Download citation
Download citation
link to html
In order to explore new metal coordination polymers and to search for new types of ferroelectrics among hybrid coordination polymers, two manganese dicyanamide complexes, poly[tetra­methyl­ammonium [di-μ3-dicyanamido-κ6N1:N3:N5-tri-μ2-dicyanamido-κ6N1:N5-dimanganese(II)]], {[(CH3)4N][Mn2(NCNCN)5]}n, (I), and catena-poly[bis­(butyl­tri­phenyl­phospho­nium) [[(dicyanamido-κN1)manganese(II)]-di-μ2-dicyanamido-κ4N1:N5]], {[(C4H9)(C6H5)3P]2[Mn(NCNCN)4]}n, (II), were synthesized in aqueous solution. In (I), one MnII cation is octa­hedrally coordinated by six nitrile N atoms from six anionic dicyanamide (dca) ligands, while the second MnII cation is coordinated by four nitrile N atoms and two amide N atoms from six anionic dca ligands. Neighbouring MnII cations are linked together by μ-1,5- and μ-1,3,5-bridging dca anions to form a three-dimensional polymeric structure. The anionic framework exhibits a solvent-accessible void of 289.8 Å3, amounting to 28.0% of the total unit-cell volume. Each of the cavities in the network is occupied by only one tetra­methyl­ammonium cation. In (II), each MnII cation is octa­hedrally coordinated by six nitrile N atoms from six dca ligands. Neighbouring MnII cations are linked together by double dca bridges to form a one-dimensional polymeric chain, and C—H...N hydrogen-bonding inter­actions are involved in the formation of the one-dimensional layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615015818/lf3019sup1.cif
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015818/lf30191sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015818/lf30192sup3.hkl
Contains datablock 2

CCDC references: 1420090; 1420089

Introduction top

Much attention has been concentrated on the crystal engineering of new dielectric and ferroelectric materials in recent years, owing to their novel structural characteristics and potential applications, for instance as filters, capacitors, resonators, switchable nonlinear optical devices or solid-state transducer components in microwave communication systems (Vanderah, 2002; Fu et al., 2008; Ye et al., 2013; Shi et al., 2015). In the search for potential ferroelectric materials, molecular-based one-, two- and three-dimensional metal organic–inorganic compounds have been of inter­est as they often display solid–solid phase transitions induced by a variation in temperature. Many reports have been devoted to the formation of infinite polymeric frameworks through N-donor bridging ligands (Olenyuk et al., 1999; Rosi et al., 2003; Li, 2015). In contrast to the cyanamide ligands [N(CN)Y]- [Y = Ph2P(S), Ph2P(NCN) or NO2], the pseudohalide ligand dicyanamide [dca, N(CN)2-] is a remarkably versatile building block for the construction of metal–organic architectures since it may act as a mono-, bi- and tridentate ligand, yielding a variety of novel structures (Sun et al., 2001).

A notable feature of metal–dca coordination polymers is the ability of cations to template anionic [M(dca)3]- networks (Biswas et al., 2006). The prime cases of previously reported three-dimensional metal–dca networks are neutral binary systems. The series MX2 with X = [N(CN)2]- (M = Cr2+, Mn2+, Co2+, Ni2+ or Cu2+ ) and related complexes have attracted increased inter­est because of their rutile-like structures containing chains of doubly-bridged metal atoms with M(NCNCN)M units (Li & Wang, 2014). According to previous reports, the pseudohalide ligand dicyanamide plays an instructive role in building coordination polymers. In order to explore new metal coordination polymers and to search for new types of ferroelectrics among hybrid coordination polymers, we report here the use of tetra­methyl­ammonium and butyl­tri­phenyl­phospho­nium cations as templates for the formation of two different coordination polymers, namely {(Me4N)[Mn2(dca)5]}n, (I), and {(BuPh3P)2[Mn(dca)4]}n, (II), which exhibit inter­esting structural features.

Experimental top

Synthesis and crystallization top

A solution of sodium dicyanamide (0.801 g, 9 mmol) in water was added to a solution of tetra­methyl­ammonium chloride (0.329 g, 3 mmol) in water. Mn(NO3)2·4H2O (1.073 g, 3 mmol) was then added, affording a colourless solution. Upon standing at room temperature for several days, suitable colourless single crystals of (I) were obtained by slow solvent evaporation.

For the synthesis of (II), n-butyl­tri­phenyl­phospho­nium bromide was used instead of tetra­methyl­ammonium chloride. Using the same method as for the preparation of (I), suitable colourless single crystals of (II) were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were refined isotropically. H atoms on C atoms were included in calculated positions and were refined as riding, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methyl­ene), and with Uiso(H) = 1.5UUeq(C) for methyl H atoms or 1.2UUeq(C) otherwise.

Results and discussion top

The asymmetric unit of complex (I) contains two independent MnII cations, five anionic dicyanamide (dca) ligands, complemented by a tetra­methyl­ammonium counter-ion (Fig. 1). As shown in Fig. 1, there are two unique o­cta­hedrally coordinated MnII cations with similar coordination models. The central Mn1 cation is six-coordinated by six nitrile N atoms from six anionic dca ligands, adopting a distorted o­cta­hedral coordination geometry, with the N1, N3, N4 and N6 atoms in the basal plane and atoms N2 and N5 in apical positions. The Mn2 cation also adopts a distorted o­cta­hedral coordination geometry, with the N7, N8, N11i and N15ii atoms in the basal plane, and atoms N9ii and N13iii in the apical position (symmetry codes are as in Table 2), and is surrounded by four nitrile N atoms from four anionic dca ligands and two amide N atoms from dca ligands. Each MnII cation is joined to neighbouring MnII cations through µ-1,5- and µ-1,3,5-bridging dicyanamide ligands. The Mn—N(nitrile) bond lengths range from 2.152 (2) to 2.389 (2) Å and the Mn—N(amide) bond lengths vary between 2.397 (2) and 2.421 (2) Å (Table 2). There are two sorts of angles around each MnII centre, namely orthogonal cis angles [81.61 (8)–98.47 (9)°] and linear trans angles [167.69 (8)–174.12 (8)°]. The Mn—N(nitrile) [2.203 (2)–2.389 (2) Å] bond lengths of the µ-1,3,5-bridging dicyanamide ligands are significantly longer than those of the µ-1,5-bridging dicyanamide ligands [2.152 (2)–2.198 (2) Å]. And the Mn—N(amide) bond lengths of the µ-1,3,5-bridging dicyanamide ligands are consistent with those of other reported manganese–dicyanamide compounds (Luo et al., 2005). The N4—C5, C5—N10 and N11—C6 bond lengths (Table 2) indicate triple- and single-bond character, as is typical for bridging [N(CN)2]- ligands. All bond lengths and angles within the dicyanamide ligands are almost typical of the M—N···C—N—C···N—M and M—N···C—N(Mn)—C···N—M bridging modes.

Compound (I) is a new coordination polymer in which both of the six-coordinated MnII centres adopt a distorted o­cta­hedral coordination geometry. It displays a novel coordination architecture compared with the similar compound, [Mn(dmpz){N(CN)2}2]2, (III) (dmpz is 3,5-di­methyl­pyrazole; Luo et al., 2005), in which the central Mn1 cation is coordinated by four dicyanamide nitrile N atoms and two atoms of dmpz molecules, rather than six nitrile N atoms from six anionic dca ligands, as for atom Mn1 in (I). In (I), the overall crystal structure motif exhibits linear M—dca—M bridging mode, which consists of µ-1,5- and µ-1,3,5-bridging dicyanamide anions, forming a three-dimensional anionic network (Fig. 3a). This is also different from what was found in our previous work. In [(CH3)4P][Cd(NCNCN)2Cl], one type of dca ligand is involved in the formation of [Cd(dca)Cl]2 building blocks and the other links these building blocks into a three-dimensional structure (Li & Wang, 2014). The amide N atom of the µ-1,3,5-bridging dicyanamide anions connects adjacent the MnII cations into an eight-membered [Mn2(dca)] ring; meanwhile, the amide N atom of the µ-1,3,5-bridging dicyanamide ligands and the nitrile N atom of µ-1,5-bridging dicyanamide ligands are bonded to adjacent MnII cations, forming a large 20-membered [Mn4(dca)4] ring (Fig. 2). The Mn···Mn distance across the µ-1,3,5-bridging dca is 8.533 (3) Å, while the shortest Mn···Mn contact across the µ-1,3-bridging dca ligand is 5.716 (3) Å. This phenomenon in (I) is different from the two-dimensional compound [Mn(dca)2(pydz)]n (Wriedt & Näther, 2011), where the metal atoms are connected in one direction by double M(dca)2M bridges and in the other by the amide N atom of the µ-1,3,5-bridging dca ligand, forming a two-dimensional layer structure.

It should be pointed out that the three-dimensional anionic framework in (I) exhibits a void space of 289.8 Å3, which amounts to 28.0% of the unit-cell volume. Additionally, each of the cavities in (I) accommodates only one tetra­methyl­ammonium cation, but the orientations of the cations in adjacent cages are different (Fig. 3b). The distances of between the two cations is 8.691 (4) Å. This marks a difference with regard to the related (Ph4E)[Mn(dca)3] (E = P or As) structures, where two-dimensional anionic [Mn(dca)3]- sheets are separated by layers of Ph4E+ cations (van der Werff et al., 2001). In addition, in these compounds, the cations lie in pairs within cavities in the anionic network. The tetra­methyl­ammonium cations do not participate in any significant supra­molecular inter­actions, though they are obviously important for stabilizing the structure.

The asymmetric unit of complex (II) contains half MnII cation, four half anionic dicyanamide (dca) ligands, complemented by a noncoordinating n-butyl­tri­phenyl­phospho­nium [(n-butyl)PPh3] counter-ion (Fig. 4). As shown in Fig. 4, the central MnII cation is six-coordinated by six terminal N atoms from six different dca ligands, four of which are bridging, adopting a slightly distorted o­cta­hedral coordinated geometry, with the N1, N1i, N3 and N3i atoms in the basal plane, and the N4 and N4i atoms in the apical position [symmetry code: (i) -x+1, -y+2, -z]. Each MnII cation is connected to two neighbouring MnII cations through bridging double dca ligands. The Mn—N bond lengths (Table 2) and cis-N—Mn—N angles range from 87.17 (12) to 92.83 (12)°, with a trans angle of 180.0 (2)°, which are all in good agreement with values found in other MnII complexes with a six-coordinated geometry (van der Werff et al., 2001). All bond lengths and angles within the n-butyl­tri­phenyl­phospho­nium ligand are typical and the benzene ring is strictly planar.

In contrast with the structure of (I), in (II), double dca bridges exist between adjacent MnII cations to give a chain structure, with an Mn··· Mn distance of 7.6050 (15) Å. In addition, the one-dimensional anionic framework is filled by n-butyl­tri­phenyl­phospho­nium cations through electrostatic and hydrogen-bonding inter­actions (C19—H19B···N6 and C19—H19A···N5; Table 3). Inter­molecular hydrogen-bonding inter­actions between the cations and the bridging thio­cyanate ligands further stabilize the one-dimensional layer structure (Fig. 5).

Our original inter­est in (I) and (II) lay mainly in their potential as phase-transition materials (Ye et al., 2013; Fu et al., 2013; Shi et al., 2014; Liao et al., 2014). The variable-temperature dielectric response, especially in the relatively high frequency range, is treated as an effective indicator of a structural phase transition. However, measurement of theirs dielectric properties with varying temperature did not observe dielectric anomalies within the temperature range 90–380 K. This reveals that the two compounds might not undergo a distinct structural phase transition within this temperature range and so both of them are not ferroelectric materials like those reported earlier (Ye et al., 2009; Fu et al., 2008). Further phase-transition materials still need to be sought and explored, and other related materials are currently being investigated for dielectric properties and ferroelectric activity.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of atoms Mn1 and Mn2 in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1,-z+2; (iii) -x, -y+2, -z+2; (iv) -x, -y+2, -z+1.]
[Figure 2] Fig. 2. The fragment for a single coordination net of (I) projected onto the ac plane.
[Figure 3] Fig. 3. (a) The crystal packing of (I). All H atoms have been omitted for clarity. Note the corrugation of the anionic network. (b) Two cations contained inside anionic cavities in the structure of (I).
[Figure 4] Fig. 4. The structural unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z; (iii) x, y-1, z.]
[Figure 5] Fig. 5. The crystal packing of (II), showing the hydrogen-bonding interactions (dashed lines) among the cationic ligands and the coordination polymer.
(1) Poly[tetramethylammonium [di-µ3-dicyanamido-κ6N1:N3:N5-tri-µ2-dicyanamido-κ6N1:N5-dimanganese(II)]] top
Crystal data top
(C4H12N)[Mn2(C2N3)5]Z = 2
Mr = 514.28F(000) = 516
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.368 (2) ÅCell parameters from 4723 reflections
b = 10.377 (2) Åθ = 3.5–27.5°
c = 11.898 (2) ŵ = 1.26 mm1
α = 65.64 (3)°T = 293 K
β = 82.28 (3)°Block, colourless
γ = 62.83 (3)°0.30 × 0.25 × 0.20 mm
V = 1035.1 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
4245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.704, Tmax = 0.787l = 1515
10736 measured reflections3 standard reflections every 180 reflections
4723 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.8558P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4723 reflectionsΔρmax = 0.61 e Å3
289 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0819 (12)
Crystal data top
(C4H12N)[Mn2(C2N3)5]γ = 62.83 (3)°
Mr = 514.28V = 1035.1 (3) Å3
Triclinic, P1Z = 2
a = 10.368 (2) ÅMo Kα radiation
b = 10.377 (2) ŵ = 1.26 mm1
c = 11.898 (2) ÅT = 293 K
α = 65.64 (3)°0.30 × 0.25 × 0.20 mm
β = 82.28 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4245 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.029
Tmin = 0.704, Tmax = 0.7873 standard reflections every 180 reflections
10736 measured reflections intensity decay: none
4723 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.61 e Å3
4723 reflectionsΔρmin = 0.51 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn20.15430 (3)0.77945 (4)0.73446 (3)0.02088 (9)
Mn10.45551 (3)1.14431 (4)0.73319 (3)0.02105 (9)
N10.3662 (2)1.0750 (3)0.61795 (19)0.0368 (5)
N30.2807 (2)1.4121 (2)0.62898 (19)0.0355 (5)
N40.5090 (2)1.2376 (3)0.84650 (19)0.0381 (5)
N60.6323 (2)0.9083 (2)0.8239 (2)0.0379 (5)
N70.1864 (2)1.0001 (2)0.58237 (17)0.0283 (4)
N80.0182 (2)1.1541 (3)0.39690 (19)0.0373 (5)
N110.6630 (2)1.2544 (2)1.17046 (19)0.0349 (5)
N150.8366 (2)0.4475 (2)1.14708 (18)0.0309 (4)
N130.0045 (2)1.0823 (3)1.1730 (2)0.0387 (5)
N90.6950 (2)1.3521 (2)0.39593 (17)0.0303 (4)
N100.5053 (3)1.3484 (3)0.9922 (2)0.0408 (5)
N50.2942 (3)1.1001 (3)0.8620 (2)0.0405 (5)
N20.5898 (2)1.2214 (3)0.5791 (2)0.0378 (5)
N120.1520 (2)0.9928 (3)1.0187 (2)0.0395 (5)
N140.8310 (2)0.6742 (2)0.9648 (2)0.0400 (5)
C10.2814 (2)1.0441 (2)0.59740 (19)0.0251 (4)
C20.1000 (2)1.0866 (2)0.4808 (2)0.0254 (4)
C60.5945 (2)1.2896 (2)1.0857 (2)0.0246 (4)
C50.5144 (2)1.2812 (3)0.9192 (2)0.0274 (5)
C100.8246 (2)0.5586 (3)1.0610 (2)0.0250 (4)
C30.6385 (2)1.2853 (3)0.4957 (2)0.0260 (4)
C90.7197 (3)0.7957 (3)0.8947 (2)0.0283 (5)
C80.0765 (2)1.0476 (3)1.0984 (2)0.0278 (5)
C40.2941 (2)1.5225 (3)0.61405 (19)0.0257 (4)
C70.2257 (2)1.0559 (3)0.9383 (2)0.0291 (5)
N160.1781 (2)0.5460 (2)0.26852 (19)0.0367 (5)
C110.1565 (4)0.6144 (4)0.1308 (3)0.0633 (9)
H11A0.22120.53650.10000.095*
H11B0.17650.70450.09620.095*
H11C0.05790.64640.10770.095*
C140.1499 (12)0.4125 (9)0.3200 (5)0.208 (5)
H14A0.16400.36890.40850.312*
H14B0.21500.33460.28930.312*
H14C0.05140.44350.29720.312*
C130.0815 (10)0.6616 (7)0.3168 (5)0.177 (4)
H13A0.09650.61610.40530.265*
H13B0.01740.69370.29440.265*
H13C0.10110.75190.28290.265*
C120.3210 (6)0.5052 (12)0.3027 (4)0.195 (5)
H12A0.33460.46110.39120.293*
H12B0.33690.59780.26850.293*
H12C0.38880.42880.27170.293*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn20.02375 (17)0.02298 (17)0.01556 (16)0.01156 (13)0.00151 (12)0.00519 (13)
Mn10.02544 (17)0.02405 (17)0.01714 (16)0.01521 (13)0.00159 (12)0.00659 (13)
N10.0471 (12)0.0424 (12)0.0319 (11)0.0306 (10)0.0054 (9)0.0103 (9)
N30.0472 (12)0.0294 (10)0.0321 (11)0.0192 (9)0.0043 (9)0.0121 (9)
N40.0436 (12)0.0432 (12)0.0328 (11)0.0179 (10)0.0065 (9)0.0188 (10)
N60.0393 (12)0.0279 (10)0.0340 (11)0.0121 (9)0.0050 (9)0.0019 (9)
N70.0341 (10)0.0294 (10)0.0226 (9)0.0200 (8)0.0089 (8)0.0015 (8)
N80.0412 (12)0.0371 (11)0.0306 (11)0.0242 (10)0.0135 (9)0.0017 (9)
N110.0404 (11)0.0342 (11)0.0315 (11)0.0175 (9)0.0101 (9)0.0097 (9)
N150.0302 (10)0.0258 (10)0.0273 (10)0.0105 (8)0.0005 (8)0.0040 (8)
N130.0419 (12)0.0427 (12)0.0379 (12)0.0227 (10)0.0155 (10)0.0211 (10)
N90.0429 (11)0.0301 (10)0.0246 (10)0.0228 (9)0.0126 (8)0.0123 (8)
N100.0468 (13)0.0333 (11)0.0398 (12)0.0075 (9)0.0209 (10)0.0169 (10)
N50.0467 (13)0.0468 (13)0.0352 (12)0.0282 (11)0.0165 (10)0.0185 (10)
N20.0439 (12)0.0400 (12)0.0342 (11)0.0261 (10)0.0152 (10)0.0144 (10)
N120.0435 (12)0.0463 (13)0.0501 (13)0.0327 (11)0.0265 (10)0.0309 (11)
N140.0285 (10)0.0280 (10)0.0403 (12)0.0110 (8)0.0011 (9)0.0060 (9)
C10.0328 (11)0.0243 (10)0.0191 (10)0.0146 (9)0.0021 (8)0.0062 (8)
C20.0302 (11)0.0247 (10)0.0250 (11)0.0181 (9)0.0005 (9)0.0058 (9)
C60.0272 (10)0.0238 (10)0.0254 (11)0.0133 (9)0.0006 (9)0.0093 (9)
C50.0254 (11)0.0276 (11)0.0264 (11)0.0121 (9)0.0056 (9)0.0059 (9)
C100.0231 (10)0.0253 (11)0.0258 (11)0.0106 (8)0.0015 (8)0.0099 (9)
C30.0263 (11)0.0272 (11)0.0269 (11)0.0134 (9)0.0052 (9)0.0122 (9)
C90.0343 (12)0.0265 (11)0.0266 (11)0.0182 (10)0.0062 (9)0.0088 (9)
C80.0288 (11)0.0262 (11)0.0304 (12)0.0162 (9)0.0046 (9)0.0093 (9)
C40.0295 (11)0.0280 (11)0.0184 (10)0.0131 (9)0.0052 (8)0.0089 (9)
C70.0282 (11)0.0322 (12)0.0310 (12)0.0140 (10)0.0061 (9)0.0166 (10)
N160.0452 (12)0.0358 (11)0.0289 (11)0.0233 (10)0.0032 (9)0.0050 (9)
C110.094 (3)0.063 (2)0.0319 (15)0.041 (2)0.0114 (16)0.0069 (15)
C140.460 (15)0.194 (7)0.065 (3)0.268 (10)0.018 (6)0.014 (4)
C130.254 (9)0.092 (4)0.064 (3)0.027 (5)0.018 (4)0.032 (3)
C120.071 (3)0.437 (14)0.055 (3)0.116 (6)0.012 (2)0.076 (5)
Geometric parameters (Å, º) top
Mn2—N11i2.152 (2)N9—C31.318 (3)
Mn2—N15ii2.154 (2)N9—Mn2v2.421 (2)
Mn2—N13iii2.154 (2)N10—C61.291 (3)
Mn2—N8iv2.203 (2)N10—C51.291 (3)
Mn2—N72.397 (2)N5—C71.149 (3)
Mn2—N9v2.421 (2)N2—C31.144 (3)
Mn1—N62.185 (2)N12—C71.293 (3)
Mn1—N52.188 (2)N12—C81.293 (3)
Mn1—N42.198 (2)N14—C101.293 (3)
Mn1—N12.240 (2)N14—C91.296 (3)
Mn1—N22.250 (2)C4—N9vi1.314 (3)
Mn1—N32.389 (2)N16—C121.409 (5)
N1—C11.148 (3)N16—C141.414 (5)
N3—C41.155 (3)N16—C131.446 (6)
N4—C51.147 (3)N16—C111.494 (3)
N6—C91.150 (3)C11—H11A0.9600
N7—C21.315 (3)C11—H11B0.9600
N7—C11.317 (3)C11—H11C0.9600
N8—C21.146 (3)C14—H14A0.9600
N8—Mn2iv2.203 (2)C14—H14B0.9600
N11—C61.143 (3)C14—H14C0.9600
N11—Mn2i2.152 (2)C13—H13A0.9600
N15—C101.150 (3)C13—H13B0.9600
N15—Mn2ii2.154 (2)C13—H13C0.9600
N13—C81.147 (3)C12—H12A0.9600
N13—Mn2iii2.154 (2)C12—H12B0.9600
N9—C4vi1.314 (3)C12—H12C0.9600
N11i—Mn2—N15ii94.74 (9)C7—N5—Mn1170.1 (2)
N11i—Mn2—N13iii94.13 (9)C3—N2—Mn1168.4 (2)
N15ii—Mn2—N13iii98.47 (9)C7—N12—C8124.2 (2)
N11i—Mn2—N8iv167.94 (8)C10—N14—C9124.9 (2)
N15ii—Mn2—N8iv95.82 (8)N1—C1—N7175.6 (2)
N13iii—Mn2—N8iv90.08 (9)N8—C2—N7174.0 (2)
N11i—Mn2—N783.03 (8)N11—C6—N10171.6 (3)
N15ii—Mn2—N7167.69 (8)N4—C5—N10172.1 (3)
N13iii—Mn2—N793.77 (8)N15—C10—N14171.9 (2)
N8iv—Mn2—N785.42 (8)N2—C3—N9175.9 (2)
N11i—Mn2—N9v93.46 (8)N6—C9—N14172.2 (3)
N15ii—Mn2—N9v85.32 (7)N13—C8—N12171.9 (2)
N13iii—Mn2—N9v171.20 (8)N3—C4—N9vi176.1 (2)
N8iv—Mn2—N9v81.61 (8)N5—C7—N12172.7 (3)
N7—Mn2—N9v82.74 (7)C12—N16—C14110.9 (6)
N6—Mn1—N595.02 (9)C12—N16—C13106.9 (5)
N6—Mn1—N492.71 (9)C14—N16—C13109.2 (6)
N5—Mn1—N489.91 (9)C12—N16—C11109.7 (3)
N6—Mn1—N194.57 (9)C14—N16—C11109.7 (3)
N5—Mn1—N184.82 (9)C13—N16—C11110.4 (3)
N4—Mn1—N1171.36 (8)N16—C11—H11A109.5
N6—Mn1—N293.68 (9)N16—C11—H11B109.5
N5—Mn1—N2170.61 (9)H11A—C11—H11B109.5
N4—Mn1—N293.21 (9)N16—C11—H11C109.5
N1—Mn1—N290.97 (8)H11A—C11—H11C109.5
N6—Mn1—N3174.12 (8)H11B—C11—H11C109.5
N5—Mn1—N389.89 (9)N16—C14—H14A109.5
N4—Mn1—N384.04 (8)N16—C14—H14B109.5
N1—Mn1—N389.10 (8)H14A—C14—H14B109.5
N2—Mn1—N381.64 (8)N16—C14—H14C109.5
C1—N1—Mn1151.2 (2)H14A—C14—H14C109.5
C4—N3—Mn1125.72 (19)H14B—C14—H14C109.5
C5—N4—Mn1166.1 (2)N16—C13—H13A109.5
C9—N6—Mn1163.5 (2)N16—C13—H13B109.5
C2—N7—C1118.04 (19)H13A—C13—H13B109.5
C2—N7—Mn2118.34 (14)N16—C13—H13C109.5
C1—N7—Mn2123.55 (14)H13A—C13—H13C109.5
C2—N8—Mn2iv162.10 (18)H13B—C13—H13C109.5
C6—N11—Mn2i155.2 (2)N16—C12—H12A109.5
C10—N15—Mn2ii162.25 (19)N16—C12—H12B109.5
C8—N13—Mn2iii161.7 (2)H12A—C12—H12B109.5
C4vi—N9—C3117.33 (19)N16—C12—H12C109.5
C4vi—N9—Mn2v115.55 (14)H12A—C12—H12C109.5
C3—N9—Mn2v124.20 (15)H12B—C12—H12C109.5
C6—N10—C5125.6 (2)
N6—Mn1—N1—C1103.6 (4)N4—Mn1—N5—C790.2 (12)
N5—Mn1—N1—C19.0 (4)N1—Mn1—N5—C796.6 (12)
N4—Mn1—N1—C143.7 (8)N2—Mn1—N5—C7160.3 (10)
N2—Mn1—N1—C1162.6 (4)N3—Mn1—N5—C7174.3 (12)
N3—Mn1—N1—C181.0 (4)N6—Mn1—N2—C3171.4 (10)
N6—Mn1—N3—C423.7 (9)N5—Mn1—N2—C330.7 (13)
N5—Mn1—N3—C4122.8 (2)N4—Mn1—N2—C378.5 (10)
N4—Mn1—N3—C432.9 (2)N1—Mn1—N2—C393.9 (10)
N1—Mn1—N3—C4152.4 (2)N3—Mn1—N2—C35.0 (10)
N2—Mn1—N3—C461.3 (2)Mn1—N1—C1—N756 (4)
N6—Mn1—N4—C598.8 (8)C2—N7—C1—N1173 (3)
N5—Mn1—N4—C53.8 (8)Mn2—N7—C1—N14 (4)
N1—Mn1—N4—C548.5 (11)Mn2iv—N8—C2—N714 (3)
N2—Mn1—N4—C5167.3 (8)C1—N7—C2—N8171 (2)
N3—Mn1—N4—C586.1 (8)Mn2—N7—C2—N86 (3)
N5—Mn1—N6—C963.0 (7)Mn2i—N11—C6—N10101.0 (18)
N4—Mn1—N6—C927.1 (7)C5—N10—C6—N11179 (100)
N1—Mn1—N6—C9148.2 (7)Mn1—N4—C5—N1080 (2)
N2—Mn1—N6—C9120.5 (7)C6—N10—C5—N4174.9 (18)
N3—Mn1—N6—C983.4 (11)Mn2ii—N15—C10—N1498.7 (18)
N11i—Mn2—N7—C2178.26 (19)C9—N14—C10—N15173.8 (17)
N15ii—Mn2—N7—C298.1 (4)Mn1—N2—C3—N9119 (3)
N13iii—Mn2—N7—C288.03 (19)C4vi—N9—C3—N2174 (4)
N8iv—Mn2—N7—C21.75 (18)Mn2v—N9—C3—N226 (4)
N9v—Mn2—N7—C283.85 (18)Mn1—N6—C9—N14109.8 (19)
N11i—Mn2—N7—C15.01 (19)C10—N14—C9—N6173.9 (18)
N15ii—Mn2—N7—C185.2 (4)Mn2iii—N13—C8—N12132.0 (17)
N13iii—Mn2—N7—C188.7 (2)C7—N12—C8—N13176.1 (18)
N8iv—Mn2—N7—C1178.5 (2)Mn1—N3—C4—N9vi92 (4)
N9v—Mn2—N7—C199.43 (19)Mn1—N5—C7—N1263 (3)
N6—Mn1—N5—C72.5 (12)C8—N12—C7—N5175 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x, y+2, z+2; (iv) x, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+3, z+1.
(2) catena-Poly[bis(butyltriphenylphosphonium) [[(dicyanamido-κN1)manganese(II)]-di-µ2-dicyanamido-κ4N1:N5]] top
Crystal data top
(C22H24P)2[Mn(C2N3)4]F(000) = 998
Mr = 957.90Dx = 1.270 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5687 reflections
a = 15.711 (3) Åθ = 3.0–27.5°
b = 7.6050 (15) ŵ = 0.38 mm1
c = 21.499 (4) ÅT = 293 K
β = 102.86 (3)°Block, colourless
V = 2504.3 (9) Å30.30 × 0.28 × 0.25 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2956 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 1620
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.896, Tmax = 0.912l = 2427
15859 measured reflections3 standard reflections every 180 reflections
5687 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0885P)2]
where P = (Fo2 + 2Fc2)/3
5687 reflections(Δ/σ)max = 0.018
305 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C22H24P)2[Mn(C2N3)4]V = 2504.3 (9) Å3
Mr = 957.90Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.711 (3) ŵ = 0.38 mm1
b = 7.6050 (15) ÅT = 293 K
c = 21.499 (4) Å0.30 × 0.28 × 0.25 mm
β = 102.86 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2956 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.078
Tmin = 0.896, Tmax = 0.9123 standard reflections every 180 reflections
15859 measured reflections intensity decay: none
5687 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
5687 reflectionsΔρmin = 0.37 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50001.00000.00000.0369 (2)
P10.98034 (6)0.31631 (12)0.18127 (5)0.0384 (3)
C10.9210 (2)0.1715 (5)0.12067 (17)0.0409 (9)
C230.6199 (3)0.6691 (5)0.0626 (2)0.0522 (11)
C130.9085 (2)0.4607 (4)0.21230 (17)0.0381 (9)
N10.5958 (2)0.8112 (4)0.06046 (17)0.0547 (9)
C180.8580 (3)0.5834 (5)0.17119 (19)0.0487 (10)
H180.85920.58380.12810.058*
N40.4247 (2)1.0155 (5)0.07382 (18)0.0620 (10)
C250.3791 (3)1.0114 (5)0.1080 (2)0.0469 (10)
C191.0446 (3)0.1836 (5)0.24372 (19)0.0494 (10)
H19A1.09270.13300.22830.059*
H19B1.06940.25940.27940.059*
C140.9073 (3)0.4616 (5)0.27653 (19)0.0462 (10)
H140.94070.38110.30420.055*
N30.5785 (2)1.2368 (4)0.04030 (17)0.0539 (9)
C150.8559 (3)0.5830 (6)0.2995 (2)0.0606 (12)
H150.85500.58420.34260.073*
C20.8313 (2)0.1797 (5)0.09785 (18)0.0472 (10)
H20.79900.26570.11300.057*
N50.3353 (3)0.9923 (6)0.15235 (19)0.0762 (12)
C60.9684 (3)0.0395 (5)0.0976 (2)0.0555 (11)
H61.02850.03120.11290.067*
C240.6096 (3)1.3704 (5)0.0520 (2)0.0525 (11)
C200.9950 (3)0.0351 (6)0.2677 (2)0.0670 (14)
H20A0.96830.03940.23210.080*
H20B0.94870.08470.28550.080*
C170.8068 (3)0.7029 (6)0.1939 (2)0.0575 (11)
H170.77320.78320.16630.069*
N20.6550 (3)0.5137 (5)0.0674 (3)0.110 (2)
C71.0580 (3)0.4417 (6)0.0837 (2)0.0672 (13)
H71.02330.36170.05660.081*
C30.7895 (3)0.0601 (6)0.0525 (2)0.0591 (12)
H30.72940.06560.03730.071*
C160.8055 (3)0.7032 (6)0.2580 (2)0.0601 (12)
H160.77090.78400.27350.072*
C260.2628 (3)1.0763 (6)0.1507 (2)0.0580 (12)
C50.9263 (3)0.0765 (6)0.0528 (2)0.0663 (13)
H50.95810.16320.03750.080*
C40.8376 (3)0.0671 (6)0.0299 (2)0.0633 (13)
H40.80980.14660.00090.076*
C111.1020 (4)0.5746 (7)0.1848 (2)0.0814 (16)
H111.09750.58790.22690.098*
C211.0552 (4)0.0768 (6)0.3188 (3)0.0907 (18)
H21A1.02230.17800.32780.109*
H21B1.10270.12040.30100.109*
C81.1166 (4)0.5498 (8)0.0605 (3)0.0869 (17)
H81.12150.54010.01830.104*
C101.1609 (4)0.6794 (8)0.1609 (3)0.104 (2)
H101.19710.75800.18760.125*
C91.1649 (4)0.6655 (7)0.0990 (3)0.0866 (17)
H91.20230.73880.08310.104*
C221.0917 (4)0.0086 (8)0.3774 (3)0.107 (2)
H22A1.13210.09710.37050.160*
H22B1.12160.07610.40760.160*
H22C1.04590.06250.39380.160*
N60.1989 (3)1.1341 (6)0.1550 (3)0.1090 (18)
C121.0516 (3)0.4543 (5)0.1471 (2)0.0467 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0394 (5)0.0244 (4)0.0471 (5)0.0001 (3)0.0101 (4)0.0043 (4)
P10.0339 (5)0.0373 (5)0.0436 (6)0.0010 (4)0.0081 (4)0.0026 (4)
C10.038 (2)0.042 (2)0.043 (2)0.0033 (17)0.0096 (17)0.0004 (17)
C230.040 (2)0.033 (2)0.073 (3)0.0076 (18)0.010 (2)0.007 (2)
C130.038 (2)0.036 (2)0.039 (2)0.0030 (16)0.0064 (16)0.0019 (16)
N10.051 (2)0.0312 (18)0.076 (3)0.0011 (16)0.0026 (18)0.0024 (17)
C180.055 (3)0.052 (2)0.039 (2)0.008 (2)0.0108 (19)0.0033 (19)
N40.067 (3)0.058 (2)0.069 (3)0.001 (2)0.033 (2)0.005 (2)
C250.049 (2)0.040 (2)0.049 (2)0.001 (2)0.005 (2)0.004 (2)
C190.052 (2)0.046 (2)0.046 (2)0.0041 (19)0.0004 (19)0.0011 (19)
C140.046 (2)0.051 (2)0.042 (2)0.0005 (19)0.0103 (18)0.0005 (18)
N30.062 (2)0.0261 (17)0.069 (2)0.0046 (16)0.0046 (18)0.0071 (16)
C150.069 (3)0.074 (3)0.040 (3)0.001 (3)0.014 (2)0.014 (2)
C20.039 (2)0.054 (2)0.049 (2)0.0014 (19)0.0105 (18)0.007 (2)
N50.070 (3)0.096 (3)0.072 (3)0.024 (2)0.036 (2)0.025 (2)
C60.044 (2)0.060 (3)0.064 (3)0.002 (2)0.014 (2)0.015 (2)
C240.047 (2)0.031 (2)0.068 (3)0.0077 (19)0.010 (2)0.001 (2)
C200.075 (3)0.053 (3)0.066 (3)0.016 (2)0.001 (2)0.011 (2)
C170.059 (3)0.053 (3)0.056 (3)0.013 (2)0.005 (2)0.000 (2)
N20.059 (3)0.036 (2)0.200 (6)0.0019 (19)0.044 (3)0.022 (3)
C70.069 (3)0.071 (3)0.064 (3)0.013 (3)0.021 (2)0.006 (2)
C30.046 (3)0.065 (3)0.062 (3)0.011 (2)0.003 (2)0.012 (2)
C160.057 (3)0.057 (3)0.069 (3)0.009 (2)0.019 (2)0.020 (2)
C260.054 (3)0.058 (3)0.066 (3)0.007 (2)0.022 (2)0.008 (2)
C50.070 (3)0.058 (3)0.072 (3)0.002 (2)0.019 (3)0.019 (2)
C40.080 (4)0.056 (3)0.052 (3)0.011 (3)0.010 (2)0.015 (2)
C110.104 (4)0.084 (4)0.061 (3)0.041 (3)0.030 (3)0.003 (3)
C210.138 (5)0.045 (3)0.080 (4)0.004 (3)0.004 (4)0.013 (3)
C80.095 (4)0.100 (4)0.074 (4)0.020 (4)0.036 (3)0.008 (3)
C100.113 (5)0.107 (5)0.086 (4)0.061 (4)0.008 (4)0.008 (4)
C90.083 (4)0.098 (4)0.079 (4)0.029 (3)0.019 (3)0.018 (3)
C220.142 (6)0.087 (4)0.080 (4)0.004 (4)0.001 (4)0.016 (4)
N60.091 (4)0.105 (4)0.152 (5)0.038 (3)0.071 (3)0.026 (3)
C120.046 (2)0.044 (2)0.052 (3)0.0024 (18)0.0139 (19)0.0043 (19)
Geometric parameters (Å, º) top
Mn1—N4i2.183 (4)C6—H60.9300
Mn1—N42.183 (4)C24—N2ii1.304 (5)
Mn1—N32.245 (3)C20—C211.536 (6)
Mn1—N3i2.245 (3)C20—H20A0.9700
Mn1—N12.268 (3)C20—H20B0.9700
Mn1—N1i2.268 (3)C17—C161.382 (6)
P1—C191.799 (4)C17—H170.9300
P1—C11.800 (4)N2—C24iii1.304 (5)
P1—C131.806 (4)C7—C121.392 (6)
P1—C121.806 (4)C7—C81.405 (7)
C1—C21.386 (5)C7—H70.9300
C1—C61.405 (5)C3—C41.380 (6)
C23—N11.143 (4)C3—H30.9300
C23—N21.299 (5)C16—H160.9300
C13—C141.385 (5)C26—N61.118 (6)
C13—C181.404 (5)C5—C41.372 (6)
C18—C171.373 (5)C5—H50.9300
C18—H180.9300C4—H40.9300
N4—C251.136 (5)C11—C121.355 (6)
C25—N51.302 (6)C11—C101.402 (7)
C19—C201.526 (5)C11—H110.9300
C19—H19A0.9700C21—C221.421 (7)
C19—H19B0.9700C21—H21A0.9700
C14—C151.388 (6)C21—H21B0.9700
C14—H140.9300C8—C91.325 (7)
N3—C241.131 (4)C8—H80.9300
C15—C161.394 (6)C10—C91.350 (7)
C15—H150.9300C10—H100.9300
C2—C31.388 (5)C9—H90.9300
C2—H20.9300C22—H22A0.9600
N5—C261.299 (6)C22—H22B0.9600
C6—C51.365 (6)C22—H22C0.9600
N4—Mn1—N4i180.0N3—C24—N2ii172.7 (4)
N4i—Mn1—N389.07 (13)C19—C20—C21111.9 (4)
N4—Mn1—N390.93 (13)C19—C20—H20A109.2
N4i—Mn1—N3i90.93 (13)C21—C20—H20A109.2
N4—Mn1—N3i89.07 (13)C19—C20—H20B109.2
N3—Mn1—N3i180.0C21—C20—H20B109.2
N4i—Mn1—N189.13 (14)H20A—C20—H20B107.9
N4—Mn1—N190.87 (14)C18—C17—C16119.7 (4)
N3—Mn1—N192.83 (12)C18—C17—H17120.1
N3i—Mn1—N187.17 (12)C16—C17—H17120.1
N4i—Mn1—N1i90.87 (14)C23—N2—C24iii122.8 (4)
N4—Mn1—N1i89.13 (14)C12—C7—C8120.1 (5)
N3—Mn1—N1i87.17 (12)C12—C7—H7119.9
N3i—Mn1—N1i92.83 (12)C8—C7—H7119.9
N1—Mn1—N1i180.0C4—C3—C2119.8 (4)
C19—P1—C1108.15 (18)C4—C3—H3120.1
C19—P1—C13111.02 (18)C2—C3—H3120.1
C1—P1—C13111.93 (17)C17—C16—C15120.3 (4)
C19—P1—C12109.49 (19)C17—C16—H16119.9
C1—P1—C12109.21 (18)C15—C16—H16119.9
C13—P1—C12107.02 (18)N6—C26—N5171.3 (5)
C2—C1—C6119.0 (4)C6—C5—C4120.9 (4)
C2—C1—P1123.4 (3)C6—C5—H5119.5
C6—C1—P1117.5 (3)C4—C5—H5119.5
N1—C23—N2174.3 (4)C5—C4—C3120.1 (4)
C14—C13—C18119.5 (3)C5—C4—H4119.9
C14—C13—P1121.3 (3)C3—C4—H4119.9
C18—C13—P1119.0 (3)C12—C11—C10120.7 (5)
C23—N1—Mn1142.5 (3)C12—C11—H11119.7
C17—C18—C13120.6 (4)C10—C11—H11119.7
C17—C18—H18119.7C22—C21—C20116.3 (5)
C13—C18—H18119.7C22—C21—H21A108.2
C25—N4—Mn1172.4 (4)C20—C21—H21A108.2
N4—C25—N5171.8 (5)C22—C21—H21B108.2
C20—C19—P1115.0 (3)C20—C21—H21B108.2
C20—C19—H19A108.5H21A—C21—H21B107.4
P1—C19—H19A108.5C9—C8—C7119.8 (5)
C20—C19—H19B108.5C9—C8—H8120.1
P1—C19—H19B108.5C7—C8—H8120.1
H19A—C19—H19B107.5C9—C10—C11119.7 (5)
C15—C14—C13119.7 (4)C9—C10—H10120.2
C15—C14—H14120.1C11—C10—H10120.2
C13—C14—H14120.1C8—C9—C10121.5 (5)
C24—N3—Mn1168.4 (3)C8—C9—H9119.3
C14—C15—C16120.1 (4)C10—C9—H9119.3
C14—C15—H15120.0C21—C22—H22A109.5
C16—C15—H15120.0C21—C22—H22B109.5
C1—C2—C3120.2 (4)H22A—C22—H22B109.5
C1—C2—H2119.9C21—C22—H22C109.5
C3—C2—H2119.9H22A—C22—H22C109.5
C26—N5—C25121.9 (4)H22B—C22—H22C109.5
C5—C6—C1119.9 (4)C11—C12—C7118.2 (4)
C5—C6—H6120.0C11—C12—P1118.8 (3)
C1—C6—H6120.0C7—C12—P1123.0 (3)
C19—P1—C1—C2126.8 (3)N1—Mn1—N3—C24164.2 (18)
C13—P1—C1—C24.2 (4)N1i—Mn1—N3—C2415.8 (18)
C12—P1—C1—C2114.1 (3)C13—C14—C15—C160.2 (6)
C19—P1—C1—C650.6 (4)C6—C1—C2—C30.6 (6)
C13—P1—C1—C6173.2 (3)P1—C1—C2—C3178.0 (3)
C12—P1—C1—C668.5 (4)N4—C25—N5—C26175 (3)
C19—P1—C13—C140.3 (4)C2—C1—C6—C50.9 (6)
C1—P1—C13—C14121.2 (3)P1—C1—C6—C5178.4 (4)
C12—P1—C13—C14119.2 (3)Mn1—N3—C24—N2ii139 (3)
C19—P1—C13—C18175.3 (3)P1—C19—C20—C21177.5 (4)
C1—P1—C13—C1863.7 (3)C13—C18—C17—C160.5 (6)
C12—P1—C13—C1855.9 (3)N1—C23—N2—C24iii178 (100)
N2—C23—N1—Mn1142 (6)C1—C2—C3—C40.2 (6)
N4i—Mn1—N1—C2367.0 (6)C18—C17—C16—C150.0 (7)
N4—Mn1—N1—C23113.0 (6)C14—C15—C16—C170.3 (7)
N3—Mn1—N1—C23156.0 (6)C25—N5—C26—N6165 (4)
N3i—Mn1—N1—C2324.0 (6)C1—C6—C5—C40.4 (7)
N1i—Mn1—N1—C2378 (20)C6—C5—C4—C30.4 (8)
C14—C13—C18—C170.7 (6)C2—C3—C4—C50.7 (7)
P1—C13—C18—C17175.8 (3)C19—C20—C21—C2266.0 (7)
N4i—Mn1—N4—C2535 (100)C12—C7—C8—C91.0 (8)
N3—Mn1—N4—C25164 (3)C12—C11—C10—C92.8 (10)
N3i—Mn1—N4—C2516 (3)C7—C8—C9—C101.8 (10)
N1—Mn1—N4—C25103 (3)C11—C10—C9—C82.7 (10)
N1i—Mn1—N4—C2577 (3)C10—C11—C12—C72.1 (8)
Mn1—N4—C25—N5106 (4)C10—C11—C12—P1177.3 (5)
C1—P1—C19—C2049.3 (4)C8—C7—C12—C111.2 (7)
C13—P1—C19—C2073.9 (4)C8—C7—C12—P1178.2 (4)
C12—P1—C19—C20168.2 (3)C19—P1—C12—C1162.3 (4)
C18—C13—C14—C150.3 (6)C1—P1—C12—C11179.5 (4)
P1—C13—C14—C15175.3 (3)C13—P1—C12—C1158.1 (4)
N4i—Mn1—N3—C2475.1 (18)C19—P1—C12—C7117.1 (4)
N4—Mn1—N3—C24104.9 (18)C1—P1—C12—C71.1 (4)
N3i—Mn1—N3—C2466.7 (18)C13—P1—C12—C7122.5 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···N6iv0.972.543.424 (7)152
C19—H19B···N5v0.972.563.491 (6)161
Symmetry codes: (iv) x+1, y1, z; (v) x+3/2, y1/2, z+1/2.

Experimental details

(1)(2)
Crystal data
Chemical formula(C4H12N)[Mn2(C2N3)5](C22H24P)2[Mn(C2N3)4]
Mr514.28957.90
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)293293
a, b, c (Å)10.368 (2), 10.377 (2), 11.898 (2)15.711 (3), 7.6050 (15), 21.499 (4)
α, β, γ (°)65.64 (3), 82.28 (3), 62.83 (3)90, 102.86 (3), 90
V3)1035.1 (3)2504.3 (9)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.260.38
Crystal size (mm)0.30 × 0.25 × 0.200.30 × 0.28 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Rigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Multi-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.704, 0.7870.896, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
10736, 4723, 4245 15859, 5687, 2956
Rint0.0290.078
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.09 0.070, 0.193, 1.02
No. of reflections47235687
No. of parameters289305
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.510.37, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected geometric parameters (Å, º) for (1) top
Mn2—N11i2.152 (2)N1—C11.148 (3)
Mn2—N15ii2.154 (2)N3—C41.155 (3)
Mn2—N13iii2.154 (2)N6—C91.150 (3)
Mn2—N8iv2.203 (2)N7—C11.317 (3)
Mn2—N72.397 (2)N11—C61.143 (3)
Mn2—N9v2.421 (2)N15—C101.150 (3)
Mn1—N62.185 (2)N13—C81.147 (3)
Mn1—N52.188 (2)N10—C61.291 (3)
Mn1—N42.198 (2)N10—C51.291 (3)
Mn1—N12.240 (2)N2—C31.144 (3)
Mn1—N22.250 (2)N16—C121.409 (5)
Mn1—N32.389 (2)N16—C141.414 (5)
N15ii—Mn2—N13iii98.47 (9)N4—Mn1—N1171.36 (8)
N11i—Mn2—N8iv167.94 (8)N6—Mn1—N3174.12 (8)
N15ii—Mn2—N7167.69 (8)C1—N1—Mn1151.2 (2)
N8iv—Mn2—N9v81.61 (8)C4—N3—Mn1125.72 (19)
N6—Mn1—N194.57 (9)C9—N6—Mn1163.5 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x, y+2, z+2; (iv) x, y+2, z+1; (v) x+1, y+2, z+1.
Selected geometric parameters (Å, º) for (2) top
Mn1—N42.183 (4)Mn1—N12.268 (3)
Mn1—N32.245 (3)
N4—Mn1—N4i180.0N4i—Mn1—N189.13 (14)
N4—Mn1—N390.93 (13)N3—Mn1—N192.83 (12)
N3—Mn1—N3i180.0
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···N6ii0.972.543.424 (7)151.8
C19—H19B···N5iii0.972.563.491 (6)161.0
Symmetry codes: (ii) x+1, y1, z; (iii) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds