organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­cyclo­pentyl-N′′,N′′-di­methyl­phospho­ric tri­amide

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 27 October 2011; accepted 15 November 2011; online 23 November 2011)

The P atom in the title mol­ecule, C12H26N3OP, has a distorted tetra­hedral configuration: its bond angles lie in the range 101.1 (2)–119.1 (2)°. The P—N bonds to the two cyclo­pentyl­amido moieties are significantly different [1.619 (4) and 1.643 (4) Å], with the shorter bond related to an anti orientation of the lone electron pair of the corresponding N atom relative to the P=O bond. The O atom of the P=O group acts as a double hydrogen-bond acceptor and is involved in two different inter­molecular N—H⋯O(P) hydrogen bonds, building R22(8) rings that are further linked into chains along [001].

Related literature

For background to phospho­ric triamide compounds, see: Pourayoubi & Tarahhomi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For applications of phospho­ric triamides as oxygen-donor ligands, see: Pourayoubi & Golen et al. (2011[Pourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011). Acta Cryst. C67, m160-m164.]). For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.]). For double hydrogen-bond acceptors, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C12H26N3OP

  • Mr = 259.33

  • Orthorhombic, P c a 21

  • a = 10.962 (5) Å

  • b = 16.663 (5) Å

  • c = 8.079 (5) Å

  • V = 1475.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 291 K

  • 0.35 × 0.11 × 0.05 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.961, Tmax = 1.000

  • 7303 measured reflections

  • 2573 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.108

  • S = 0.88

  • 2573 reflections

  • 151 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1093 Friedel pairs

  • Flack parameter: −0.20 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 2.13 2.960 (5) 167
N2—H2⋯O1ii 0.85 2.33 3.131 (5) 158
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of the title molecule was done as part of a project on the synthesis of new phosphoric triamide compounds (Pourayoubi & Tarahhomi et al., 2011) and their application as oxygen donor ligands (Pourayoubi & Golen et al., 2011).

The PO and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).

The tetrahedral configuration of phosphorus atom (Fig. 1) is significantly distorted as it has also been noted for other phosphoric triamides: the bond angles at the P atom vary in the range from 101.1 (2) [N1—P1—N3] to 119.1 (2)° [O1—P1—N1].

The O atom of the PO group acts as a double hydrogen-bond acceptor (Steiner, 2002); so, in the crystal structure, each molecule is hydrogen-bonded to two adjacent molecules by forming the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement parallel to the c axis (Fig. 2, Table 1).

Related literature top

For background to phosphoric triamide compounds, see: Pourayoubi & Tarahhomi et al. (2011). For applications of phosphoric triamides as oxygen-donor ligands, see: Pourayoubi & Golen et al. (2011). For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For double hydrogen-bond acceptors, see: Steiner (2002).

Experimental top

Synthesis of ((CH3)2N)P(O)Cl2: [(CH3)2NH2]Cl (0.184 mol) and P(O)Cl3 (0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuum.

Synthesis of title compound: a solution of cyclopentylamine (14.8 mmol) in CH3CN (25 ml) was added to a solution of ((CH3)2N)P(O)Cl2 (3.7 mmol) in CH3CN (15 ml) at 273 K. After stirring for 4 h, the solvent was removed and the product was washed with deionized water and recrystallized from CH3CN at room temperature.

Refinement top

The N-bound H atoms were found in difference Fourier map and then constrained to refine with the parent atoms with Uiso(H) equal to 1.2Ueq(N). The remaining H atoms were positioned geometrically and constrained to refine in a riding-model approximation with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(methyl). A rotating group model was applied to the methyl groups.

Structure description top

The structure determination of the title molecule was done as part of a project on the synthesis of new phosphoric triamide compounds (Pourayoubi & Tarahhomi et al., 2011) and their application as oxygen donor ligands (Pourayoubi & Golen et al., 2011).

The PO and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).

The tetrahedral configuration of phosphorus atom (Fig. 1) is significantly distorted as it has also been noted for other phosphoric triamides: the bond angles at the P atom vary in the range from 101.1 (2) [N1—P1—N3] to 119.1 (2)° [O1—P1—N1].

The O atom of the PO group acts as a double hydrogen-bond acceptor (Steiner, 2002); so, in the crystal structure, each molecule is hydrogen-bonded to two adjacent molecules by forming the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement parallel to the c axis (Fig. 2, Table 1).

For background to phosphoric triamide compounds, see: Pourayoubi & Tarahhomi et al. (2011). For applications of phosphoric triamides as oxygen-donor ligands, see: Pourayoubi & Golen et al. (2011). For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For double hydrogen-bond acceptors, see: Steiner (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing showing the formation of 1-D arrangement through N—H···O hydrogen bonds (shown as dashed lines). Carbon bound H atoms have been omitted for clarity.
N,N'-Dicyclopentyl-N'',N''-dimethylphosphoric triamide top
Crystal data top
C12H26N3OPF(000) = 568
Mr = 259.33Dx = 1.167 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 2536 reflections
a = 10.962 (5) Åθ = 2.0–27.5°
b = 16.663 (5) ŵ = 0.18 mm1
c = 8.079 (5) ÅT = 291 K
V = 1475.7 (12) Å3Needle, colourless
Z = 40.35 × 0.11 × 0.05 mm
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
2573 independent reflections
Radiation source: fine-focus sealed tube1482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0.15 pixels mm-1θmax = 25.5°, θmin = 2.2°
ω scansh = 1113
Absorption correction: multi-scan
[MULABS (Blessing, 1995) and PLATON (Spek, 2009)]
k = 2020
Tmin = 0.961, Tmax = 1.000l = 89
7303 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
2573 reflectionsΔρmax = 0.16 e Å3
151 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1093 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (18)
Crystal data top
C12H26N3OPV = 1475.7 (12) Å3
Mr = 259.33Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.962 (5) ŵ = 0.18 mm1
b = 16.663 (5) ÅT = 291 K
c = 8.079 (5) Å0.35 × 0.11 × 0.05 mm
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
2573 independent reflections
Absorption correction: multi-scan
[MULABS (Blessing, 1995) and PLATON (Spek, 2009)]
1482 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 1.000Rint = 0.095
7303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.16 e Å3
S = 0.88Δρmin = 0.23 e Å3
2573 reflectionsAbsolute structure: Flack (1983), 1093 Friedel pairs
151 parametersAbsolute structure parameter: 0.20 (18)
1 restraint
Special details top

Experimental. IR (KBr, cm-1): 3290, 3151, 2955, 2866, 2835, 2794, 1459, 1291, 1197, 1159, 1107, 1090, 1030, 993, 932, 889, 762, 703, 555, 496, 464.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.83134 (10)1.79029 (6)0.70933 (17)0.0402 (3)
O10.6995 (2)1.78019 (14)0.7413 (4)0.0476 (9)
N10.8963 (4)1.73464 (16)0.5707 (5)0.0418 (10)
H10.87711.74220.47000.050*
N20.9056 (3)1.77094 (19)0.8814 (5)0.0452 (10)
H20.86161.78160.96510.054*
N30.8558 (4)1.8809 (2)0.6328 (4)0.0545 (12)
C10.9062 (4)1.6462 (2)0.5936 (6)0.0458 (12)
H1A0.92221.63520.71080.055*
C21.0064 (5)1.6094 (3)0.4926 (9)0.088 (2)
H2A1.08411.61470.54890.106*
H2B1.01211.63540.38540.106*
C30.9725 (6)1.5223 (3)0.4730 (10)0.100 (2)
H3A0.98841.50460.36060.121*
H3B1.02011.48940.54810.121*
C40.8410 (6)1.5149 (3)0.5115 (10)0.096 (2)
H4A0.82911.48210.60930.115*
H4B0.79791.49030.41970.115*
C50.7943 (5)1.5994 (2)0.5411 (7)0.0678 (17)
H5A0.75941.62160.44080.081*
H5B0.73281.59990.62750.081*
C61.0370 (4)1.7749 (2)0.9067 (6)0.0480 (12)
H6A1.07731.77470.79840.058*
C71.0855 (5)1.7061 (3)1.0069 (7)0.0700 (15)
H7A1.02081.68251.07290.084*
H7B1.11881.66500.93480.084*
C81.1810 (7)1.7386 (4)1.1141 (11)0.139 (2)
H8A1.17711.71361.22240.167*
H8B1.26071.72791.06690.167*
C91.1626 (7)1.8212 (4)1.1282 (9)0.139 (2)
H9A1.24011.84881.11660.167*
H9B1.13021.83341.23710.167*
C101.0791 (5)1.8495 (2)1.0034 (8)0.0702 (17)
H10A1.11951.88720.93010.084*
H10B1.00991.87611.05440.084*
C110.9700 (5)1.9066 (3)0.5626 (8)0.0808 (19)
H11A0.95521.94780.48200.121*
H11B1.00941.86190.51030.121*
H11C1.02151.92740.64870.121*
C120.7793 (6)1.9460 (2)0.6916 (10)0.093 (2)
H12A0.77681.98770.60980.139*
H12B0.81221.96690.79290.139*
H12C0.69821.92630.71090.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0424 (6)0.0398 (4)0.0385 (6)0.0033 (5)0.0014 (9)0.0013 (7)
O10.0381 (18)0.0585 (16)0.046 (3)0.0026 (13)0.0026 (18)0.0068 (16)
N10.054 (3)0.0364 (17)0.035 (2)0.0031 (17)0.000 (2)0.0055 (17)
N20.039 (3)0.057 (2)0.039 (2)0.0055 (19)0.006 (2)0.0082 (19)
N30.060 (3)0.0419 (19)0.061 (3)0.0004 (19)0.010 (2)0.0020 (16)
C10.058 (3)0.042 (2)0.037 (3)0.010 (2)0.002 (3)0.001 (2)
C20.073 (4)0.060 (3)0.131 (6)0.006 (3)0.038 (5)0.004 (4)
C30.112 (6)0.067 (4)0.122 (6)0.022 (3)0.016 (6)0.035 (4)
C40.098 (5)0.051 (3)0.140 (7)0.007 (3)0.010 (6)0.012 (3)
C50.057 (4)0.052 (3)0.095 (5)0.002 (2)0.006 (3)0.002 (3)
C60.038 (3)0.050 (3)0.056 (3)0.000 (2)0.004 (3)0.001 (2)
C70.068 (4)0.058 (3)0.085 (4)0.005 (3)0.017 (4)0.007 (3)
C80.158 (6)0.107 (3)0.154 (5)0.012 (4)0.095 (5)0.004 (3)
C90.158 (6)0.107 (3)0.154 (5)0.012 (4)0.095 (5)0.004 (3)
C100.064 (4)0.047 (3)0.099 (5)0.007 (2)0.017 (4)0.016 (3)
C110.086 (5)0.059 (3)0.097 (5)0.016 (3)0.005 (4)0.025 (3)
C120.129 (5)0.052 (3)0.098 (6)0.015 (3)0.034 (6)0.001 (4)
Geometric parameters (Å, º) top
P1—O11.478 (3)C5—H5A0.9700
P1—N11.619 (4)C5—H5B0.9700
P1—N21.643 (4)C6—C71.500 (6)
P1—N31.653 (4)C6—C101.539 (6)
N1—C11.489 (4)C6—H6A0.9800
N1—H10.8499C7—C81.463 (8)
N2—C61.456 (5)C7—H7A0.9700
N2—H20.8489C7—H7B0.9700
N3—C111.440 (6)C8—C91.395 (8)
N3—C121.451 (6)C8—H8A0.9700
C1—C21.499 (7)C8—H8B0.9700
C1—C51.515 (6)C9—C101.441 (7)
C1—H1A0.9800C9—H9A0.9700
C2—C31.508 (6)C9—H9B0.9700
C2—H2A0.9700C10—H10A0.9700
C2—H2B0.9700C10—H10B0.9700
C3—C41.480 (8)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—C51.516 (6)C12—H12A0.9600
C4—H4A0.9700C12—H12B0.9600
C4—H4B0.9700C12—H12C0.9600
O1—P1—N1119.06 (19)H5A—C5—H5B108.9
O1—P1—N2108.3 (2)N2—C6—C7113.0 (4)
N1—P1—N2104.78 (19)N2—C6—C10113.9 (4)
O1—P1—N3109.13 (18)C7—C6—C10103.7 (4)
N1—P1—N3101.13 (19)N2—C6—H6A108.7
N2—P1—N3114.55 (18)C7—C6—H6A108.7
C1—N1—P1120.9 (3)C10—C6—H6A108.7
C1—N1—H1106.5C8—C7—C6106.9 (4)
P1—N1—H1117.9C8—C7—H7A110.3
C6—N2—P1126.8 (3)C6—C7—H7A110.3
C6—N2—H2116.2C8—C7—H7B110.3
P1—N2—H2110.6C6—C7—H7B110.3
C11—N3—C12114.1 (4)H7A—C7—H7B108.6
C11—N3—P1124.1 (3)C9—C8—C7108.1 (6)
C12—N3—P1117.8 (3)C9—C8—H8A110.1
N1—C1—C2113.0 (4)C7—C8—H8A110.1
N1—C1—C5114.6 (4)C9—C8—H8B110.1
C2—C1—C5103.3 (4)C7—C8—H8B110.1
N1—C1—H1A108.6H8A—C8—H8B108.4
C2—C1—H1A108.6C8—C9—C10110.9 (6)
C5—C1—H1A108.6C8—C9—H9A109.5
C1—C2—C3105.7 (4)C10—C9—H9A109.5
C1—C2—H2A110.6C8—C9—H9B109.5
C3—C2—H2A110.6C10—C9—H9B109.5
C1—C2—H2B110.6H9A—C9—H9B108.0
C3—C2—H2B110.6C9—C10—C6106.4 (4)
H2A—C2—H2B108.7C9—C10—H10A110.5
C4—C3—C2107.3 (4)C6—C10—H10A110.5
C4—C3—H3A110.3C9—C10—H10B110.5
C2—C3—H3A110.3C6—C10—H10B110.5
C4—C3—H3B110.3H10A—C10—H10B108.6
C2—C3—H3B110.3N3—C11—H11A109.5
H3A—C3—H3B108.5N3—C11—H11B109.5
C3—C4—C5106.6 (4)H11A—C11—H11B109.5
C3—C4—H4A110.4N3—C11—H11C109.5
C5—C4—H4A110.4H11A—C11—H11C109.5
C3—C4—H4B110.4H11B—C11—H11C109.5
C5—C4—H4B110.4N3—C12—H12A109.5
H4A—C4—H4B108.6N3—C12—H12B109.5
C1—C5—C4104.4 (4)H12A—C12—H12B109.5
C1—C5—H5A110.9N3—C12—H12C109.5
C4—C5—H5A110.9H12A—C12—H12C109.5
C1—C5—H5B110.9H12B—C12—H12C109.5
C4—C5—H5B110.9
O1—P1—N1—C165.4 (4)C5—C1—C2—C332.8 (6)
N2—P1—N1—C155.8 (4)C1—C2—C3—C417.9 (8)
N3—P1—N1—C1175.1 (3)C2—C3—C4—C54.3 (8)
O1—P1—N2—C6178.9 (3)N1—C1—C5—C4158.6 (5)
N1—P1—N2—C653.0 (4)C2—C1—C5—C435.2 (6)
N3—P1—N2—C656.8 (4)C3—C4—C5—C124.6 (7)
O1—P1—N3—C11169.5 (4)P1—N2—C6—C7138.0 (4)
N1—P1—N3—C1143.2 (4)P1—N2—C6—C10104.0 (5)
N2—P1—N3—C1168.9 (4)N2—C6—C7—C8142.0 (5)
O1—P1—N3—C1234.3 (5)C10—C6—C7—C818.2 (6)
N1—P1—N3—C12160.6 (4)C6—C7—C8—C920.8 (8)
N2—P1—N3—C1287.3 (4)C7—C8—C9—C1014.8 (9)
P1—N1—C1—C2158.0 (4)C8—C9—C10—C62.8 (8)
P1—N1—C1—C584.1 (5)N2—C6—C10—C9132.9 (5)
N1—C1—C2—C3157.2 (5)C7—C6—C10—C99.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.852.132.960 (5)167
N2—H2···O1ii0.852.333.131 (5)158
C11—H11B···N10.962.502.978 (6)110
C12—H12C···O10.962.452.926 (5)111
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H26N3OP
Mr259.33
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)10.962 (5), 16.663 (5), 8.079 (5)
V3)1475.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.11 × 0.05
Data collection
DiffractometerStoe IPDS 2T Image Plate
Absorption correctionMulti-scan
[MULABS (Blessing, 1995) and PLATON (Spek, 2009)]
Tmin, Tmax0.961, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7303, 2573, 1482
Rint0.095
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.108, 0.88
No. of reflections2573
No. of parameters151
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23
Absolute structureFlack (1983), 1093 Friedel pairs
Absolute structure parameter0.20 (18)

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.852.132.960 (5)167
N2—H2···O1ii0.852.333.131 (5)158
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

Support of this investigation by the North Tehran Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011). Acta Cryst. C67, m160–m164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds