Download citation
Download citation
link to html
The crystal structures of (SP-4-4)-[rac-2-(1-amino­ethyl)­phenyl-κ2C1,N]chlorido(pyridine-κN)palladium(II), [Pd(C8H10N)Cl(C5H5N)], (I), (SP-4-4)-[rac-2-(1-amino­ethyl)phenyl-κ2C1,N]­bromido(pyridine-κN)palladium(II), [PdBr(C8H10N)(C5H5N)], (II), (SP-4-4)-[rac-2-(1-amino­ethyl)-5-bromo­phenyl-κ2C1,N]bromido­(4-meth­yl­pyridine-κN)palladium(II), [PdBr(C8H9BrN)(C6H7N)], (III), and (SP-4-4)-[rac-2-(1-amino­ethyl)-5-bromo­phenyl-κ2C1,N]iodido(4-methyl­pyridine-κN)­palladium(II), [Pd(C8H9BrN)I(C6H7N)], (IV), are reported. The latter is the first iodide complex in this class of compounds. All four complexes crystallize in the same space group, viz. I41/a, with very similar lattice parameters a and more flexible lattice parameters c. Their packing corresponds to that of their enantiomerically pure congeners, which crystallize in the t2 subgroup I41.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108043631/lg3003sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043631/lg3003Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043631/lg3003IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043631/lg3003IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043631/lg3003IVsup5.hkl
Contains datablock IV

CCDC references: 724174; 724175; 724176; 724177

Comment top

Ortho-palladation was first reported by Cope & Friedrich (1968) and was originally restricted to activated tertiary amines. Contributions by Dunina et al. (1999), Fuchita and co-workers (Fuchita & Tsuchiya, 1993; Fuchita et al., 1995, 1997) and Vicente et al. (1993, 1995, 1997, 2003) paved the way towards more general substrates. We have structurally characterized reaction products and intermediates (Calmuschi & Englert, 2002; Calmuschi, Alesi & Englert, 2004 and/or??? Calmuschi, Jonas & Englert, 2004; Calmuschi-Cula et al., 2005) and have used the target molecules in crystal engineering (Calmuschi, Alesi & Englert, 2004 and/or??? Calmuschi, Jonas & Englert, 2004; Calmuschi & Englert, 2005). In this context, we previously reported (Calmuschi & Englert, 2002) pronounced pseudosymmetry in the crystal structure of the enantiomerically pure complex (SP-4–4)-(R)-[2-(1-aminoethyl)phenyl-κ2-C1,N] chlorido(pyridine-κN)palladium(II), R-(I). Complex (I) crystallizes in space group I41, and we suggested that the centrosymmetric supergroup I41/a might represent the appropriate space group in the case of the racemate of this compound, rac-(I). In the present contribution, we confirm our earlier assumption: rac-(I) indeed crystallizes in I41/a, with lattice parameters very similar to those of the pure enantiomers. The results of a seeding experiment underline the similarity in the molecular arrangement of R-(I) and rac-(I). A crystal of the former was immerged in a saturated solution of the latter and allowed to grow under slow stirring while the temperature was gradually reduced from 292 to 282 K over a period of three months. IR spectroscopy on small peripheric fragments of the resulting large object revealed that the racemic solid grew on top of the enantiomerically pure seeded crystal. The IR spectra (KBr pellets) of rac-(I) show one strong and one much weaker band, while those of R-(I) exhibit two bands of equal intensity around 1600 cm-1.

The remaining three complexes, (II)–(IV), represented in the scheme, albeit different with respect to the metal-bonded halogen ligands X and the substituents both on the chelating ligand (R1) and on the pyridine ring (R2), also crystallize in the space group I41/a, with very similar packing and closely related lattice parameters a. Their unit-cell parameters c, however, cover a much wider range, between 15.5123 (14) and 18.3193 (17) Å, according to the space filling requirements of the substituents. [The structure of (III) is illustrated in Fig. 1.] The underlying packing pattern of both the racemic and the enantiomerically pure palladium complexes is particularly robust and extends to a recently published series of chiral platinum derivatives (Calmuschi-Cula & Englert, 2008). Their racemic counterparts have not yet been structurally characterized but will most likely also crystallize in the t2 supergroup I41/a. We note that chemically related compounds with different substituents in the periphery do not generally show the same packing in the solid, in particular when more than one modification is made to a given structure. Comparisons of packing patterns on a sound statistical basis are not very popular because they usually imply extensive manual intervention in addition to database searches. However, van der Streek & Motherwell (2005) have recently published the GRX search algorithm and applied it to the question of isomorphism between chloro- and methyl-substituted compounds. They found that approximately 25% of their crystal structures are isostructural. Our complexes (I) and (IV) share the same packing pattern, although they differ in three positions, with an iodide replacing a chloride ligand at the metal, a Br substituent instead of an H atom in the cyclopalladated amine, and a methyl group rather than an H atom on the coordinated pyridine ring. Fig. 2 shows this similarity with respect to packing.

Complexes (I)–(IV) all exhibit classical intermolecular hydrogen bonds between the only relevant donors, namely the amine H atoms and the halide ligands of neighbouring molecules. A summary of these interactions is provided in Table 1. Comparison with the Cambridge Structural Database (CSD; Allen, 2002) confirms that these hydrogen bonds are not exceptional. We searched the CSD for intermolecular contacts between NH donors and halogen atom acceptors bonded to any other atom. The search was restricted to contacts with donor–hydrogen–acceptor angles greater than or equal to 140° and to error-free entries without disorder, and resulted in the following mean hydrogen–acceptor distances: H···Cl = 2.460 Å, 5555 observations; H···Br = 2.460 Å, 1053 observations; H···I = 2.843 Å, 530 observations. The compounds described here are typical molecular crystals. Their packing coefficient – defined as the ratio between the filled volume, based on the van der Waals radii for all atoms, and the total volume of the unit cell – ranges from 68.6% for (IV) to 71.9% for (I). According to Kitaigorodsky (1973), `the overwhelming majority of crystals' have packing coefficients between 65 and 77%.

Related literature top

For related literature, see: Allen (2002); Calmuschi & Englert (2002, 2005); Calmuschi-Cula & Englert (2008); Cope & Friedrich (1968); Fuchita & Tsuchiya (1993); Fuchita et al. (1995, 1997); Kitaigorodsky (1973); Streek & Motherwell (2005); Vicente et al. (1995).

Experimental top

Complexes (I)–(IV) were prepared according to the procedures of Fuchita & Tsuchiya (1993) and/or Vicente et al. (1995). Light-yellow or colorless rods or blocks suitable for single-crystal X-ray diffraction were obtained by crystallization from methanol/water mixtures at room temperature. Crystals of (II) were covered with small crystallites of the same compound; as a result, an unusual second parameter in the weighting scheme, less satisfactory agreement factors and a clearly inferior Rint were encountered.

Refinement top

After completion of the structure models, residual maxima were found with electron densities between 1.3 and 2.2 e Å-3 and at distances between 1.3 and 1.4 Å from the corresponding chiral center (C7 in all structures), indicating disorder for the attached methyl group (C14 in all structures). A pronounced prolate anisotropic displacement parameter for the chiral C7 atom induced us to consider split positions for this atom too. The sum of both conformations was constrained to unity, and distance restraints were imposed on the bond lengths involved. Occupancies for disordered sites and interatomic distances for each individual structure are given in the supplementary material. In all structures, H atoms were treated as riding on the corresponding C (C—H = 0.98 Å) or N atoms (N—H = 0.92 Å).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot (at the 30% probability level) for (III). Atoms belonging to the minority conformer have been omitted for clarity. H atoms are shown as spheres of arbitrary radii. The same atomic numbering scheme has been applied for all structures.
[Figure 2] Fig. 2. Projections of the unit cells of (a) (I) and (b) (IV), showing the closely related packing. The compounds differ at the molecular level. In the para position of the primary amine, (I) features an H and (IV) a Br (globe pattern) substituent. In the para position of the pyridine ring, (IV) carries an extra methyl substituent. Compound (I) is a chloride (diagonal hatched) and (IV) an iodide (cross hatched) complex.
(I) (SP-4-4)-[rac-2-(1-aminoethyl)phenyl- κ2C1,N]chlorido(pyridine-κN)palladium(II) top
Crystal data top
[Pd(C8H10N)Cl(C5H5N)]Dx = 1.739 Mg m3
Mr = 341.12Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 7745 reflections
Hall symbol: -I 4adθ = 2.2–26.6°
a = 18.3310 (8) ŵ = 1.61 mm1
c = 15.5123 (14) ÅT = 100 K
V = 5212.5 (6) Å3Rod, light yellow
Z = 160.23 × 0.08 × 0.04 mm
F(000) = 2720
Data collection top
Bruker SMART APEX CCD
diffractometer
2990 independent reflections
Radiation source: fine-focus sealed tube2544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.709, Tmax = 0.939k = 2323
33317 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
2990 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Pd(C8H10N)Cl(C5H5N)]Z = 16
Mr = 341.12Mo Kα radiation
Tetragonal, I41/aµ = 1.61 mm1
a = 18.3310 (8) ÅT = 100 K
c = 15.5123 (14) Å0.23 × 0.08 × 0.04 mm
V = 5212.5 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2544 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.939Rint = 0.074
33317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.11Δρmax = 0.41 e Å3
2990 reflectionsΔρmin = 0.50 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Minor disorder for C14/C14A and C7/C7A, see manuscript.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.002463 (16)0.144743 (15)0.326117 (17)0.02494 (10)
Cl10.09244 (5)0.14173 (5)0.21217 (6)0.0316 (2)
N10.07996 (16)0.10875 (17)0.41065 (18)0.0264 (7)
N20.07978 (15)0.17804 (16)0.24763 (18)0.0259 (7)
H2A0.07770.15140.19740.031*
H2B0.07210.22620.23350.031*
C10.1383 (2)0.1505 (2)0.4285 (3)0.0402 (10)
H10.14020.19990.40430.052*
C20.1954 (2)0.1274 (2)0.4789 (3)0.0387 (10)
H20.23690.15970.49000.050*
C30.1935 (2)0.0592 (2)0.5131 (2)0.0357 (10)
H30.23360.04150.54930.046*
C40.1345 (2)0.0157 (2)0.4960 (2)0.0384 (10)
H40.13150.03350.52040.050*
C50.0796 (2)0.0418 (2)0.4445 (2)0.0328 (9)
H50.03810.00970.43200.043*
C70.1561 (3)0.1706 (3)0.2855 (3)0.0261 (12)*0.717 (5)
H70.18510.21390.27160.034*0.717 (5)
C140.1937 (3)0.1030 (3)0.2520 (3)0.0303 (12)*0.717 (5)
H14A0.24310.10030.27580.039*0.717 (5)
H14B0.19620.10500.18900.039*0.717 (5)
H14C0.16600.05970.26960.039*0.717 (5)
C7A0.1463 (6)0.1441 (8)0.2819 (7)0.0261 (12)*0.283 (5)
H7A0.14750.09120.27260.034*0.283 (5)
C14A0.2083 (7)0.1830 (7)0.2382 (8)0.0303 (12)*0.283 (5)
H14D0.20120.18160.17560.039*0.283 (5)
H14E0.25440.15900.25290.039*0.283 (5)
H14F0.20980.23390.25760.039*0.283 (5)
C80.1454 (2)0.1653 (2)0.3806 (2)0.0316 (9)
C90.0746 (2)0.15690 (19)0.4130 (2)0.0273 (8)
C100.0642 (2)0.16338 (19)0.5023 (2)0.0307 (9)
H100.01490.16010.52660.040*
C110.1234 (2)0.1744 (2)0.5564 (2)0.0337 (9)
H110.11550.17910.61860.044*
C120.1933 (2)0.1790 (2)0.5239 (3)0.0376 (10)
H120.23500.18490.56290.049*
C130.2041 (2)0.1751 (2)0.4358 (3)0.0411 (11)
H130.25350.17940.41220.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03454 (19)0.02437 (17)0.01590 (14)0.00378 (13)0.00342 (12)0.00117 (11)
Cl10.0430 (6)0.0328 (5)0.0189 (4)0.0042 (4)0.0022 (4)0.0002 (4)
N10.0296 (17)0.0328 (18)0.0167 (15)0.0003 (14)0.0003 (13)0.0009 (13)
N20.0319 (18)0.0276 (17)0.0181 (16)0.0063 (13)0.0017 (13)0.0024 (13)
C10.042 (3)0.037 (2)0.041 (3)0.012 (2)0.007 (2)0.009 (2)
C20.031 (2)0.048 (3)0.037 (2)0.009 (2)0.0071 (19)0.004 (2)
C30.043 (3)0.041 (2)0.024 (2)0.017 (2)0.0068 (18)0.0031 (18)
C40.058 (3)0.027 (2)0.031 (2)0.005 (2)0.011 (2)0.0014 (18)
C50.048 (3)0.028 (2)0.023 (2)0.0062 (18)0.0022 (18)0.0014 (16)
C80.036 (2)0.037 (2)0.022 (2)0.0122 (18)0.0021 (17)0.0034 (17)
C90.035 (2)0.027 (2)0.0198 (18)0.0062 (16)0.0000 (16)0.0034 (15)
C100.035 (2)0.031 (2)0.026 (2)0.0065 (17)0.0045 (17)0.0019 (16)
C110.047 (3)0.034 (2)0.020 (2)0.0111 (19)0.0006 (17)0.0033 (16)
C120.043 (3)0.039 (2)0.031 (2)0.0084 (19)0.0072 (19)0.0002 (19)
C130.034 (2)0.054 (3)0.035 (2)0.014 (2)0.0002 (19)0.008 (2)
Geometric parameters (Å, º) top
Pd1—C91.965 (4)C7—H70.9800
Pd1—N22.032 (3)C14—H14A0.9801
Pd1—N12.043 (3)C14—H14B0.9801
Pd1—Cl12.4183 (10)C14—H14C0.9801
N1—C51.336 (4)C7A—C14A1.505 (13)
N1—C11.344 (5)C7A—C81.580 (11)
N2—C7A1.469 (11)C7A—H7A0.9800
N2—C71.523 (5)C14A—H14D0.9801
N2—H2A0.9200C14A—H14E0.9801
N2—H2B0.9200C14A—H14F0.9801
C1—C21.373 (5)C8—C131.387 (5)
C1—H10.9800C8—C91.401 (5)
C2—C31.359 (5)C9—C101.404 (5)
C2—H20.9800C10—C111.387 (5)
C3—C41.370 (5)C10—H100.9800
C3—H30.9800C11—C121.380 (5)
C4—C51.370 (5)C11—H110.9800
C4—H40.9800C12—C131.383 (5)
C5—H50.9800C12—H120.9800
C7—C81.491 (6)C13—H130.9800
C7—C141.511 (7)
C9—Pd1—N280.99 (13)C8—C7—H7110.0
C9—Pd1—N195.53 (13)C14—C7—H7110.0
N2—Pd1—N1176.15 (11)N2—C7—H7110.0
C9—Pd1—Cl1173.82 (11)N2—C7A—C14A105.3 (9)
N2—Pd1—Cl194.30 (8)N2—C7A—C8103.8 (7)
N1—Pd1—Cl189.29 (8)C14A—C7A—C8109.1 (9)
C5—N1—C1116.6 (3)N2—C7A—H7A112.7
C5—N1—Pd1123.1 (3)C14A—C7A—H7A112.7
C1—N1—Pd1120.1 (3)C8—C7A—H7A112.7
C7A—N2—C720.0 (6)C7A—C14A—H14D109.5
C7A—N2—Pd1105.8 (5)C7A—C14A—H14E109.5
C7—N2—Pd1115.1 (2)H14D—C14A—H14E109.5
C7A—N2—H2A96.6C7A—C14A—H14F109.5
C7—N2—H2A108.5H14D—C14A—H14F109.5
Pd1—N2—H2A108.5H14E—C14A—H14F109.5
C7A—N2—H2B128.3C13—C8—C9120.8 (4)
C7—N2—H2B108.5C13—C8—C7120.0 (4)
Pd1—N2—H2B108.5C9—C8—C7118.9 (4)
H2A—N2—H2B107.5C13—C8—C7A128.5 (5)
N1—C1—C2123.2 (4)C9—C8—C7A109.3 (5)
N1—C1—H1118.4C7—C8—C7A19.3 (5)
C2—C1—H1118.4C8—C9—C10118.1 (4)
C3—C2—C1119.2 (4)C8—C9—Pd1115.6 (3)
C3—C2—H2120.4C10—C9—Pd1126.1 (3)
C1—C2—H2120.4C11—C10—C9120.2 (4)
C2—C3—C4118.6 (4)C11—C10—H10119.9
C2—C3—H3120.7C9—C10—H10119.9
C4—C3—H3120.7C12—C11—C10121.0 (4)
C3—C4—C5119.4 (4)C12—C11—H11119.5
C3—C4—H4120.3C10—C11—H11119.5
C5—C4—H4120.3C11—C12—C13119.4 (4)
N1—C5—C4123.0 (4)C11—C12—H12120.3
N1—C5—H5118.5C13—C12—H12120.3
C4—C5—H5118.5C12—C13—C8120.4 (4)
C8—C7—C14110.3 (4)C12—C13—H13119.8
C8—C7—N2105.5 (4)C8—C13—H13119.8
C14—C7—N2111.1 (4)
C9—Pd1—N1—C574.6 (3)C14—C7—C8—C9110.6 (4)
N2—Pd1—N1—C549.5 (19)N2—C7—C8—C99.4 (5)
Cl1—Pd1—N1—C5109.3 (3)C14—C7—C8—C7A46.5 (14)
C9—Pd1—N1—C1111.7 (3)N2—C7—C8—C7A73.5 (14)
N2—Pd1—N1—C1136.8 (17)N2—C7A—C8—C13150.9 (5)
Cl1—Pd1—N1—C164.4 (3)C14A—C7A—C8—C1339.1 (12)
C9—Pd1—N2—C7A37.5 (6)N2—C7A—C8—C942.9 (9)
N1—Pd1—N2—C7A12 (2)C14A—C7A—C8—C9154.7 (8)
Cl1—Pd1—N2—C7A146.5 (6)N2—C7A—C8—C780.6 (15)
C9—Pd1—N2—C718.5 (3)C14A—C7A—C8—C731.2 (11)
N1—Pd1—N2—C76.8 (19)C13—C8—C9—C104.0 (5)
Cl1—Pd1—N2—C7165.5 (3)C7—C8—C9—C10170.2 (4)
C5—N1—C1—C20.3 (6)C7A—C8—C9—C10171.4 (6)
Pd1—N1—C1—C2174.4 (3)C13—C8—C9—Pd1179.3 (3)
N1—C1—C2—C30.2 (7)C7—C8—C9—Pd15.0 (5)
C1—C2—C3—C40.0 (6)C7A—C8—C9—Pd113.3 (6)
C2—C3—C4—C50.6 (6)N2—Pd1—C9—C812.9 (3)
C1—N1—C5—C40.9 (6)N1—Pd1—C9—C8165.5 (3)
Pd1—N1—C5—C4174.9 (3)Cl1—Pd1—C9—C853.4 (11)
C3—C4—C5—N11.1 (6)N2—Pd1—C9—C10162.0 (3)
C7A—N2—C7—C885.5 (15)N1—Pd1—C9—C1019.7 (3)
Pd1—N2—C7—C819.5 (4)Cl1—Pd1—C9—C10121.4 (9)
C7A—N2—C7—C1433.9 (14)C8—C9—C10—C112.9 (5)
Pd1—N2—C7—C1499.9 (4)Pd1—C9—C10—C11177.6 (3)
C7—N2—C7A—C14A45.6 (13)C9—C10—C11—C120.3 (6)
Pd1—N2—C7A—C14A166.3 (7)C10—C11—C12—C132.4 (6)
C7—N2—C7A—C868.9 (14)C11—C12—C13—C81.3 (6)
Pd1—N2—C7A—C851.7 (8)C9—C8—C13—C121.9 (6)
C14—C7—C8—C1375.2 (5)C7—C8—C13—C12172.2 (4)
N2—C7—C8—C13164.9 (3)C7A—C8—C13—C12166.7 (7)
(II) (SP-4-4)-[rac-2-(1-aminoethyl)phenyl- κ2C1,N]bromido(pyridine-κN)palladium(II) top
Crystal data top
[PdBr(C8H10N)(C5H5N)]Dx = 1.899 Mg m3
Mr = 385.58Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 2588 reflections
Hall symbol: -I 4adθ = 2.2–23.5°
a = 18.5197 (9) ŵ = 4.32 mm1
c = 15.7281 (16) ÅT = 110 K
V = 5394.4 (7) Å3Rod, light yellow
Z = 160.17 × 0.05 × 0.03 mm
F(000) = 3008
Data collection top
Bruker SMART APEX CCD
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.173
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.527, Tmax = 0.881k = 2222
29977 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0487P)2 + 37.3572P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2519 reflectionsΔρmax = 0.73 e Å3
153 parametersΔρmin = 1.34 e Å3
15 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00083 (8)
Crystal data top
[PdBr(C8H10N)(C5H5N)]Z = 16
Mr = 385.58Mo Kα radiation
Tetragonal, I41/aµ = 4.32 mm1
a = 18.5197 (9) ÅT = 110 K
c = 15.7281 (16) Å0.17 × 0.05 × 0.03 mm
V = 5394.4 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1839 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.881Rint = 0.173
29977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07015 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0487P)2 + 37.3572P]
where P = (Fo2 + 2Fc2)/3
2519 reflectionsΔρmax = 0.73 e Å3
153 parametersΔρmin = 1.34 e Å3
Special details top

Experimental. Crystals are covered with small crystallites of the same compound; as a result, an unusual second parameter in the weighting scheme, less satisfactory agreement factors and a clearly inferior Rint are encountered.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Minor disorder for C14/C14A and C7/C7A, see manuscript.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.00084 (4)0.14389 (4)0.33163 (5)0.0234 (2)
Br10.09194 (6)0.13684 (6)0.21267 (6)0.0313 (3)
N10.0765 (4)0.1072 (4)0.4154 (5)0.0244 (18)
N20.0818 (4)0.1783 (4)0.2536 (5)0.0220 (19)
H2A0.07930.15290.20340.026*
H2B0.07440.22620.24120.026*
C10.1319 (6)0.1525 (6)0.4354 (7)0.037 (3)
H10.13180.20240.41480.049*
C20.1877 (6)0.1278 (6)0.4843 (7)0.038 (3)
H20.22700.16100.49890.049*
C30.1904 (6)0.0591 (6)0.5133 (6)0.033 (3)
H30.23110.04200.54770.043*
C40.1349 (6)0.0150 (6)0.4931 (6)0.036 (3)
H40.13490.03510.51310.047*
C50.0778 (6)0.0405 (6)0.4440 (6)0.028 (2)
H50.03770.00800.43050.036*
C70.1578 (6)0.1695 (8)0.2909 (7)0.024 (3)*0.747 (13)
H70.18780.21090.27500.031*0.747 (13)
C140.1918 (7)0.1002 (7)0.2576 (8)0.026 (3)*0.747 (13)
H14A0.23990.09420.28260.034*0.747 (13)
H14B0.19590.10280.19560.034*0.747 (13)
H14C0.16140.05890.27330.034*0.747 (13)
C7A0.1498 (12)0.1464 (19)0.2923 (12)0.024 (3)*0.253 (13)
H7A0.15280.09390.28470.031*0.253 (13)
C14A0.2110 (18)0.186 (2)0.248 (2)0.026 (3)*0.253 (13)
H14D0.20790.23780.26170.034*0.253 (13)
H14E0.20720.17920.18680.034*0.253 (13)
H14F0.25740.16720.26850.034*0.253 (13)
C80.1484 (6)0.1677 (6)0.3833 (7)0.032 (3)
C90.0774 (6)0.1575 (6)0.4187 (6)0.031 (3)
C100.0675 (6)0.1649 (6)0.5058 (7)0.034 (3)
H100.01870.16230.52970.044*
C110.1260 (6)0.1761 (6)0.5591 (6)0.033 (3)
H110.11850.17920.62060.043*
C120.1932 (7)0.1826 (6)0.5272 (7)0.038 (3)
H120.23390.19070.56590.049*
C130.2058 (6)0.1780 (6)0.4397 (7)0.039 (3)
H130.25520.18210.41780.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0318 (5)0.0241 (5)0.0143 (4)0.0021 (4)0.0025 (3)0.0006 (3)
Br10.0425 (7)0.0331 (7)0.0184 (5)0.0053 (5)0.0030 (5)0.0000 (5)
N10.032 (5)0.025 (4)0.016 (4)0.001 (4)0.001 (4)0.004 (4)
N20.026 (5)0.027 (5)0.013 (4)0.006 (4)0.000 (4)0.001 (4)
C10.034 (6)0.039 (6)0.039 (7)0.008 (5)0.009 (5)0.008 (5)
C20.034 (6)0.038 (6)0.041 (7)0.001 (5)0.012 (5)0.006 (5)
C30.040 (6)0.036 (6)0.023 (6)0.019 (5)0.014 (5)0.002 (5)
C40.055 (7)0.035 (6)0.019 (6)0.001 (5)0.007 (5)0.002 (5)
C50.040 (6)0.030 (5)0.013 (5)0.003 (5)0.006 (4)0.001 (4)
C80.027 (6)0.036 (7)0.032 (6)0.007 (5)0.000 (5)0.002 (5)
C90.036 (6)0.039 (7)0.019 (5)0.005 (5)0.003 (5)0.000 (5)
C100.043 (7)0.037 (7)0.021 (6)0.000 (5)0.006 (5)0.006 (5)
C110.048 (8)0.042 (7)0.010 (5)0.012 (6)0.001 (5)0.008 (5)
C120.050 (8)0.039 (7)0.024 (6)0.017 (6)0.002 (6)0.008 (5)
C130.032 (7)0.057 (8)0.028 (7)0.008 (6)0.002 (5)0.007 (6)
Geometric parameters (Å, º) top
Pd1—C91.987 (10)C7—H70.9800
Pd1—N22.039 (7)C14—H14A0.9801
Pd1—N12.062 (8)C14—H14B0.9801
Pd1—Br12.5435 (13)C14—H14C0.9801
N1—C51.314 (12)C7A—C81.49 (2)
N1—C11.362 (13)C7A—C14A1.52 (2)
N2—C7A1.52 (2)C7A—H7A0.9800
N2—C71.533 (13)C14A—H14D0.9801
N2—H2A0.9200C14A—H14E0.9801
N2—H2B0.9200C14A—H14F0.9801
C1—C21.366 (14)C8—C131.398 (14)
C1—H10.9800C8—C91.440 (14)
C2—C31.353 (15)C9—C101.389 (14)
C2—H20.9800C10—C111.386 (15)
C3—C41.350 (14)C10—H100.9800
C3—H30.9800C11—C121.347 (15)
C4—C51.392 (14)C11—H110.9800
C4—H40.9800C12—C131.398 (14)
C5—H50.9800C12—H120.9800
C7—C81.465 (15)C13—H130.9800
C7—C141.522 (16)
C9—Pd1—N281.4 (4)C8—C7—H7109.8
C9—Pd1—N195.6 (4)C14—C7—H7109.8
N2—Pd1—N1176.7 (3)N2—C7—H7109.8
C9—Pd1—Br1174.5 (3)C8—C7A—C14A109 (2)
N2—Pd1—Br194.0 (2)C8—C7A—N2105.5 (14)
N1—Pd1—Br189.1 (2)C14A—C7A—N2104 (2)
C5—N1—C1119.1 (9)C8—C7A—H7A112.5
C5—N1—Pd1122.8 (7)C14A—C7A—H7A112.5
C1—N1—Pd1117.9 (7)N2—C7A—H7A112.5
C7A—N2—C717.1 (16)C7A—C14A—H14D109.5
C7A—N2—Pd1104.3 (12)C7A—C14A—H14E109.5
C7—N2—Pd1114.3 (6)H14D—C14A—H14E109.5
C7A—N2—H2A100.8C7A—C14A—H14F109.5
C7—N2—H2A108.7H14D—C14A—H14F109.5
Pd1—N2—H2A108.7H14E—C14A—H14F109.5
C7A—N2—H2B125.7C13—C8—C9117.9 (10)
C7—N2—H2B108.7C13—C8—C7122.4 (10)
Pd1—N2—H2B108.7C9—C8—C7119.7 (10)
H2A—N2—H2B107.6C13—C8—C7A129.3 (12)
N1—C1—C2119.6 (10)C9—C8—C7A110.7 (13)
N1—C1—H1120.2C7—C8—C7A17.7 (16)
C2—C1—H1120.2C10—C9—C8119.2 (10)
C3—C2—C1122.2 (11)C10—C9—Pd1126.7 (8)
C3—C2—H2118.9C8—C9—Pd1113.7 (7)
C1—C2—H2118.9C11—C10—C9120.5 (10)
C4—C3—C2117.4 (10)C11—C10—H10119.7
C4—C3—H3121.3C9—C10—H10119.7
C2—C3—H3121.3C12—C11—C10120.7 (10)
C3—C4—C5120.3 (10)C12—C11—H11119.6
C3—C4—H4119.9C10—C11—H11119.6
C5—C4—H4119.9C11—C12—C13121.0 (11)
N1—C5—C4121.5 (10)C11—C12—H12119.5
N1—C5—H5119.3C13—C12—H12119.5
C4—C5—H5119.3C12—C13—C8120.4 (11)
C8—C7—C14111.8 (10)C12—C13—H13119.8
C8—C7—N2105.8 (9)C8—C13—H13119.8
C14—C7—N2109.7 (10)
C9—Pd1—N1—C579.2 (8)C14—C7—C8—C9105.5 (12)
N2—Pd1—N1—C555 (6)N2—C7—C8—C914.0 (15)
Br1—Pd1—N1—C5103.8 (7)C14—C7—C8—C7A42 (3)
C9—Pd1—N1—C1106.9 (8)N2—C7—C8—C7A77 (3)
N2—Pd1—N1—C1131 (5)C14A—C7A—C8—C1341 (3)
Br1—Pd1—N1—C170.1 (7)N2—C7A—C8—C13152.7 (14)
C9—Pd1—N2—C7A35.3 (13)C14A—C7A—C8—C9155.7 (19)
N1—Pd1—N2—C7A11 (6)N2—C7A—C8—C944 (2)
Br1—Pd1—N2—C7A147.8 (12)C14A—C7A—C8—C732 (3)
C9—Pd1—N2—C720.6 (7)N2—C7A—C8—C780 (3)
N1—Pd1—N2—C73 (6)C13—C8—C9—C106.0 (16)
Br1—Pd1—N2—C7162.5 (7)C7—C8—C9—C10172.0 (11)
C5—N1—C1—C20.2 (15)C7A—C8—C9—C10171.2 (16)
Pd1—N1—C1—C2173.9 (8)C13—C8—C9—Pd1179.7 (8)
N1—C1—C2—C30.7 (18)C7—C8—C9—Pd11.8 (13)
C1—C2—C3—C40.9 (17)C7A—C8—C9—Pd115.0 (17)
C2—C3—C4—C50.2 (16)N2—Pd1—C9—C10160.9 (10)
C1—N1—C5—C40.9 (14)N1—Pd1—C9—C1020.4 (10)
Pd1—N1—C5—C4172.9 (7)Br1—Pd1—C9—C10127 (3)
C3—C4—C5—N10.7 (16)N2—Pd1—C9—C812.3 (8)
C7A—N2—C7—C880 (3)N1—Pd1—C9—C8166.3 (8)
Pd1—N2—C7—C823.5 (11)Br1—Pd1—C9—C846 (4)
C7A—N2—C7—C1440 (3)C8—C9—C10—C115.4 (16)
Pd1—N2—C7—C1497.3 (9)Pd1—C9—C10—C11178.2 (8)
C7—N2—C7A—C876 (3)C9—C10—C11—C122.5 (17)
Pd1—N2—C7A—C852 (2)C10—C11—C12—C130.3 (17)
C7—N2—C7A—C14A38 (3)C11—C12—C13—C81.0 (17)
Pd1—N2—C7A—C14A166.5 (18)C9—C8—C13—C123.8 (16)
C14—C7—C8—C1376.7 (15)C7—C8—C13—C12174.0 (11)
N2—C7—C8—C13163.9 (10)C7A—C8—C13—C12166 (2)
(III) (SP-4-4)-[rac-2-(1-aminoethyl)-5-bromophenyl- κ2C1,N]bromido(4-methylpyridine-κN)palladium(II) top
Crystal data top
[PdBr(C8H9BrN)(C6H7N)]Dx = 2.048 Mg m3
Mr = 478.51Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1895 reflections
Hall symbol: -I 4adθ = 2.7–23.2°
a = 18.5329 (13) ŵ = 6.33 mm1
c = 18.071 (3) ÅT = 100 K
V = 6206.8 (12) Å3Block, colorless
Z = 160.31 × 0.23 × 0.13 mm
F(000) = 3680
Data collection top
Bruker SMART APEX CCD
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube1916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2223
Tmin = 0.244, Tmax = 0.493k = 2222
13256 measured reflectionsl = 236
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.005
172 parametersΔρmax = 0.69 e Å3
3 restraintsΔρmin = 0.59 e Å3
Crystal data top
[PdBr(C8H9BrN)(C6H7N)]Z = 16
Mr = 478.51Mo Kα radiation
Tetragonal, I41/aµ = 6.33 mm1
a = 18.5329 (13) ÅT = 100 K
c = 18.071 (3) Å0.31 × 0.23 × 0.13 mm
V = 6206.8 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1916 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.493Rint = 0.067
13256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.69 e Å3
3374 reflectionsΔρmin = 0.59 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Minor disorder for C14/C14A and C7/C7A, see manuscript.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.00428 (2)0.14605 (2)0.30708 (2)0.04295 (15)
Br10.09198 (3)0.13378 (3)0.20809 (3)0.05454 (19)
Br20.13075 (4)0.19745 (4)0.59829 (4)0.0838 (3)
N10.0643 (2)0.1079 (2)0.3863 (2)0.0417 (11)
N20.0816 (2)0.1808 (2)0.2347 (2)0.0500 (13)
H2A0.07750.15460.19170.060*
H2B0.07250.22840.22330.060*
C10.1233 (3)0.1435 (3)0.4062 (3)0.0568 (17)
H10.13360.18990.38250.074*
C20.1710 (3)0.1175 (4)0.4594 (3)0.0640 (18)
H20.21370.14600.47240.083*
C30.1591 (4)0.0531 (3)0.4935 (3)0.0525 (16)
C40.1013 (3)0.0172 (3)0.4704 (3)0.0567 (17)
H40.09170.03080.49080.074*
C50.0544 (3)0.0451 (3)0.4185 (3)0.0542 (17)
H50.01170.01680.40510.070*
C60.2067 (4)0.0258 (3)0.5536 (3)0.091 (2)
H6A0.20280.02680.55650.136*
H6B0.25680.03920.54290.136*
H6C0.19200.04710.60080.136*
C70.1586 (4)0.1748 (5)0.2625 (4)0.046 (2)*0.650 (6)
H70.18960.21590.24590.055*0.650 (6)
C140.1877 (5)0.1034 (4)0.2395 (5)0.054 (2)*0.650 (6)
H14A0.15530.06510.25660.081*0.650 (6)
H14B0.23560.09650.26120.081*0.650 (6)
H14C0.19130.10170.18540.081*0.650 (6)
C7A0.1486 (7)0.1422 (9)0.2624 (7)0.046 (2)*0.350 (6)
H7A0.14340.08860.25990.055*0.350 (6)
C14A0.2097 (8)0.1680 (9)0.2175 (8)0.054 (2)*0.350 (6)
H14D0.20240.15410.16570.081*0.350 (6)
H14E0.25460.14650.23590.081*0.350 (6)
H14F0.21280.22070.22100.081*0.350 (6)
C80.1521 (3)0.1703 (3)0.3451 (3)0.0584 (18)
C90.0844 (3)0.1623 (3)0.3779 (3)0.0439 (14)
C100.0775 (3)0.1706 (3)0.4535 (3)0.0447 (14)
H100.03050.16570.47790.058*
C110.1403 (3)0.1863 (3)0.4945 (3)0.0486 (15)
C120.2071 (3)0.1944 (3)0.4636 (3)0.0556 (17)
H120.24950.20560.49390.072*
C130.2120 (3)0.1862 (3)0.3885 (4)0.0631 (18)
H130.25910.19170.36460.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0381 (3)0.0485 (3)0.0422 (2)0.0083 (2)0.0001 (2)0.0008 (2)
Br10.0499 (4)0.0663 (5)0.0475 (4)0.0003 (3)0.0063 (3)0.0004 (3)
Br20.0723 (5)0.1181 (7)0.0608 (5)0.0186 (5)0.0091 (4)0.0258 (4)
N10.036 (3)0.045 (3)0.044 (3)0.002 (2)0.000 (2)0.008 (2)
N20.029 (3)0.075 (3)0.046 (3)0.016 (2)0.006 (2)0.005 (2)
C10.060 (4)0.044 (4)0.066 (4)0.012 (4)0.008 (4)0.003 (3)
C20.053 (4)0.065 (5)0.073 (5)0.003 (4)0.021 (4)0.014 (4)
C30.060 (5)0.047 (4)0.050 (4)0.015 (4)0.009 (3)0.004 (3)
C40.078 (5)0.039 (4)0.053 (4)0.007 (4)0.005 (3)0.008 (3)
C50.070 (5)0.034 (4)0.059 (4)0.019 (3)0.006 (3)0.002 (3)
C60.106 (6)0.074 (5)0.092 (6)0.023 (5)0.029 (5)0.009 (4)
C80.039 (4)0.083 (5)0.053 (4)0.025 (3)0.004 (3)0.010 (3)
C90.031 (3)0.048 (4)0.052 (4)0.008 (3)0.002 (3)0.007 (3)
C100.042 (4)0.041 (4)0.051 (4)0.002 (3)0.005 (3)0.002 (3)
C110.059 (4)0.039 (4)0.048 (3)0.001 (3)0.008 (3)0.004 (3)
C120.028 (4)0.063 (4)0.075 (5)0.002 (3)0.008 (3)0.016 (4)
C130.032 (4)0.093 (5)0.064 (4)0.015 (4)0.001 (3)0.021 (4)
Geometric parameters (Å, º) top
Pd1—C91.983 (5)C6—H6C0.9800
Pd1—N12.042 (4)C7—C141.488 (10)
Pd1—N22.044 (4)C7—C81.499 (9)
Pd1—Br12.5365 (7)C7—H71.0000
Br2—C111.895 (5)C14—H14A0.9800
N1—C51.314 (6)C14—H14B0.9800
N1—C11.326 (6)C14—H14C0.9800
N2—C71.517 (8)C7A—C14A1.472 (14)
N2—C7A1.519 (12)C7A—C81.584 (13)
N2—H2A0.9200C7A—H7A1.0000
N2—H2B0.9200C14A—H14D0.9800
C1—C21.392 (7)C14A—H14E0.9800
C1—H10.9800C14A—H14F0.9800
C2—C31.363 (8)C8—C131.391 (7)
C2—H20.9800C8—C91.397 (7)
C3—C41.327 (7)C9—C101.381 (7)
C3—C61.487 (7)C10—C111.410 (7)
C4—C51.380 (7)C10—H100.9800
C4—H40.9800C11—C121.366 (7)
C5—H50.9800C12—C131.369 (8)
C6—H6A0.9800C12—H120.9800
C6—H6B0.9800C13—H130.9800
C9—Pd1—N193.80 (19)C14—C7—C8105.0 (6)
C9—Pd1—N280.83 (19)C14—C7—N2108.3 (6)
N1—Pd1—N2174.04 (16)C8—C7—N2105.0 (6)
C9—Pd1—Br1174.41 (16)C14—C7—H7112.7
N1—Pd1—Br191.46 (12)C8—C7—H7112.7
N2—Pd1—Br194.01 (11)N2—C7—H7112.7
C5—N1—C1115.9 (5)C14A—C7A—N2107.2 (11)
C5—N1—Pd1122.0 (4)C14A—C7A—C8112.4 (11)
C1—N1—Pd1122.0 (4)N2—C7A—C8100.9 (8)
C7—N2—C7A24.0 (7)C14A—C7A—H7A111.9
C7—N2—Pd1115.1 (4)N2—C7A—H7A111.9
C7A—N2—Pd1102.4 (6)C8—C7A—H7A111.9
C7—N2—H2A108.5C7A—C14A—H14D109.5
C7A—N2—H2A95.5C7A—C14A—H14E109.5
Pd1—N2—H2A108.5H14D—C14A—H14E109.5
C7—N2—H2B108.5C7A—C14A—H14F109.5
C7A—N2—H2B132.4H14D—C14A—H14F109.5
Pd1—N2—H2B108.5H14E—C14A—H14F109.5
H2A—N2—H2B107.5C13—C8—C9120.0 (5)
N1—C1—C2122.6 (6)C13—C8—C7119.1 (6)
N1—C1—H1118.7C9—C8—C7120.0 (6)
C2—C1—H1118.7C13—C8—C7A129.4 (7)
C3—C2—C1120.8 (6)C9—C8—C7A109.2 (7)
C3—C2—H2119.6C7—C8—C7A23.4 (7)
C1—C2—H2119.6C10—C9—C8119.4 (5)
C4—C3—C2115.3 (6)C10—C9—Pd1125.9 (4)
C4—C3—C6122.6 (6)C8—C9—Pd1114.5 (4)
C2—C3—C6122.1 (6)C9—C10—C11117.8 (5)
C3—C4—C5122.3 (6)C9—C10—H10121.1
C3—C4—H4118.8C11—C10—H10121.1
C5—C4—H4118.8C12—C11—C10123.8 (5)
N1—C5—C4123.0 (6)C12—C11—Br2118.5 (4)
N1—C5—H5118.5C10—C11—Br2117.7 (4)
C4—C5—H5118.5C11—C12—C13117.0 (5)
C3—C6—H6A109.5C11—C12—H12121.5
C3—C6—H6B109.5C13—C12—H12121.5
H6A—C6—H6B109.5C12—C13—C8122.0 (6)
C3—C6—H6C109.5C12—C13—H13119.0
H6A—C6—H6C109.5C8—C13—H13119.0
H6B—C6—H6C109.5
C9—Pd1—N1—C569.9 (4)C14—C7—C8—C9105.3 (7)
N2—Pd1—N1—C544.4 (18)N2—C7—C8—C98.8 (8)
Br1—Pd1—N1—C5112.1 (4)C14—C7—C8—C7A37.5 (13)
C9—Pd1—N1—C1113.0 (4)N2—C7—C8—C7A76.6 (14)
N2—Pd1—N1—C1138.4 (16)C14A—C7A—C8—C1330.8 (16)
Br1—Pd1—N1—C165.1 (4)N2—C7A—C8—C13144.7 (7)
C9—Pd1—N2—C720.2 (4)C14A—C7A—C8—C9162.9 (10)
N1—Pd1—N2—C75.5 (19)N2—C7A—C8—C949.0 (10)
Br1—Pd1—N2—C7161.9 (4)C14A—C7A—C8—C741.0 (13)
C9—Pd1—N2—C7A41.8 (6)N2—C7A—C8—C772.9 (14)
N1—Pd1—N2—C7A16.1 (19)C13—C8—C9—C100.2 (9)
Br1—Pd1—N2—C7A140.4 (6)C7—C8—C9—C10169.0 (6)
C5—N1—C1—C21.8 (8)C7A—C8—C9—C10168.0 (7)
Pd1—N1—C1—C2179.1 (4)C13—C8—C9—Pd1176.2 (5)
N1—C1—C2—C30.3 (10)C7—C8—C9—Pd17.0 (8)
C1—C2—C3—C42.4 (9)C7A—C8—C9—Pd115.9 (8)
C1—C2—C3—C6176.5 (6)N1—Pd1—C9—C1021.5 (5)
C2—C3—C4—C53.7 (9)N2—Pd1—C9—C10161.1 (5)
C6—C3—C4—C5175.2 (6)Br1—Pd1—C9—C10138.4 (14)
C1—N1—C5—C40.5 (8)N1—Pd1—C9—C8162.8 (4)
Pd1—N1—C5—C4177.8 (4)N2—Pd1—C9—C814.6 (4)
C3—C4—C5—N12.4 (10)Br1—Pd1—C9—C837.3 (19)
C7A—N2—C7—C1429.3 (12)C8—C9—C10—C110.6 (8)
Pd1—N2—C7—C1491.3 (6)Pd1—C9—C10—C11176.1 (4)
C7A—N2—C7—C882.4 (14)C9—C10—C11—C120.6 (8)
Pd1—N2—C7—C820.4 (7)C9—C10—C11—Br2179.9 (4)
C7—N2—C7A—C14A50.4 (13)C10—C11—C12—C130.3 (9)
Pd1—N2—C7A—C14A175.5 (10)Br2—C11—C12—C13179.8 (4)
C7—N2—C7A—C867.4 (13)C11—C12—C13—C80.0 (9)
Pd1—N2—C7A—C857.8 (9)C9—C8—C13—C120.1 (9)
C14—C7—C8—C1385.3 (8)C7—C8—C13—C12169.4 (6)
N2—C7—C8—C13160.6 (6)C7A—C8—C13—C12165.0 (9)
(IV) (SP-4-4)-[rac-2-(1-aminoethyl)-5-bromophenyl- κ2C1,N]iodido(4-methylpyridine-κN)palladium(II) top
Crystal data top
[Pd(C8H9BrN)I(C6H7N)]Dx = 2.151 Mg m3
Mr = 525.50Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4379 reflections
Hall symbol: -I 4adθ = 2.2–21.7°
a = 18.8243 (9) ŵ = 5.50 mm1
c = 18.3193 (17) ÅT = 110 K
V = 6491.5 (7) Å3Rod, colorless
Z = 160.13 × 0.09 × 0.08 mm
F(000) = 3968
Data collection top
Bruker SMART APEX CCD
diffractometer
3338 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
MULABS as implemented in PLATON (Spek, 2003)
h = 2323
Tmin = 0.535, Tmax = 0.668k = 2323
38236 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.69 e Å3
3 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Pd(C8H9BrN)I(C6H7N)]Z = 16
Mr = 525.50Mo Kα radiation
Tetragonal, I41/aµ = 5.50 mm1
a = 18.8243 (9) ÅT = 110 K
c = 18.3193 (17) Å0.13 × 0.09 × 0.08 mm
V = 6491.5 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3338 independent reflections
Absorption correction: multi-scan
MULABS as implemented in PLATON (Spek, 2003)
2302 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.668Rint = 0.088
38236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.01Δρmax = 0.69 e Å3
3338 reflectionsΔρmin = 0.52 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Minor disorder for C14/C14A and C7/C7A, see manuscript.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.006586 (19)0.14501 (2)0.31335 (2)0.03317 (11)
I10.092583 (18)0.125984 (18)0.208469 (19)0.04190 (11)
Br10.13019 (3)0.19494 (3)0.60213 (3)0.05639 (18)
N10.0601 (2)0.1064 (2)0.3910 (2)0.0320 (10)
N20.08125 (18)0.1808 (2)0.2424 (2)0.0378 (11)
H2A0.07680.15640.19910.045*
H2B0.07290.22800.23290.045*
C10.1153 (3)0.1435 (3)0.4177 (3)0.0478 (15)
H10.12260.19220.40060.062*
C20.1618 (3)0.1161 (3)0.4681 (3)0.0489 (15)
H20.20200.14510.48470.064*
C30.1530 (3)0.0491 (3)0.4954 (3)0.0409 (13)
C40.0974 (3)0.0121 (3)0.4677 (3)0.0552 (16)
H40.08930.03680.48410.072*
C50.0518 (3)0.0418 (3)0.4169 (3)0.0466 (15)
H50.01150.01340.39950.061*
C60.2007 (3)0.0198 (3)0.5537 (3)0.0645 (18)
H6A0.19740.03210.55410.097*
H6B0.24990.03400.54370.097*
H6C0.18610.03860.60130.097*
C70.1562 (3)0.1725 (3)0.2702 (3)0.0376 (18)*0.792 (6)
H70.18730.21130.25110.045*0.792 (6)
C140.1843 (3)0.1005 (3)0.2480 (4)0.0426 (17)*0.792 (6)
H14A0.15380.06320.26830.064*0.792 (6)
H14B0.23280.09460.26650.064*0.792 (6)
H14C0.18460.09680.19460.064*0.792 (6)
C7A0.1489 (9)0.1465 (13)0.2726 (8)0.0376 (18)*0.208 (6)
H7A0.14690.09340.27140.045*0.208 (6)
C14A0.2079 (12)0.1763 (12)0.2248 (12)0.0426 (17)*0.208 (6)
H14D0.24930.18760.25510.064*0.208 (6)
H14E0.19110.21960.20050.064*0.208 (6)
H14F0.22120.14100.18800.064*0.208 (6)
C80.1510 (3)0.1761 (3)0.3512 (3)0.0410 (13)
C90.0842 (2)0.1640 (2)0.3835 (3)0.0349 (12)
C100.0786 (3)0.1708 (2)0.4588 (3)0.0353 (12)
H100.03260.16450.48300.046*
C110.1391 (3)0.1867 (3)0.4996 (3)0.0410 (13)
C120.2043 (3)0.1976 (3)0.4683 (3)0.0397 (13)
H120.24590.20900.49830.052*
C130.2102 (3)0.1920 (3)0.3931 (3)0.0459 (14)
H130.25630.19930.36950.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0279 (2)0.0326 (2)0.0390 (2)0.00570 (18)0.00202 (18)0.00062 (18)
I10.0374 (2)0.0434 (2)0.0449 (2)0.00203 (16)0.00832 (17)0.00009 (17)
Br10.0491 (4)0.0698 (4)0.0502 (4)0.0099 (3)0.0076 (3)0.0140 (3)
N10.029 (2)0.028 (2)0.040 (3)0.0043 (19)0.003 (2)0.005 (2)
N20.028 (2)0.044 (3)0.041 (3)0.012 (2)0.002 (2)0.002 (2)
C10.040 (3)0.032 (3)0.071 (4)0.000 (3)0.008 (3)0.002 (3)
C20.033 (3)0.042 (3)0.071 (4)0.005 (3)0.020 (3)0.000 (3)
C30.044 (3)0.034 (3)0.044 (3)0.013 (3)0.000 (3)0.007 (3)
C40.069 (4)0.037 (3)0.060 (4)0.005 (3)0.004 (3)0.008 (3)
C50.059 (4)0.028 (3)0.053 (4)0.012 (3)0.012 (3)0.001 (3)
C60.067 (4)0.058 (4)0.068 (5)0.015 (3)0.010 (4)0.010 (3)
C80.031 (3)0.049 (3)0.042 (3)0.006 (2)0.006 (3)0.001 (3)
C90.029 (3)0.028 (3)0.048 (3)0.004 (2)0.004 (2)0.001 (2)
C100.034 (3)0.029 (3)0.043 (3)0.003 (2)0.000 (3)0.005 (2)
C110.047 (4)0.030 (3)0.046 (3)0.006 (2)0.006 (3)0.001 (3)
C120.030 (3)0.038 (3)0.052 (4)0.004 (2)0.010 (3)0.002 (3)
C130.025 (3)0.056 (4)0.057 (4)0.009 (3)0.001 (3)0.004 (3)
Geometric parameters (Å, º) top
Pd1—C91.979 (5)C6—H6C0.9800
Pd1—N22.029 (4)C7—C81.488 (8)
Pd1—N12.031 (4)C7—C141.511 (8)
Pd1—I12.7028 (5)C7—H71.0000
Br1—C111.893 (5)C14—H14A0.9800
N1—C51.315 (6)C14—H14B0.9800
N1—C11.344 (6)C14—H14C0.9800
N2—C71.508 (6)C7A—C14A1.522 (18)
N2—C7A1.531 (16)C7A—C81.544 (16)
N2—H2A0.9200C7A—H7A1.0000
N2—H2B0.9200C14A—H14D0.9800
C1—C21.373 (7)C14A—H14E0.9800
C1—H10.9800C14A—H14F0.9800
C2—C31.368 (7)C8—C131.385 (7)
C2—H20.9800C8—C91.408 (7)
C3—C41.356 (7)C9—C101.389 (7)
C3—C61.499 (7)C10—C111.394 (6)
C4—C51.385 (7)C10—H100.9800
C4—H40.9800C11—C121.372 (7)
C5—H50.9800C12—C131.385 (7)
C6—H6A0.9800C12—H120.9800
C6—H6B0.9800C13—H130.9800
C9—Pd1—N281.04 (19)C8—C7—N2105.7 (4)
C9—Pd1—N193.83 (18)C8—C7—C14109.4 (5)
N2—Pd1—N1174.34 (15)N2—C7—C14109.2 (5)
C9—Pd1—I1174.73 (15)C8—C7—H7110.8
N2—Pd1—I193.84 (11)N2—C7—H7110.8
N1—Pd1—I191.33 (11)C14—C7—H7110.8
C5—N1—C1116.2 (5)C14A—C7A—N2104.1 (15)
C5—N1—Pd1120.7 (3)C14A—C7A—C8112.6 (16)
C1—N1—Pd1123.2 (3)N2—C7A—C8101.9 (10)
C7—N2—C7A19.3 (10)C14A—C7A—H7A112.5
C7—N2—Pd1113.4 (3)N2—C7A—H7A112.5
C7A—N2—Pd1101.8 (8)C8—C7A—H7A112.5
C7—N2—H2A108.9C7A—C14A—H14D109.5
C7A—N2—H2A100.1C7A—C14A—H14E109.5
Pd1—N2—H2A108.9H14D—C14A—H14E109.5
C7—N2—H2B108.9C7A—C14A—H14F109.5
C7A—N2—H2B128.2H14D—C14A—H14F109.5
Pd1—N2—H2B108.9H14E—C14A—H14F109.5
H2A—N2—H2B107.7C13—C8—C9121.3 (5)
N1—C1—C2122.9 (5)C13—C8—C7120.7 (5)
N1—C1—H1118.5C9—C8—C7118.0 (5)
C2—C1—H1118.5C13—C8—C7A128.0 (8)
C3—C2—C1121.0 (5)C9—C8—C7A108.1 (8)
C3—C2—H2119.5C7—C8—C7A19.3 (10)
C1—C2—H2119.5C10—C9—C8118.1 (5)
C4—C3—C2115.5 (5)C10—C9—Pd1127.2 (4)
C4—C3—C6122.7 (5)C8—C9—Pd1114.6 (4)
C2—C3—C6121.8 (5)C9—C10—C11119.3 (5)
C3—C4—C5121.6 (5)C9—C10—H10120.3
C3—C4—H4119.2C11—C10—H10120.3
C5—C4—H4119.2C12—C11—C10122.7 (5)
N1—C5—C4122.8 (5)C12—C11—Br1118.8 (4)
N1—C5—H5118.6C10—C11—Br1118.5 (4)
C4—C5—H5118.6C11—C12—C13118.4 (5)
C3—C6—H6A109.5C11—C12—H12120.8
C3—C6—H6B109.5C13—C12—H12120.8
H6A—C6—H6B109.5C12—C13—C8120.3 (5)
C3—C6—H6C109.5C12—C13—H13119.9
H6A—C6—H6C109.5C8—C13—H13119.9
H6B—C6—H6C109.5
C9—Pd1—N1—C577.3 (4)N2—C7—C8—C918.9 (7)
N2—Pd1—N1—C552.3 (17)C14—C7—C8—C998.6 (6)
I1—Pd1—N1—C5103.8 (4)N2—C7—C8—C7A82 (2)
C9—Pd1—N1—C1104.1 (4)C14—C7—C8—C7A35.9 (19)
N2—Pd1—N1—C1129.1 (15)C14A—C7A—C8—C1337 (2)
I1—Pd1—N1—C174.9 (4)N2—C7A—C8—C13147.6 (7)
C9—Pd1—N2—C723.7 (3)C14A—C7A—C8—C9161.8 (13)
N1—Pd1—N2—C71.5 (17)N2—C7A—C8—C950.9 (14)
I1—Pd1—N2—C7157.5 (3)C14A—C7A—C8—C737.5 (18)
C9—Pd1—N2—C7A40.0 (8)N2—C7A—C8—C773.4 (19)
N1—Pd1—N2—C7A14.7 (19)C13—C8—C9—C102.1 (7)
I1—Pd1—N2—C7A141.3 (8)C7—C8—C9—C10176.9 (5)
C5—N1—C1—C21.3 (8)C7A—C8—C9—C10165.1 (9)
Pd1—N1—C1—C2177.4 (4)C13—C8—C9—Pd1178.3 (4)
N1—C1—C2—C31.8 (9)C7—C8—C9—Pd10.7 (6)
C1—C2—C3—C42.0 (8)C7A—C8—C9—Pd118.7 (10)
C1—C2—C3—C6176.3 (5)N2—Pd1—C9—C10163.1 (4)
C2—C3—C4—C51.9 (8)N1—Pd1—C9—C1019.3 (4)
C6—C3—C4—C5176.3 (5)I1—Pd1—C9—C10149.5 (12)
C1—N1—C5—C41.3 (8)N2—Pd1—C9—C812.7 (3)
Pd1—N1—C5—C4177.5 (4)N1—Pd1—C9—C8164.9 (4)
C3—C4—C5—N11.7 (9)I1—Pd1—C9—C826.3 (17)
C7A—N2—C7—C884 (2)C8—C9—C10—C112.2 (7)
Pd1—N2—C7—C828.5 (5)Pd1—C9—C10—C11177.9 (3)
C7A—N2—C7—C1433.3 (18)C9—C10—C11—C121.5 (7)
Pd1—N2—C7—C1489.1 (5)C9—C10—C11—Br1179.5 (3)
C7—N2—C7A—C14A46.6 (19)C10—C11—C12—C130.5 (8)
Pd1—N2—C7A—C14A175.7 (13)Br1—C11—C12—C13179.5 (4)
C7—N2—C7A—C870.7 (19)C11—C12—C13—C80.3 (8)
Pd1—N2—C7A—C858.4 (13)C9—C8—C13—C121.1 (8)
N2—C7—C8—C13160.1 (5)C7—C8—C13—C12177.8 (5)
C14—C7—C8—C1382.3 (7)C7A—C8—C13—C12160.5 (12)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Pd(C8H10N)Cl(C5H5N)][PdBr(C8H10N)(C5H5N)][PdBr(C8H9BrN)(C6H7N)][Pd(C8H9BrN)I(C6H7N)]
Mr341.12385.58478.51525.50
Crystal system, space groupTetragonal, I41/aTetragonal, I41/aTetragonal, I41/aTetragonal, I41/a
Temperature (K)100110100110
a, c (Å)18.3310 (8), 15.5123 (14)18.5197 (9), 15.7281 (16)18.5329 (13), 18.071 (3)18.8243 (9), 18.3193 (17)
V3)5212.5 (6)5394.4 (7)6206.8 (12)6491.5 (7)
Z16161616
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.614.326.335.50
Crystal size (mm)0.23 × 0.08 × 0.040.17 × 0.05 × 0.030.31 × 0.23 × 0.130.13 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
MULABS as implemented in PLATON (Spek, 2003)
Tmin, Tmax0.709, 0.9390.527, 0.8810.244, 0.4930.535, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
33317, 2990, 2544 29977, 2519, 1839 13256, 3374, 1916 38236, 3338, 2302
Rint0.0740.1730.0670.088
(sin θ/λ)max1)0.6490.6060.6410.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.073, 1.11 0.070, 0.141, 1.11 0.042, 0.075, 1.00 0.032, 0.059, 1.01
No. of reflections2990251933743338
No. of parameters153153172172
No. of restraints31533
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0487P)2 + 37.3572P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.41, 0.500.73, 1.340.69, 0.590.69, 0.52

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, °) top
ComplexD-H–AD-HH–AD–AD-H–A
(I)N2-H2A-Cl1i0.922.543.318 (3)142
(I)N2-H2B-Cl1ii0.922.473.357 (3)161
(II)N2-H2A-Br1i0.922.683.471 (8)144
(II)N2-H2B-Br1ii0.922.593.494 (8)166
(III)N2-H2A-Br1i0.922.803.568 (4)142
(III)N2-H2B-Br1ii0.922.603.475 (4)160
(IV)N2-H2A-I1i0.923.023.793 (4)143
(IV)N2-H2B-I1ii0.922.813.696 (4)162
Symmetry codes: (i) -y+1/4, x+1/4, -z+1/4; (ii) -x, -y+1/2,z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds