5)O6—Sr2Axii2.989 (6)
Cu2—O6vii1.920 (5)O7—Cu2ii2.083 (6)
Cu2—O2ix1.948 (5)O7—Sr2Bii2.665 (12)
Cu2—O7ix2.083 (6)O7—Sr2Aii2.724 (5)
Cu2—O52.120 (5)O8—Sr2Axiii2.935 (7)
Cu2—O1vi2.124 (5)O8—Sr2Bxiii3.24 (2)
P1—O41.509 (5)
O2i—Sr1—O2180.0Cu1ii—O3—Sr2Axi155.0 (2)
O2i—Sr1—O895.63 (18)Sr2Bvi—O3—Sr2Axi73.9 (3)
O2—Sr1—O884.37 (18)Sr2Avi—O3—Sr2Axi78.18 (12)
O2i—Sr1—O8i84.37 (18)Cu2vi—O3—Sr2Axi116.17 (15)
O2—Sr1—O8i95.63 (18)Cu2ii—O3—Sr2Axi103.17 (12)
O8—Sr1—O8i180.0 (3)Cu1—O3—Sr2Axi94.68 (11)
O2i—Sr1—O5ii110.86 (16)Sr1—O3—Sr2Axi55.78 (7)
O2—Sr1—O5ii69.14 (16)Cu1ii—O3—Sr2Aviii140.7 (2)
O8—Sr1—O5ii70.29 (18)Sr2Bvi—O3—Sr2Aviii77.7 (6)
O8i—Sr1—O5ii109.71 (18)Sr2Avi—O3—Sr2Aviii87.88 (14)
O2i—Sr1—O5iii69.14 (16)Cu2vi—O3—Sr2Aviii54.95 (9)
O2—Sr1—O5iii110.86 (16)Cu2ii—O3—Sr2Aviii96.32 (11)
O8—Sr1—O5iii109.71 (18)Cu1—O3—Sr2Aviii49.56 (6)
O8i—Sr1—O5iii70.29 (18)Sr1—O3—Sr2Aviii89.65 (10)
O5ii—Sr1—O5iii180.0 (3)Sr2Axi—O3—Sr2Aviii63.43 (8)
O2i—Sr1—O8ii85.45 (15)P1—O3—Cu2x164.1 (3)
O2—Sr1—O8ii94.55 (15)Cu1ii—O3—Cu2x51.86 (13)
O8—Sr1—O8ii110.43 (19)Sr2Bvi—O3—Cu2x60.9 (5)
O8i—Sr1—O8ii69.57 (19)Sr2Avi—O3—Cu2x53.02 (11)
O5ii—Sr1—O8ii45.99 (15)Cu2vi—O3—Cu2x81.93 (12)
O5iii—Sr1—O8ii134.01 (15)Cu2ii—O3—Cu2x124.12 (13)
O2i—Sr1—O8iii94.55 (15)Cu1—O3—Cu2x132.69 (13)
O2—Sr1—O8iii85.45 (15)Sr1—O3—Cu2x143.37 (13)
O8—Sr1—O8iii69.57 (19)Sr2Axi—O3—Cu2x126.84 (13)
O8i—Sr1—O8iii110.43 (19)Sr2Aviii—O3—Cu2x125.54 (13)
O5ii—Sr1—O8iii134.01 (15)P1—O4—Sr2Bxi151.6 (5)
O5iii—Sr1—O8iii45.99 (15)P1—O4—Sr2Axi144.0 (3)
O8ii—Sr1—O8iii180.0P1—O4—Sr2Aviii97.4 (2)
O4iv—Sr2A—O6v125.7 (2)Sr2Bxi—O4—Sr2Aviii110.7 (5)
O4iv—Sr2A—O3vi100.85 (19)Sr2Axi—O4—Sr2Aviii118.4 (2)
O6v—Sr2A—O3vi122.56 (17)P1—O4—Sr2Bviii98.5 (3)
O4iv—Sr2A—O5vii90.57 (18)Sr2Bxi—O4—Sr2Bviii108.9 (6)
O6v—Sr2A—O5vii91.91 (17)Sr2Axi—O4—Sr2Bviii117.5 (3)
O3vi—Sr2A—O5vii122.1 (2)P1—O4—Sr2Bvi77.7 (3)
O4iv—Sr2A—O1viii131.77 (17)Sr2Bxi—O4—Sr2Bvi104.2 (7)
O6v—Sr2A—O1viii62.33 (16)Sr2Axi—O4—Sr2Bvi95.1 (3)
O3vi—Sr2A—O1viii61.67 (16)Sr2Aviii—O4—Sr2Bvi93.8 (3)
O5vii—Sr2A—O1viii137.48 (16)Sr2Bviii—O4—Sr2Bvi100.3 (3)
O4iv—Sr2A—O7ix154.9 (2)P1—O4—Sr174.5 (2)
O6v—Sr2A—O7ix76.05 (16)Sr2Bxi—O4—Sr180.6 (3)
O3vi—Sr2A—O7ix71.37 (17)Sr2Axi—O4—Sr179.56 (14)
O5vii—Sr2A—O7ix74.93 (17)Sr2Aviii—O4—Sr1140.8 (2)
O1viii—Sr2A—O7ix66.62 (16)Sr2Bviii—O4—Sr1134.8 (4)
O4iv—Sr2A—O4viii80.86 (14)Sr2Bvi—O4—Sr1120.5 (3)
O6v—Sr2A—O4viii74.10 (18)P1—O4—Sr2Avi77.3 (2)
O3vi—Sr2A—O4viii83.60 (17)Sr2Bxi—O4—Sr2Avi102.2 (6)
O5vii—Sr2A—O4viii154.17 (19)Sr2Axi—O4—Sr2Avi92.65 (18)
O1viii—Sr2A—O4viii54.14 (15)Sr2Aviii—O4—Sr2Avi98.52 (15)
O7ix—Sr2A—O4viii120.63 (17)Sr2Bviii—O4—Sr2Avi105.0 (3)
O4iv—Sr2A—O8v82.02 (16)Sr1—O4—Sr2Avi116.15 (15)
O6v—Sr2A—O8v52.46 (16)P1—O4—Cu2vi47.09 (17)
O3vi—Sr2A—O8v174.5 (2)Sr2Bxi—O4—Cu2vi154.0 (4)
O5vii—Sr2A—O8v62.33 (16)Sr2Axi—O4—Cu2vi148.1 (2)
O1viii—Sr2A—O8v112.9 (2)Sr2Aviii—O4—Cu2vi62.02 (11)
O7ix—Sr2A—O8v107.96 (16)Sr2Bviii—O4—Cu2vi66.5 (3)
O4viii—Sr2A—O8v92.23 (19)Sr2Bvi—O4—Cu2vi54.4 (3)
O4iv—Sr2A—O6vii96.11 (19)Sr1—O4—Cu2vi121.55 (13)
O6v—Sr2A—O6vii126.88 (18)Sr2Avi—O4—Cu2vi57.51 (8)
O3vi—Sr2A—O6vii69.73 (17)P1—O4—Cu146.31 (17)
O5vii—Sr2A—O6vii52.56 (15)Sr2Bxi—O4—Cu1146.8 (6)
O1viii—Sr2A—O6vii115.18 (15)Sr2Axi—O4—Cu1156.4 (2)
O7ix—Sr2A—O6vii58.76 (15)Sr2Aviii—O4—Cu161.96 (10)
O4viii—Sr2A—O6vii152.18 (16)Sr2Bviii—O4—Cu159.8 (2)
O8v—Sr2A—O6vii114.86 (15)Sr2Bvi—O4—Cu1108.5 (3)
O3vi—Sr2B—O4iv108.7 (5)Sr1—O4—Cu187.68 (11)
O3vi—Sr2B—O5vii139.2 (10)Sr2Avi—O4—Cu1110.81 (12)
O4iv—Sr2B—O5vii95.4 (4)Cu2vi—O4—Cu155.02 (7)
O3vi—Sr2B—O6vii81.0 (7)Sr2Bxi—O4—Cu1ii134.4 (6)
O4iv—Sr2B—O6vii110.1 (8)Sr2Axi—O4—Cu1ii123.6 (2)
O5vii—Sr2B—O6vii59.7 (5)Sr2Aviii—O4—Cu1ii110.05 (14)
O3vi—Sr2B—O7ix75.5 (4)Sr2Bviii—O4—Cu1ii113.8 (3)
O4iv—Sr2B—O7ix173.4 (7)Sr2Bvi—O4—Cu1ii53.3 (2)
O5vii—Sr2B—O7ix78.3 (4)Sr1—O4—Cu1ii80.83 (10)
O6vii—Sr2B—O7ix65.2 (4)Sr2Avi—O4—Cu1ii51.82 (7)
O3vi—Sr2B—O6v113.7 (7)Cu2vi—O4—Cu1ii48.41 (6)
O4iv—Sr2B—O6v111.6 (8)Cu1—O4—Cu1ii72.93 (8)
O5vii—Sr2B—O6v85.3 (5)P2—O5—Cu2115.8 (3)
O6vii—Sr2B—O6v127.2 (4)P2—O5—Sr2Bxii95.5 (6)
O7ix—Sr2B—O6v70.1 (4)Cu2—O5—Sr2Bxii126.2 (5)
O3vi—Sr2B—O1viii59.7 (3)P2—O5—Cu11ix119.6 (3)
O4iv—Sr2B—O1viii122.6 (7)Cu2—O5—Cu11ix94.75 (19)
O5vii—Sr2B—O1viii131.2 (6)Sr2Bxii—O5—Cu11ix106.8 (4)
O6vii—Sr2B—O1viii121.0 (5)P2—O5—Sr1ix119.6 (3)
O7ix—Sr2B—O1viii63.7 (3)Cu2—O5—Sr1ix94.75 (19)
O6v—Sr2B—O1viii54.5 (4)Sr2Bxii—O5—Sr1ix106.8 (4)
O3vi—Sr2B—O4viii79.7 (4)P2—O5—Sr2Axii105.8 (3)
O4iv—Sr2B—O4viii74.9 (5)Cu2—O5—Sr2Axii118.5 (2)
O5vii—Sr2B—O4viii139.6 (9)Cu11ix—O5—Sr2Axii102.09 (18)
O6vii—Sr2B—O4viii160.6 (6)Sr1ix—O5—Sr2Axii102.09 (18)
O7ix—Sr2B—O4viii111.1 (6)P2—O5—Cu2xii55.85 (17)
O6v—Sr2B—O4viii63.5 (5)Cu2—O5—Cu2xii104.03 (18)
O1viii—Sr2B—O4viii48.3 (4)Sr2Bxii—O5—Cu2xii58.1 (4)
P2vii—Sr2B—O4viii168.1 (5)Cu11ix—O5—Cu2xii160.64 (19)
O3vi—Sr2B—O8v157.3 (10)Sr1ix—O5—Cu2xii160.64 (19)
O4iv—Sr2B—O8v76.7 (4)Sr2Axii—O5—Cu2xii64.85 (12)
O5vii—Sr2B—O8v58.9 (4)P2—O5—Sr2Aii64.71 (19)
O6vii—Sr2B—O8v118.6 (4)Cu2—O5—Sr2Aii54.93 (12)
O7ix—Sr2B—O8v101.3 (5)Sr2Bxii—O5—Sr2Aii113.9 (3)
O6v—Sr2B—O8v46.2 (4)Cu11ix—O5—Sr2Aii138.60 (18)
O1viii—Sr2B—O8v98.5 (7)Sr1ix—O5—Sr2Aii138.60 (18)
O4viii—Sr2B—O8v80.7 (6)Sr2Axii—O5—Sr2Aii116.64 (16)
O3vi—Sr2B—O4vi49.2 (4)Cu2xii—O5—Sr2Aii59.41 (8)
O4iv—Sr2B—O4vi71.9 (5)Cu2—O5—Cu2ii91.17 (16)
O5vii—Sr2B—O4vi114.0 (9)Sr2Bxii—O5—Cu2ii121.4 (6)
O6vii—Sr2B—O4vi65.2 (6)Cu11ix—O5—Cu2ii113.66 (16)
O7ix—Sr2B—O4vi108.7 (7)Sr1ix—O5—Cu2ii113.66 (16)
O6v—Sr2B—O4vi160.3 (5)Sr2Axii—O5—Cu2ii131.28 (18)
O1viii—Sr2B—O4vi106.7 (4)Cu2xii—O5—Cu2ii71.20 (9)
P2vii—Sr2B—O4vi85.4 (7)Sr2Aii—O5—Cu2ii49.19 (7)
O4viii—Sr2B—O4vi100.3 (3)P2—O5—Cu172.5 (2)
O8v—Sr2B—O4vi147.0 (4)Cu2—O5—Cu152.31 (12)
O3x—Cu1—O3ix180.0 (3)Sr2Bxii—O5—Cu1161.0 (4)
O3x—Cu1—O1vi87.7 (2)Cu11ix—O5—Cu192.06 (14)
O3ix—Cu1—O1vi92.3 (2)Sr1ix—O5—Cu192.06 (14)
O3x—Cu1—O192.3 (2)Sr2Axii—O5—Cu1164.16 (18)
O3ix—Cu1—O187.7 (2)Cu2xii—O5—Cu1103.07 (11)
O1vi—Cu1—O1180.0 (4)Sr2Aii—O5—Cu147.94 (6)
O3x—Cu1—O7vi107.58 (18)Cu2ii—O5—Cu145.17 (5)
O3ix—Cu1—O7vi72.42 (18)P2—O5—Sr2Bii59.0 (4)
O1vi—Cu1—O7vi111.04 (18)Cu2—O5—Sr2Bii59.8 (3)
O1—Cu1—O7vi68.96 (18)Sr2Bxii—O5—Sr2Bii114.4 (3)
O3x—Cu1—O772.42 (18)Cu11ix—O5—Sr2Bii138.8 (2)
O3ix—Cu1—O7107.58 (18)Sr1ix—O5—Sr2Bii138.8 (2)
O1vi—Cu1—O768.96 (18)Sr2Axii—O5—Sr2Bii118.2 (2)
O1—Cu1—O7111.04 (18)Cu2xii—O5—Sr2Bii58.09 (16)
O7vi—Cu1—O7180.0 (2)Cu1—O5—Sr2Bii46.93 (15)
O3x—Cu1—O285.58 (18)Cu2—O5—Sr2Axiii138.59 (19)
O3ix—Cu1—O294.42 (18)Sr2Bxii—O5—Sr2Axiii70.7 (6)
O1vi—Cu1—O2125.78 (17)Cu11ix—O5—Sr2Axiii117.72 (16)
O1—Cu1—O254.22 (17)Sr1ix—O5—Sr2Axiii117.72 (16)
O7vi—Cu1—O2122.25 (14)Sr2Axii—O5—Sr2Axiii81.06 (13)
O7—Cu1—O257.75 (14)Cu2xii—O5—Sr2Axiii48.61 (6)
O3x—Cu1—O2vi94.42 (18)Sr2Aii—O5—Sr2Axiii83.85 (10)
O3ix—Cu1—O2vi85.58 (18)Cu2ii—O5—Sr2Axiii53.68 (7)
O1vi—Cu1—O2vi54.22 (17)Cu1—O5—Sr2Axiii98.75 (10)
O1—Cu1—O2vi125.78 (17)Sr2Bii—O5—Sr2Axiii78.8 (3)
O7vi—Cu1—O2vi57.75 (14)P2—O6—Cu2xii138.9 (3)
O7—Cu1—O2vi122.25 (14)P2—O6—Sr2Axiii104.5 (2)
O2—Cu1—O2vi180.00 (14)Cu2xii—O6—Sr2Axiii105.5 (2)
O6vii—Cu2—O2ix171.3 (2)P2—O6—Sr2Bxii92.6 (3)
O6vii—Cu2—O7ix89.2 (2)Cu2xii—O6—Sr2Bxii94.5 (3)
O2ix—Cu2—O7ix94.8 (2)Sr2Axiii—O6—Sr2Bxii122.6 (4)
O6vii—Cu2—O598.2 (2)P2—O6—Sr2Bxiii103.6 (3)
O2ix—Cu2—O588.3 (2)Cu2xii—O6—Sr2Bxiii104.0 (3)
O7ix—Cu2—O5104.2 (2)Sr2Bxii—O6—Sr2Bxiii127.2 (4)
O6vii—Cu2—O1vi83.88 (19)P2—O6—Sr2Axii91.0 (2)
O2ix—Cu2—O1vi87.8 (2)Cu2xii—O6—Sr2Axii93.05 (18)
O7ix—Cu2—O1vi133.4 (2)Sr2Axiii—O6—Sr2Axii126.88 (18)
O5—Cu2—O1vi122.4 (2)Sr2Bxiii—O6—Sr2Axii131.5 (3)
O6vii—Cu2—O3vi81.29 (18)P2—O6—Cu2ii51.45 (16)
O2ix—Cu2—O3vi92.24 (18)Cu2xii—O6—Cu2ii110.26 (18)
O7ix—Cu2—O3vi75.46 (18)Sr2Axiii—O6—Cu2ii76.80 (12)
O5—Cu2—O3vi179.34 (18)Sr2Bxii—O6—Cu2ii143.8 (3)
O1vi—Cu2—O3vi57.90 (17)Sr2Bxiii—O6—Cu2ii73.1 (3)
O6vii—Cu2—O779.49 (18)Sr2Axii—O6—Cu2ii141.68 (15)
O2ix—Cu2—O799.82 (19)Cu2xii—O6—Cu2101.48 (17)
O7ix—Cu2—O7154.0 (2)Sr2Axiii—O6—Cu2147.53 (16)
O5—Cu2—O755.23 (17)Sr2Bxii—O6—Cu272.2 (3)
O1vi—Cu2—O769.04 (17)Sr2Bxiii—O6—Cu2146.0 (3)
O3vi—Cu2—O7124.93 (14)Sr2Axii—O6—Cu268.47 (10)
O4—P1—O2112.1 (3)Cu2ii—O6—Cu277.11 (9)
O4—P1—O3110.1 (3)P2—O6—Sr2Bii68.6 (2)
O2—P1—O3110.6 (3)Cu2xii—O6—Sr2Bii73.2 (2)
O4—P1—O1108.7 (3)Sr2Axiii—O6—Sr2Bii115.9 (4)
O2—P1—O1108.4 (3)Sr2Bxii—O6—Sr2Bii121.4 (7)
O3—P1—O1106.8 (3)Sr2Bxiii—O6—Sr2Bii111.3 (6)
O8—P2—O7115.0 (3)Sr2Axii—O6—Sr2Bii117.1 (4)
O8—P2—O6105.6 (3)Cu2ii—O6—Sr2Bii48.3 (3)
O7—P2—O6111.9 (3)Cu2—O6—Sr2Bii55.9 (3)
O8—P2—O5110.3 (3)P2—O6—Sr2Aii67.96 (17)
O7—P2—O5107.2 (3)Cu2xii—O6—Sr2Aii72.40 (14)
O6—P2—O5106.5 (3)Sr2Axiii—O6—Sr2Aii122.41 (18)
P1—O1—Cu1120.4 (3)Sr2Bxii—O6—Sr2Aii114.9 (4)
P1—O1—Cu2vi110.7 (3)Sr2Bxiii—O6—Sr2Aii117.8 (4)
Cu1—O1—Cu2vi123.4 (2)Sr2Axii—O6—Sr2Aii110.57 (15)
P1—O1—Sr2Aviii99.7 (2)Cu2ii—O6—Sr2Aii53.39 (8)
Cu1—O1—Sr2Aviii99.2 (2)Cu2—O6—Sr2Aii50.64 (7)
Cu2vi—O1—Sr2Aviii94.31 (18)P2—O6—Cu1xii153.9 (2)
P1—O1—Sr2Bviii104.4 (4)Cu2xii—O6—Cu1xii52.64 (12)
Cu1—O1—Sr2Bviii91.0 (5)Sr2Axiii—O6—Cu1xii54.04 (9)
Cu2vi—O1—Sr2Bviii98.7 (3)Sr2Bxii—O6—Cu1xii111.2 (3)
P1—O1—Cu2ii62.81 (17)Sr2Bxiii—O6—Cu1xii53.7 (2)
Cu1—O1—Cu2ii69.62 (14)Sr2Axii—O6—Cu1xii113.54 (13)
Cu2vi—O1—Cu2ii120.00 (19)Cu2ii—O6—Cu1xii104.78 (11)
Sr2Aviii—O1—Cu2ii144.81 (18)Cu2—O6—Cu1xii153.53 (12)
Sr2Bviii—O1—Cu2ii141.3 (3)Sr2Bii—O6—Cu1xii105.2 (3)
P1—O1—Cu1ii59.06 (17)Sr2Aii—O6—Cu1xii108.76 (10)
Cu1—O1—Cu1ii121.28 (19)P2—O6—Cu1vii138.8 (2)
Cu2vi—O1—Cu1ii66.98 (13)Sr2Axiii—O6—Cu1vii112.55 (14)
Sr2Aviii—O1—Cu1ii139.42 (18)Sr2Bxii—O6—Cu1vii52.5 (2)
Sr2Bviii—O1—Cu1ii147.6 (5)Sr2Bxiii—O6—Cu1vii114.7 (3)
Cu2ii—O1—Cu1ii59.94 (8)Sr2Axii—O6—Cu1vii52.47 (7)
P1—O1—Sr2Bvi57.0 (2)Cu2ii—O6—Cu1vii154.16 (12)
Cu1—O1—Sr2Bvi177.1 (3)Cu2—O6—Cu1vii99.30 (10)
Cu2vi—O1—Sr2Bvi58.23 (19)Sr2Bii—O6—Cu1vii108.4 (3)
Sr2Aviii—O1—Sr2Bvi82.9 (2)Sr2Aii—O6—Cu1vii104.39 (10)
Sr2Bviii—O1—Sr2Bvi91.1 (3)Cu1xii—O6—Cu1vii67.24 (7)
Cu2ii—O1—Sr2Bvi107.5 (3)P2—O7—Cu2ii118.5 (3)
Cu1ii—O1—Sr2Bvi56.6 (3)P2—O7—Sr2Bii138.2 (4)
P1—O1—Cu2viii147.6 (3)Cu2ii—O7—Sr2Bii87.6 (6)
Cu1—O1—Cu2viii51.33 (12)P2—O7—Sr2Aii132.8 (3)
Cu2vi—O1—Cu2viii95.00 (16)Cu2ii—O7—Sr2Aii97.5 (2)
Sr2Aviii—O1—Cu2viii57.70 (11)P2—O7—Cu281.4 (2)
Sr2Bviii—O1—Cu2viii50.6 (4)Cu2ii—O7—Cu2154.0 (2)
Cu2ii—O1—Cu2viii120.95 (13)Sr2Bii—O7—Cu287.0 (6)
Cu1ii—O1—Cu2viii153.15 (14)Sr2Aii—O7—Cu277.00 (16)
Sr2Bvi—O1—Cu2viii131.5 (3)P2—O7—Cu1135.3 (3)
P1—O1—Sr2Avi55.97 (17)Cu2ii—O7—Cu180.91 (16)
Cu1—O1—Sr2Avi173.8 (2)Sr2Bii—O7—Cu177.0 (3)
Cu2vi—O1—Sr2Avi57.74 (12)Sr2Aii—O7—Cu176.24 (13)
Sr2Aviii—O1—Sr2Avi86.62 (13)Cu2—O7—Cu173.07 (12)
Sr2Bviii—O1—Sr2Avi94.8 (4)P2—O7—Cu2xii62.06 (19)
Cu2ii—O1—Sr2Avi104.38 (12)Cu2ii—O7—Cu2xii111.2 (2)
Cu1ii—O1—Sr2Avi52.82 (7)Sr2Bii—O7—Cu2xii78.7 (3)
Cu2viii—O1—Sr2Avi134.64 (13)Sr2Aii—O7—Cu2xii77.47 (13)
Cu1—O1—Sr190.86 (16)Cu2—O7—Cu2xii92.63 (14)
Cu2vi—O1—Sr1138.12 (18)Cu1—O7—Cu2xii152.29 (17)
Sr2Aviii—O1—Sr1103.87 (13)P2—O7—Sr168.6 (2)
Sr2Bviii—O1—Sr1104.6 (2)Cu2ii—O7—Sr159.19 (13)
Cu2ii—O1—Sr145.55 (6)Sr2Bii—O7—Sr1146.8 (6)
Cu1ii—O1—Sr174.96 (9)Sr2Aii—O7—Sr1156.3 (2)
Sr2Bvi—O1—Sr186.65 (19)Cu2—O7—Sr1121.64 (15)
Cu2viii—O1—Sr1126.65 (12)Cu1—O7—Sr194.44 (13)
Sr2Avi—O1—Sr185.67 (9)Cu2xii—O7—Sr1113.22 (13)
P1—O2—Cu2ii130.7 (3)P2—O7—Sr2Axiii49.78 (19)
P1—O2—Sr1123.5 (3)Cu2ii—O7—Sr2Axiii75.86 (16)
Cu2ii—O2—Sr1102.2 (2)Sr2Bii—O7—Sr2Axiii117.5 (4)
P1—O2—Cu174.6 (2)Sr2Aii—O7—Sr2Axiii122.42 (17)
Cu2ii—O2—Cu181.89 (16)Cu2—O7—Sr2Axiii128.74 (16)
Sr1—O2—Cu1140.3 (2)Cu1—O7—Sr2Axiii151.68 (18)
P1—O2—Cu1ii63.98 (18)Cu2xii—O7—Sr2Axiii54.46 (8)
Cu2ii—O2—Cu1ii77.20 (15)Sr1—O7—Sr2Axiii59.71 (8)
Sr1—O2—Cu1ii122.30 (19)P2—O7—Sr2Bxiii54.9 (3)
Cu1—O2—Cu1ii97.20 (12)Cu2ii—O7—Sr2Bxiii70.3 (3)
Cu2ii—O2—Cu2vi100.04 (16)Sr2Bii—O7—Sr2Bxiii115.7 (5)
Sr1—O2—Cu2vi154.27 (17)Sr2Aii—O7—Sr2Bxiii121.6 (2)
Cu1—O2—Cu2vi55.94 (8)Cu2—O7—Sr2Bxiii134.4 (3)
Cu1ii—O2—Cu2vi51.23 (6)Cu1—O7—Sr2Bxiii147.3 (3)
P1—O2—Sr2Bxi60.0 (2)Cu2xii—O7—Sr2Bxiii57.7 (2)
Cu2ii—O2—Sr2Bxi167.9 (3)Sr1—O7—Sr2Bxiii57.83 (18)
Sr1—O2—Sr2Bxi65.83 (17)Cu2ii—O7—Sr2Bxii139.5 (4)
Cu1—O2—Sr2Bxi108.4 (3)Sr2Bii—O7—Sr2Bxii114.4 (5)
Cu1ii—O2—Sr2Bxi107.0 (3)Sr2Aii—O7—Sr2Bxii107.6 (3)
Cu2vi—O2—Sr2Bxi91.24 (17)Cu2—O7—Sr2Bxii65.0 (3)
P1—O2—Sr2Axi59.10 (16)Cu1—O7—Sr2Bxii135.2 (3)
Cu2ii—O2—Sr2Axi164.8 (2)Cu2xii—O7—Sr2Bxii47.83 (19)
Sr1—O2—Sr2Axi65.23 (10)Sr1—O7—Sr2Bxii94.4 (2)
Cu1—O2—Sr2Axi113.16 (14)Sr2Axiii—O7—Sr2Bxii63.9 (3)
Cu1ii—O2—Sr2Axi101.82 (12)Sr2Bxiii—O7—Sr2Bxii69.55 (18)
Cu2vi—O2—Sr2Axi90.65 (9)P2—O8—Sr1138.6 (3)
Cu2ii—O2—Sr2Aviii133.3 (2)P2—O8—Sr2Axiii89.4 (3)
Sr1—O2—Sr2Aviii119.27 (15)Sr1—O8—Sr2Axiii95.5 (2)
Cu1—O2—Sr2Aviii52.77 (8)P2—O8—Sr2Bxiii93.5 (4)
Cu1ii—O2—Sr2Aviii96.06 (11)Sr1—O8—Sr2Bxiii88.7 (4)
Cu2vi—O2—Sr2Aviii48.09 (6)P2—O8—Cu2ii68.9 (2)
Sr2Bxi—O2—Sr2Aviii58.3 (2)Sr1—O8—Cu2ii71.32 (14)
Sr2Axi—O2—Sr2Aviii61.81 (7)Sr2Axiii—O8—Cu2ii81.25 (15)
Cu2ii—O2—Sr2Bvi126.2 (3)Sr2Bxiii—O8—Cu2ii77.5 (3)
Sr1—O2—Sr2Bvi111.6 (2)P2—O8—Sr1ix81.0 (3)
Cu1—O2—Sr2Bvi95.9 (3)Sr1—O8—Sr1ix110.43 (19)
Cu1ii—O2—Sr2Bvi49.5 (2)Sr2Axiii—O8—Sr1ix150.1 (2)
Sr2Bxi—O2—Sr2Bvi60.5 (2)Sr2Bxiii—O8—Sr1ix156.7 (4)
Sr2Axi—O2—Sr2Bvi56.78 (14)Cu2ii—O8—Sr1ix120.43 (17)
Sr2Aviii—O2—Sr2Bvi58.4 (3)P2—O8—Cu11ix81.0 (3)
Cu2ii—O2—Sr2Bviii131.1 (3)Sr1—O8—Cu11ix110.43 (19)
Sr1—O2—Sr2Bviii118.5 (2)Sr2Axiii—O8—Cu11ix150.1 (2)
Cu1—O2—Sr2Bviii49.5 (2)Sr2Bxiii—O8—Cu11ix156.7 (4)
Cu1ii—O2—Sr2Bviii100.4 (3)Cu2ii—O8—Cu11ix120.43 (17)
Cu2vi—O2—Sr2Bviii51.3 (2)P2—O8—Sr2Bxii53.4 (3)
Sr2Bxi—O2—Sr2Bviii60.2 (2)Sr1—O8—Sr2Bxii167.9 (3)
Sr2Axi—O2—Sr2Bviii64.13 (17)Sr2Axiii—O8—Sr2Bxii83.5 (3)
Sr2Bvi—O2—Sr2Bviii63.70 (15)Sr2Bxiii—O8—Sr2Bxii90.5 (3)
P1—O3—Cu1ii128.1 (3)Cu2ii—O8—Sr2Bxii120.2 (2)
P1—O3—Sr2Bvi115.2 (6)Sr1ix—O8—Sr2Bxii68.0 (3)
Cu1ii—O3—Sr2Bvi112.7 (5)Cu11ix—O8—Sr2Bxii68.0 (3)
P1—O3—Sr2Avi124.8 (3)P2—O8—Sr2Axii53.3 (2)
Cu1ii—O3—Sr2Avi104.8 (2)Sr1—O8—Sr2Axii167.3 (2)
P1—O3—Cu2vi82.2 (2)Sr2Axiii—O8—Sr2Axii88.04 (14)
Cu1ii—O3—Cu2vi88.81 (19)Sr2Bxiii—O8—Sr2Axii95.0 (4)
Sr2Bvi—O3—Cu2vi78.4 (4)Cu2ii—O8—Sr2Axii121.31 (15)
Sr2Avi—O3—Cu2vi84.33 (16)Sr1ix—O8—Sr2Axii63.50 (11)
P1—O3—Cu2ii58.97 (18)Cu11ix—O8—Sr2Axii63.50 (11)
Cu1ii—O3—Cu2ii72.26 (15)Sr1—O8—Cu2127.85 (19)
Sr2Bvi—O3—Cu2ii174.0 (6)Sr2Axiii—O8—Cu2122.31 (16)
Sr2Avi—O3—Cu2ii175.8 (2)Sr2Bxiii—O8—Cu2126.5 (3)
Cu2vi—O3—Cu2ii98.53 (14)Cu2ii—O8—Cu279.89 (11)
Cu1ii—O3—Cu1100.33 (18)Sr1ix—O8—Cu251.28 (8)
Sr2Bvi—O3—Cu1123.7 (6)Cu11ix—O8—Cu251.28 (8)
Sr2Avi—O3—Cu1133.33 (19)Sr2Bxii—O8—Cu261.3 (2)
Cu2vi—O3—Cu157.37 (9)Sr2Axii—O8—Cu258.37 (8)
Cu2ii—O3—Cu150.78 (7)Sr1—O8—Cu2xii139.6 (2)
P1—O3—Sr152.10 (18)Sr2Axiii—O8—Cu2xii54.45 (10)
Cu1ii—O3—Sr1108.73 (19)Sr2Bxiii—O8—Cu2xii59.7 (3)
Sr2Bvi—O3—Sr1128.1 (3)Cu2ii—O8—Cu2xii77.21 (11)
Sr2Avi—O3—Sr1129.05 (17)Sr1ix—O8—Cu2xii107.14 (14)
Cu2vi—O3—Sr1132.67 (16)Cu11ix—O8—Cu2xii107.14 (14)
Cu2ii—O3—Sr150.67 (7)Sr2Bxii—O8—Cu2xii47.8 (3)
Cu1—O3—Sr176.04 (9)Sr2Axii—O8—Cu2xii51.11 (7)
P1—O3—Sr2Axi61.19 (18)Cu2—O8—Cu2xii68.31 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1/2, y1/2, z1/2; (v) x+1/2, y3/2, z1/2; (vi) x, y, z; (vii) x+1/2, y1/2, z1/2; (viii) x, y1, z; (ix) x, y1, z; (x) x, y+1, z; (xi) x+1/2, y1/2, z+1/2; (xii) x+1/2, y+1/2, z1/2; (xiii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaSr2.88Cu3.12(PO4)4
Mr830.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.2077 (18), 4.9369 (10), 15.074 (3)
β (°) 92.15 (3)
V3)684.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)16.46
Crystal size (mm)0.10 × 0.01 × 0.01
Data collection
DiffractometerNonius Kappa CCD diffractomer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.829, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
5148, 1400, 1178
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.12
No. of reflections1400
No. of parameters126
w = 1/[σ2(Fo2) + (0.0165P)2 + 11.1976P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.53, 0.93

Computer programs: COLLECT (Nonius, 2002), SCALEPACK (Otwinowski et al., 2003), DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), ATOMS (Dowty, 2000), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sr1—O22.457 (5)Sr2B—O6iii2.95 (2)
Sr1—O82.471 (6)Sr2B—O1vi2.958 (19)
Sr1—O5i2.542 (5)Sr2B—O4vi3.14 (2)
Sr2A—O4ii2.487 (5)Sr2B—O8iii3.24 (2)
Sr2A—O6iii2.525 (6)Cu2—O6v1.920 (5)
Sr2A—O3iv2.555 (6)Cu2—O2vii1.948 (5)
Sr2A—O5v2.618 (6)Cu2—O7vii2.083 (6)
Sr2A—O1vi2.697 (5)Cu2—O52.120 (5)
Sr2A—O7vii2.724 (5)Cu2—O1iv2.124 (5)
Sr2A—O4vi2.791 (6)P1—O41.509 (5)
Sr2A—O8iii2.935 (7)P1—O21.532 (5)
Sr2A—O6v2.989 (6)P1—O31.540 (5)
Sr2B—O3iv2.351 (14)P1—O11.566 (5)
Sr2B—O4ii2.429 (12)P2—O81.502 (6)
Sr2B—O5v2.477 (13)P2—O71.520 (5)
Sr2B—O6v2.56 (2)P2—O61.561 (5)
Sr2B—O7vii2.665 (12)P2—O51.565 (6)
O2viii—Sr1—O895.63 (18)O7vii—Cu2—O1iv133.4 (2)
O2—Sr1—O884.37 (18)O5—Cu2—O1iv122.4 (2)
O2viii—Sr1—O5i110.86 (16)O2vii—Cu2—O3iv92.24 (18)
O2—Sr1—O5i69.14 (16)O4—P1—O2112.1 (3)
O8—Sr1—O5i70.29 (18)O4—P1—O3110.1 (3)
O8viii—Sr1—O5i109.71 (18)O2—P1—O3110.6 (3)
O3ix—Cu1—O1iv87.7 (2)O4—P1—O1108.7 (3)
O3vii—Cu1—O1iv92.3 (2)O2—P1—O1108.4 (3)
O6v—Cu2—O2vii171.3 (2)O3—P1—O1106.8 (3)
O6v—Cu2—O7vii89.2 (2)O8—P2—O7115.0 (3)
O2vii—Cu2—O7vii94.8 (2)O8—P2—O6105.6 (3)
O6v—Cu2—O598.2 (2)O7—P2—O6111.9 (3)
O2vii—Cu2—O588.3 (2)O8—P2—O5110.3 (3)
O7vii—Cu2—O5104.2 (2)O7—P2—O5107.2 (3)
O6v—Cu2—O1iv83.88 (19)O6—P2—O5106.5 (3)
O2vii—Cu2—O1iv87.8 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y1/2, z1/2; (iii) x+1/2, y3/2, z1/2; (iv) x, y, z; (v) x+1/2, y1/2, z1/2; (vi) x, y1, z; (vii) x, y1, z; (viii) x+1, y+1, z; (ix) x, y+1, z.
Table 2 Unit cell parameters of (I) and related compounds. top
Compounda(Å)b(Å)c(Å)β(o)V3)
Sr3Cu3(PO4)419.2010 (1)4.94104 (4)17.8998 (3)122.8952 (9)683.3
Trans. Cell*9.20104.9410415.038091.98683.3
Sr3Cu3(PO4)4218.035 (4)4.921 (2)17.337 (4)117.20 (1)1368.5
Trans. Cell**9.2194.92115.09792.54684.3
Sr2.88Cu3.12(PO4)439.2077 (18)4.9369 (10)15.074 (3)92.15 (3)684.8 (2)
*Trans. Mat. 1: -1 0 0 / 0 -1 0 / -1 0 -1 **Trans. Mat. 2: 0.5 0 0.5 / 0 -1 0 / -0.5 0 0.5

1Belik et al., 2002; 2Effenberger, 1999; 3This work;
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds