organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o782-o783

Crystal structure of O-ethyl N-(eth­­oxy­carbon­yl)thio­carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: barany@umn.edu

Edited by S. V. Lindeman, Marquette University, USA (Received 26 July 2015; accepted 10 September 2015; online 26 September 2015)

The title compound, C6H11NO3S, provides entries to novel carbamoyl disulfanes and related compounds of inter­est to our laboratory. The atoms of the central O(C=S)N(C=O)O fragment have an r.m.s. deviation of 0.1077 Å from the respective least-squares plane. While several conformational orientations are conceivable, the crystal structure shows only the one in which the carbonyl and the thio­carbonyl moieties are anti to each other across the central conjugated C—N—C moiety. Pairs of 2.54 Å N—H⋯S=C hydrogen bonds between adjacent mol­ecules form centrosymmetric dimers in the crystal.

1. Related literature

A variety of methods to prepare the title compound and/or similar structures have been reported; see Delitsch (1874[Delitsch, G. (1874). J. Prakt. Chem. 10, 116-128.]); Atkins et al. (1973[Atkins, P. R., Glue, S. E. J. & Kay, I. T. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 2644-2646.]); Barany (1977[Barany, G. (1977). PhD thesis, The Rockefeller University, New York, USA.], and references therein); Vallejos et al. (2009[Vallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Védova, C. O. D. (2009). Polyhedron, 28, 937-946.], and references therein); Barany et al. (2015[Barany, G., Britton, D., Chen, L., Hammer, R. P., Henley, M. J., Schrader, A. M. & Young, V. G. (2015). J. Org. Chem. 80. Submitted.], and references therein). For closely related structures, see CSD (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) refcodes: BORBOA (Vallejos et al., 2009[Vallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Védova, C. O. D. (2009). Polyhedron, 28, 937-946.]); GAPPAQ (Kang et al., 2012[Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o300.]). For applications of the title compound in inter­esting chemistry, see: Atkins et al. (1973[Atkins, P. R., Glue, S. E. J. & Kay, I. T. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 2644-2646.]); Barany & Merrifield (1977[Barany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363-7365.]); Shen et al. (1998[Shen, W. Z., Fornasiero, D. & Ralston, J. (1998). Miner. Eng. 11, 145-158.], and references therein); Barany et al. (2006[Barany, M. J., Corey, M. M., Hanson, M. C., Majerle, R. S., Hammer, R. P. & Barany, G. (2006). Understanding Biology Using Peptides. Proceedings of the Nineteenth American Peptide Symposium, edited by S. E. Blondelle, pp. 196-197. Berlin: Springer.], 2015[Barany, G., Britton, D., Chen, L., Hammer, R. P., Henley, M. J., Schrader, A. M. & Young, V. G. (2015). J. Org. Chem. 80. Submitted.]); Vallejos et al. (2009[Vallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Védova, C. O. D. (2009). Polyhedron, 28, 937-946.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H11NO3S

  • Mr = 177.22

  • Triclinic, [P \overline 1]

  • a = 4.1782 (17) Å

  • b = 9.236 (4) Å

  • c = 11.820 (5) Å

  • α = 98.190 (5)°

  • β = 98.571 (5)°

  • γ = 102.360 (5)°

  • V = 433.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 K

  • 0.50 × 0.10 × 0.05 mm

2.2. Data collection

  • Siemens SMART Platform CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.984

  • 4216 measured reflections

  • 1518 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.087

  • S = 1.07

  • 1518 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.88 2.54 3.388 (2) 161
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

The title compound, O-ethyl N-(eth­oxy­carbonyl)­thio­carbamate (1), C6H11NO3S, CAS registry # 5585-23-9, also known as (N-eth­oxy­thio­carbonyl)­urethane, was of inter­est to a multifaceted organosulfur research program that includes among its goals the development of amino protecting groups removable under mild conditions (Barany, 1977; Barany & Merrifield; 1977; Barany et al., 2006, Barany et al., 2015). Specifically, we have shown that reaction of 1 with (chloro­carbonyl)­sulfenyl chloride gives rise to the novel (chloro­carbonyl)(N-eth­oxy­carbonyl­carbamoyl)disulfane, rather than the expected putative N-eth­oxy­carbonyl-1,2,4-di­thia­zolidine-3,5-dione (Barany et al., 2015). Variations in reaction conditions and/or the nature of sulfenyl chlorides that react with 1 result in additional unusual structures which model previously uncharacterized inter­mediates in the mechanisms of reactions that successfully elaborate N-alkyl-1,2,4-di­thia­zolidine-3,5-dione heterocycles. Thio­carbamate 1 is also useful as an entry to pharmaceutically relevant heterocycles (Atkins et al., 1973), as an additive in the purification of pyrite (Shen et al., 1998), and as a precursor to compounds of inter­est to the agrochemical industry (Vallejos et al., 2009).

X-ray quality crystals of 1 were readily obtained after bulk purification (recrystallization from hot hexane, about 7 mL/g).

All molecular parameters of 1 are within expected ranges. Ignoring the ethyl groups, the central fragment of 1 has a r.m.s. deviation of 0.1077 Å from the least squares plane [i.e., the plane consisting of atoms O1, C1, S1, N1, C2, O2, O3]. The largest deviation of any torsion angle from 0 or 180° is 11.5 (3)° for C2—N1—C1—O1. Although there are multiple theoretically stable conformations of 1 (Vallejos et al., 2009), the molecule uniquely assumes the conformation where the carbonyl and the thio­carbonyl moieties are anti to each other across the central C–N–C moiety.

In the crystal, pairs of inter­molecular N–H···S=C hydrogen bonds between two adjacent molecules form centrosymmetric dimers (see Figure 2).

A search of the Cambridge Structural Database (CSD; Version 5.36, update of November 2014; Groom & Allen, 2014) revealed two similar structures, O-benzyl N-(eth­oxy­carbonyl)­thio­carbamate (2) (Kang et al., 2012) [i.e., BnO(C=S)NH(C=O)OEt], and O-ethyl N-(meth­oxy­carbonyl)­thio­carbamate (3) (Vallejos et al., 2009) [i.e., EtO(C=S)NH(C=O)OMe]. Inter­estingly, both 2 and 3 assume the same conformation as 1, where the thio­carbonyl and carbonyl moieties are anti to each other across the C–N–C moiety. In all three structures, similar length N–H···S=C hydrogen bonds form between adjacent molecules.

Related literature top

A variety of methods to prepare the title compound and/or similar structures have been reported; see Delitsch (1874); Atkins et al. (1973); Barany (1977, and references therein); Vallejos et al. (2009, and references therein); Barany et al. (2015, and references therein). For closely related structures, see CSD (Groom & Allen, 2014) refcodes: BORBOA (Vallejos et al., 2009); GAPPAQ (Kang et al., 2012). For applications of the title compound in interesting chemistry, see: Atkins et al. (1973); Barany & Merrifield (1977); Shen et al. (1998, and references therein); Barany et al. (2006, 2015); Vallejos et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystallographic structure of O-ethyl N-(ethoxycarbonyl)thiocarbamate (1) showing 50% probability displacement ellipsoids with all non-hydrogen atoms labeled and numbered.
[Figure 2] Fig. 2. View of crystal packing down the a-axis, with hydrogen bonds highlighted and atoms involved in hydrogen bonding labeled and numbered.
O-Ethyl N-(ethoxycarbonyl)thiocarbamate top
Crystal data top
C6H11NO3SZ = 2
Mr = 177.22F(000) = 188
Triclinic, P1Dx = 1.358 Mg m3
a = 4.1782 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.236 (4) ÅCell parameters from 1518 reflections
c = 11.820 (5) Åθ = 2.3–25.1°
α = 98.190 (5)°µ = 0.34 mm1
β = 98.571 (5)°T = 173 K
γ = 102.360 (5)°Thin plates, colorless
V = 433.3 (3) Å30.50 × 0.10 × 0.05 mm
Data collection top
Siemens SMART Platform CCD
diffractometer
1518 independent reflections
Radiation source: normal-focus sealed tube1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
area detector, ω scans per phiθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 44
Tmin = 0.851, Tmax = 0.984k = 1011
4216 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.149P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1518 reflectionsΔρmax = 0.25 e Å3
102 parametersΔρmin = 0.24 e Å3
Crystal data top
C6H11NO3Sγ = 102.360 (5)°
Mr = 177.22V = 433.3 (3) Å3
Triclinic, P1Z = 2
a = 4.1782 (17) ÅMo Kα radiation
b = 9.236 (4) ŵ = 0.34 mm1
c = 11.820 (5) ÅT = 173 K
α = 98.190 (5)°0.50 × 0.10 × 0.05 mm
β = 98.571 (5)°
Data collection top
Siemens SMART Platform CCD
diffractometer
1518 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1194 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.984Rint = 0.037
4216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
1518 reflectionsΔρmin = 0.24 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08610 (15)0.30032 (7)0.46293 (5)0.0321 (2)
O10.0371 (4)0.25383 (16)0.67694 (13)0.0305 (4)
O20.5131 (4)0.40638 (17)0.85405 (13)0.0346 (4)
O30.8025 (4)0.61521 (17)0.80409 (13)0.0331 (4)
N10.4306 (5)0.4541 (2)0.66587 (16)0.0300 (5)
H1A0.50910.52110.62470.036*
C10.1822 (5)0.3340 (2)0.60663 (19)0.0254 (5)
C20.5755 (6)0.4835 (3)0.78377 (19)0.0273 (5)
C30.2164 (6)0.1158 (2)0.6252 (2)0.0304 (6)
H3A0.11880.04350.57970.037*
H3B0.40040.13810.57280.037*
C40.3422 (6)0.0515 (3)0.7242 (2)0.0402 (6)
H4A0.51510.04170.69360.060*
H4B0.43630.12450.76870.060*
H4C0.15760.02950.77500.060*
C50.9980 (6)0.6597 (3)0.92221 (18)0.0301 (6)
H5A1.13170.58620.93890.036*
H5B0.84940.66470.97980.036*
C61.2223 (7)0.8123 (3)0.9279 (2)0.0413 (7)
H6A1.36780.84471.00450.062*
H6B1.08650.88500.91530.062*
H6C1.35880.80680.86750.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0366 (4)0.0312 (4)0.0232 (3)0.0006 (3)0.0001 (2)0.0045 (2)
O10.0307 (9)0.0285 (9)0.0258 (9)0.0040 (7)0.0025 (7)0.0037 (7)
O20.0404 (10)0.0341 (9)0.0241 (9)0.0032 (8)0.0031 (7)0.0103 (8)
O30.0388 (10)0.0286 (9)0.0228 (8)0.0064 (8)0.0022 (7)0.0054 (7)
N10.0348 (11)0.0271 (10)0.0229 (10)0.0034 (9)0.0018 (9)0.0082 (8)
C10.0242 (12)0.0229 (12)0.0281 (12)0.0053 (10)0.0024 (10)0.0048 (10)
C20.0302 (13)0.0290 (13)0.0222 (12)0.0064 (11)0.0056 (10)0.0037 (10)
C30.0296 (13)0.0245 (12)0.0325 (13)0.0004 (10)0.0023 (11)0.0027 (10)
C40.0386 (15)0.0377 (15)0.0406 (15)0.0014 (12)0.0064 (12)0.0121 (12)
C50.0317 (13)0.0327 (13)0.0202 (12)0.0004 (11)0.0021 (10)0.0047 (10)
C60.0447 (15)0.0356 (15)0.0337 (14)0.0040 (12)0.0033 (12)0.0055 (11)
Geometric parameters (Å, º) top
S1—C11.654 (2)C3—H3B0.9900
O1—C11.319 (3)C4—H4A0.9800
O1—C31.459 (3)C4—H4B0.9800
O2—C21.191 (3)C4—H4C0.9800
O3—C21.338 (3)C5—C61.503 (3)
O3—C51.462 (3)C5—H5A0.9900
N1—C11.366 (3)C5—H5B0.9900
N1—C21.397 (3)C6—H6A0.9800
N1—H1A0.8800C6—H6B0.9800
C3—C41.498 (3)C6—H6C0.9800
C3—H3A0.9900
C1—O1—C3118.15 (17)C3—C4—H4B109.5
C2—O3—C5115.13 (16)H4A—C4—H4B109.5
C1—N1—C2128.02 (19)C3—C4—H4C109.5
C1—N1—H1A116.0H4A—C4—H4C109.5
C2—N1—H1A116.0H4B—C4—H4C109.5
O1—C1—N1112.26 (19)O3—C5—C6106.43 (18)
O1—C1—S1126.16 (16)O3—C5—H5A110.4
N1—C1—S1121.57 (17)C6—C5—H5A110.4
O2—C2—O3125.7 (2)O3—C5—H5B110.4
O2—C2—N1127.0 (2)C6—C5—H5B110.4
O3—C2—N1107.34 (18)H5A—C5—H5B108.6
O1—C3—C4106.44 (18)C5—C6—H6A109.5
O1—C3—H3A110.4C5—C6—H6B109.5
C4—C3—H3A110.4H6A—C6—H6B109.5
O1—C3—H3B110.4C5—C6—H6C109.5
C4—C3—H3B110.4H6A—C6—H6C109.5
H3A—C3—H3B108.6H6B—C6—H6C109.5
C3—C4—H4A109.5
C3—O1—C1—N1175.56 (18)C5—O3—C2—N1175.86 (18)
C3—O1—C1—S14.8 (3)C1—N1—C2—O22.0 (4)
C2—N1—C1—O111.6 (3)C1—N1—C2—O3178.5 (2)
C2—N1—C1—S1168.77 (18)C1—O1—C3—C4178.52 (19)
C5—O3—C2—O23.6 (3)C2—O3—C5—C6177.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.543.388 (2)161
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.543.388 (2)161.2
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Minnesota CHEM 5755 class and X-Ray Crystallographic Laboratory for assistance with this structure determination.

References

First citationAtkins, P. R., Glue, S. E. J. & Kay, I. T. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 2644–2646.  CrossRef Google Scholar
First citationBarany, G. (1977). PhD thesis, The Rockefeller University, New York, USA.  Google Scholar
First citationBarany, G., Britton, D., Chen, L., Hammer, R. P., Henley, M. J., Schrader, A. M. & Young, V. G. (2015). J. Org. Chem. 80. Submitted.  Google Scholar
First citationBarany, M. J., Corey, M. M., Hanson, M. C., Majerle, R. S., Hammer, R. P. & Barany, G. (2006). Understanding Biology Using Peptides. Proceedings of the Nineteenth American Peptide Symposium, edited by S. E. Blondelle, pp. 196–197. Berlin: Springer.  Google Scholar
First citationBarany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363–7365.  CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelitsch, G. (1874). J. Prakt. Chem. 10, 116–128.  CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o300.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, W. Z., Fornasiero, D. & Ralston, J. (1998). Miner. Eng. 11, 145–158.  CrossRef CAS Google Scholar
First citationVallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Védova, C. O. D. (2009). Polyhedron, 28, 937–946.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o782-o783
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds