Download citation
Download citation
link to html
Cu3Bi2S3I3 was crystallized during an attempt to synthesize Cu-Pb-Bi sulfosalts with iodine as the transport medium. The crystal structure was solved from a black needle-like crystal on a four-circle diffractometer with a CCD detector. The solution was obtained by direct methods and subsequent difference-Fourier syntheses. S and I atoms are arranged in a systematically distorted cubic eutaxy (close packing). Bi atoms have monocapped trigonal prismatic coordinations, while Cu atoms occupy coordination sites which vary from trigonal planar to distorted tetrahedral. A prominent feature is the distribution of Cu atoms over many closely spaced sites in the structure, the majority of them being only partly occupied, which strengthens the case for mobile Cu atoms during crystal growth at elevated temperatures. In this respect, Cu3Bi2S3I3 represents an extreme example of a statistical distribution of Cu in the structure; a frequently observed property of this element in sulfosalts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768105008530/lc5011sup1.cif
Contains datablock j94am

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105008530/lc5011j94amsup2.fcf
Contains datablock j94am

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105008530/lc5011j94amsup3.hkl
Contains datablock j94am

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768105008530/lc5011sup4.pdf
Coordination tables

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(j94am) top
Crystal data top
Bi2Cu3.26I2.62S3.38F(000) = 1814
Mr = 1065.97Dx = 6.221 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 28.056 (6) ÅCell parameters from 1398 reflections
b = 4.1048 (9) Åθ = 6.0–32.3°
c = 10.580 (2) ŵ = 44.86 mm1
β = 110.572 (4)°T = 299 K
V = 1140.7 (4) Å3Needle, black
Z = 41.0 × 0.04 × 0.02 mm
Data collection top
SMART 1000CCD, P4
diffractometer
2276 independent reflections
Radiation source: fine-focus sealed tube1471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
\v and ο scansθmax = 33.7°, θmin = 5.8°
Absorption correction: gaussian
?
h = 4243
Tmin = 0.291, Tmax = 0.521k = 46
5437 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 0.89Δρmax = 3.94 e Å3
2276 reflectionsΔρmin = 4.60 e Å3
94 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00022 (6)
Crystal data top
Bi2Cu3.26I2.62S3.38V = 1140.7 (4) Å3
Mr = 1065.97Z = 4
Monoclinic, C2/mMo Kα radiation
a = 28.056 (6) ŵ = 44.86 mm1
b = 4.1048 (9) ÅT = 299 K
c = 10.580 (2) Å1.0 × 0.04 × 0.02 mm
β = 110.572 (4)°
Data collection top
SMART 1000CCD, P4
diffractometer
2276 independent reflections
Absorption correction: gaussian
?
1471 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.521Rint = 0.071
5437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04994 parameters
wR(F2) = 0.1291 restraint
S = 0.89Δρmax = 3.94 e Å3
2276 reflectionsΔρmin = 4.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.48704 (2)0.00000.78263 (5)0.01894 (17)
Bi2A0.24529 (13)0.00000.1594 (3)0.0344 (5)0.674 (7)
Bi2B0.26089 (19)0.00000.1927 (5)0.0344 (5)0.326 (7)
I10.07651 (4)0.00000.01201 (10)0.0212 (2)
I20.31470 (4)0.00000.65380 (12)0.0276 (3)
I30.17145 (19)0.00000.6766 (7)0.0201 (7)0.625 (5)
S40.1775 (16)0.00000.668 (5)0.0201 (7)0.38
Cu1A0.05644 (13)0.00000.5831 (3)0.0354 (10)0.811 (10)
Cu1B0.0921 (6)0.00000.6855 (13)0.0354 (10)0.19
Cu20.38565 (11)0.00000.1130 (3)0.0684 (10)
Cu3A0.1472 (3)0.00000.4567 (10)0.0373 (13)0.368 (8)
Cu3B0.1262 (3)0.00000.2962 (10)0.0373 (13)0.322 (6)
Cu3C0.1403 (3)0.00000.3855 (14)0.0373 (13)0.319 (7)
Cu40.2177 (6)0.00000.5086 (14)0.043 (6)0.170 (11)
Cu50.00000.154 (7)0.50000.038 (9)*0.091 (10)
S10.44430 (14)0.00000.3231 (4)0.0183 (7)
S20.05913 (14)0.00000.3740 (4)0.0198 (7)
S30.30279 (13)0.00000.0110 (4)0.0196 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0244 (3)0.0142 (3)0.0206 (3)0.0000.0108 (2)0.000
Bi2A0.0329 (12)0.0420 (5)0.0337 (11)0.0000.0185 (9)0.000
Bi2B0.0329 (12)0.0420 (5)0.0337 (11)0.0000.0185 (9)0.000
I10.0267 (5)0.0136 (5)0.0237 (5)0.0000.0093 (4)0.000
I20.0337 (5)0.0163 (5)0.0366 (6)0.0000.0170 (5)0.000
I30.0172 (17)0.0169 (8)0.0257 (12)0.0000.0070 (9)0.000
S40.0172 (17)0.0169 (8)0.0257 (12)0.0000.0070 (9)0.000
Cu1A0.063 (2)0.0159 (14)0.0370 (16)0.0000.0294 (14)0.000
Cu1B0.063 (2)0.0159 (14)0.0370 (16)0.0000.0294 (14)0.000
Cu20.0318 (13)0.099 (3)0.0574 (18)0.0000.0048 (12)0.000
Cu3A0.033 (2)0.030 (2)0.055 (3)0.0000.023 (3)0.000
Cu3B0.033 (2)0.030 (2)0.055 (3)0.0000.023 (3)0.000
Cu3C0.033 (2)0.030 (2)0.055 (3)0.0000.023 (3)0.000
Cu40.048 (9)0.033 (10)0.034 (8)0.0000.003 (6)0.000
S10.0201 (15)0.0134 (17)0.0236 (16)0.0000.0104 (13)0.000
S20.0228 (16)0.0115 (18)0.0222 (16)0.0000.0042 (13)0.000
S30.0179 (15)0.0189 (19)0.0227 (16)0.0000.0082 (13)0.000
Geometric parameters (Å, º) top
Bi1—S1i2.544 (3)Cu1B—S1iii2.280 (6)
Bi1—S2ii2.670 (2)Cu1B—Cu5vi2.714 (16)
Bi1—S2iii2.670 (2)Cu1B—Cu52.714 (16)
Bi1—Cu2i3.347 (3)Cu1B—Cu2iii2.865 (9)
Bi2A—S32.617 (4)Cu1B—Cu2ii2.865 (9)
Bi2A—S3iv2.752 (3)Cu2—S32.192 (4)
Bi2A—S3v2.752 (3)Cu2—S12.253 (5)
Bi2A—S4iii3.07 (4)Cu2—I1iv2.842 (3)
Bi2A—S4ii3.07 (4)Cu2—I1v2.842 (3)
Bi2A—I3iii3.136 (6)Cu2—Cu1Biii2.865 (9)
Bi2A—I3ii3.136 (6)Cu2—Cu1Bii2.865 (9)
Bi2B—S32.582 (6)Cu2—Bi1i3.347 (3)
Bi2B—S4iii2.75 (3)Cu3A—Cu3C0.708 (11)
Bi2B—S4ii2.75 (3)Cu3A—Cu3B1.590 (12)
Bi2B—I3iii2.808 (6)Cu3A—Cu41.858 (17)
Bi2B—I3ii2.808 (6)Cu3A—S22.313 (8)
Bi2B—S3iv3.056 (5)Cu3A—I2ii2.757 (6)
Bi2B—S3v3.056 (5)Cu3A—I2iii2.757 (6)
I1—Cu3B2.835 (10)Cu3B—Cu3C0.887 (12)
I1—Cu2iv2.842 (3)Cu3B—S22.303 (8)
I1—Cu2v2.842 (3)Cu3B—I2iii2.574 (5)
I2—Cu3Ciii2.520 (5)Cu3B—I2ii2.574 (5)
I2—Cu3Cii2.520 (5)Cu3B—Cu42.755 (17)
I2—Cu3Biii2.574 (5)Cu3C—Cu42.104 (18)
I2—Cu3Bii2.574 (5)Cu3C—S22.236 (9)
I2—Cu42.613 (15)Cu3C—I2iii2.520 (5)
I2—Cu4ii2.625 (9)Cu3C—I2ii2.520 (5)
I2—Cu4iii2.625 (9)Cu4—I2ii2.625 (9)
I2—Cu3Aii2.757 (6)Cu4—I2iii2.625 (9)
I2—Cu3Aiii2.757 (6)Cu4—Cu4iii2.79 (2)
I3—Cu3A2.183 (12)Cu4—Cu4ii2.79 (2)
I3—Cu1B2.260 (14)Cu5—Cu5vi1.26 (6)
I3—Cu42.543 (17)Cu5—Cu1Avi1.643 (12)
I3—Bi2Biii2.808 (6)Cu5—S1iii2.431 (18)
I3—Bi2Bii2.808 (6)Cu5—S1vii2.431 (18)
I3—Cu3C2.891 (15)Cu5—S2vi2.546 (8)
I3—Cu1A3.024 (6)Cu5—S22.546 (8)
I3—Bi2Aiii3.136 (6)Cu5—Cu1Bvi2.714 (16)
I3—Bi2Aii3.136 (6)Cu5—Cu5viii2.84 (6)
S4—Cu3A2.10 (5)S1—Cu1Bii2.280 (6)
S4—Cu42.34 (4)S1—Cu1Biii2.280 (6)
S4—Cu1B2.47 (4)S1—Cu1Aiii2.283 (2)
S4—Bi2Biii2.75 (3)S1—Cu1Aii2.283 (2)
S4—Bi2Bii2.75 (3)S1—Cu5iii2.431 (18)
S4—Bi2Aiii3.07 (4)S1—Cu5ix2.431 (18)
S4—Bi2Aii3.07 (4)S1—Bi1i2.544 (3)
Cu1A—Cu1B1.189 (14)S2—Cu5vi2.546 (8)
Cu1A—Cu5vi1.643 (12)S2—Bi1ii2.670 (2)
Cu1A—Cu51.643 (12)S2—Bi1iii2.670 (2)
Cu1A—S22.239 (5)S3—Bi2Aiv2.752 (3)
Cu1A—S1iii2.283 (2)S3—Bi2Av2.752 (3)
Cu1A—S1ii2.283 (2)S3—Bi2Biv3.056 (5)
Cu1A—Cu1Avi3.034 (7)S3—Bi2Bv3.056 (5)
Cu1B—S1ii2.280 (6)
S1i—Bi1—S2ii90.24 (10)Cu3B—Cu3A—S4178.0 (11)
S1i—Bi1—S2iii90.24 (10)Cu4—Cu3A—S472.2 (11)
S2ii—Bi1—S2iii100.48 (12)Cu3C—Cu3A—I3177.9 (11)
S1i—Bi1—Cu2i42.28 (10)Cu3B—Cu3A—I3176.7 (5)
S2ii—Bi1—Cu2i115.68 (8)Cu4—Cu3A—I377.5 (6)
S2iii—Bi1—Cu2i115.68 (8)S4—Cu3A—I35.4 (10)
S3—Bi2A—S3iv82.56 (11)Cu3C—Cu3A—S275.0 (10)
S3—Bi2A—S3v82.56 (11)Cu3B—Cu3A—S269.5 (4)
S3iv—Bi2A—S3v96.47 (16)Cu4—Cu3A—S2175.4 (7)
S3—Bi2A—S4iii84.3 (6)S4—Cu3A—S2112.5 (10)
S3iv—Bi2A—S4iii165.3 (6)I3—Cu3A—S2107.1 (4)
S3v—Bi2A—S4iii88.4 (7)Cu3C—Cu3A—I2ii63.4 (5)
S3—Bi2A—S4ii84.3 (6)Cu3B—Cu3A—I2ii66.5 (3)
S3iv—Bi2A—S4ii88.4 (7)Cu4—Cu3A—I2ii66.0 (3)
S3v—Bi2A—S4ii165.3 (6)S4—Cu3A—I2ii112.3 (6)
S4iii—Bi2A—S4ii83.8 (12)I3—Cu3A—I2ii115.5 (2)
S3—Bi2A—I3iii80.54 (11)S2—Cu3A—I2ii111.2 (3)
S3iv—Bi2A—I3iii161.64 (12)Cu3C—Cu3A—I2iii63.4 (5)
S3v—Bi2A—I3iii88.43 (11)Cu3B—Cu3A—I2iii66.5 (3)
S4iii—Bi2A—I3iii3.8 (7)Cu4—Cu3A—I2iii66.0 (3)
S4ii—Bi2A—I3iii82.9 (5)S4—Cu3A—I2iii112.3 (6)
S3—Bi2A—I3ii80.53 (11)I3—Cu3A—I2iii115.5 (2)
S3iv—Bi2A—I3ii88.43 (11)S2—Cu3A—I2iii111.2 (3)
S3v—Bi2A—I3ii161.64 (12)I2ii—Cu3A—I2iii96.2 (3)
S4iii—Bi2A—I3ii82.9 (5)Cu3C—Cu3B—Cu3A4.3 (6)
S4ii—Bi2A—I3ii3.8 (7)Cu3C—Cu3B—S274.5 (7)
I3iii—Bi2A—I3ii81.77 (18)Cu3A—Cu3B—S270.2 (4)
S3—Bi2B—S4iii91.9 (8)Cu3C—Cu3B—I2iii76.5 (4)
S3—Bi2B—S4ii91.9 (8)Cu3A—Cu3B—I2iii79.0 (3)
S4iii—Bi2B—S4ii96.5 (16)S2—Cu3B—I2iii118.3 (2)
S3—Bi2B—I3iii87.75 (15)Cu3C—Cu3B—I2ii76.5 (4)
S4iii—Bi2B—I3iii4.3 (7)Cu3A—Cu3B—I2ii79.0 (3)
S4ii—Bi2B—I3iii95.3 (7)S2—Cu3B—I2ii118.3 (2)
S3—Bi2B—I3ii87.75 (15)I2iii—Cu3B—I2ii105.7 (3)
S4iii—Bi2B—I3ii95.3 (7)Cu3C—Cu3B—Cu436.1 (7)
S4ii—Bi2B—I3ii4.3 (7)Cu3A—Cu3B—Cu440.5 (5)
I3iii—Bi2B—I3ii93.9 (2)S2—Cu3B—Cu4110.6 (5)
S3—Bi2B—S3iv77.37 (15)I2iii—Cu3B—Cu458.9 (2)
S4iii—Bi2B—S3iv168.3 (8)I2ii—Cu3B—Cu458.9 (2)
S4ii—Bi2B—S3iv88.7 (8)Cu3C—Cu3B—I1177.3 (8)
I3iii—Bi2B—S3iv164.7 (2)Cu3A—Cu3B—I1172.9 (5)
I3ii—Bi2B—S3iv89.02 (12)S2—Cu3B—I1102.7 (3)
S3—Bi2B—S3v77.37 (15)I2iii—Cu3B—I1105.0 (2)
S4iii—Bi2B—S3v88.7 (8)I2ii—Cu3B—I1105.0 (2)
S4ii—Bi2B—S3v168.3 (8)Cu4—Cu3B—I1146.6 (4)
I3iii—Bi2B—S3v89.02 (12)Cu3A—Cu3C—Cu3B170.2 (15)
I3ii—Bi2B—S3v164.7 (2)Cu3A—Cu3C—Cu460.3 (11)
S3iv—Bi2B—S3v84.37 (16)Cu3B—Cu3C—Cu4129.5 (9)
Cu3B—I1—Cu2iv111.65 (11)Cu3A—Cu3C—S287.2 (10)
Cu3B—I1—Cu2v111.65 (11)Cu3B—Cu3C—S283.0 (7)
Cu2iv—I1—Cu2v92.47 (11)Cu4—Cu3C—S2147.5 (8)
Cu3Ciii—I2—Cu3Cii109.1 (3)Cu3A—Cu3C—I2iii102.1 (7)
Cu3Ciii—I2—Cu3Biii20.0 (3)Cu3B—Cu3C—I2iii83.4 (5)
Cu3Cii—I2—Cu3Biii111.0 (2)Cu4—Cu3C—I2iii68.5 (3)
Cu3Ciii—I2—Cu3Bii111.0 (2)S2—Cu3C—I2iii123.4 (2)
Cu3Cii—I2—Cu3Bii20.0 (3)Cu3A—Cu3C—I2ii102.1 (7)
Cu3Biii—I2—Cu3Bii105.7 (3)Cu3B—Cu3C—I2ii83.4 (5)
Cu3Ciii—I2—Cu4112.5 (3)Cu4—Cu3C—I2ii68.5 (3)
Cu3Cii—I2—Cu4112.5 (3)S2—Cu3C—I2ii123.4 (2)
Cu3Biii—I2—Cu4125.71 (17)I2iii—Cu3C—I2ii109.1 (3)
Cu3Bii—I2—Cu4125.71 (17)Cu3A—Cu3C—I31.6 (8)
Cu3Ciii—I2—Cu4ii127.4 (4)Cu3B—Cu3C—I3171.8 (8)
Cu3Cii—I2—Cu4ii48.2 (4)Cu4—Cu3C—I358.7 (6)
Cu3Biii—I2—Cu4ii143.9 (4)S2—Cu3C—I388.8 (4)
Cu3Bii—I2—Cu4ii64.0 (3)I2iii—Cu3C—I3101.2 (3)
Cu4—I2—Cu4ii64.3 (4)I2ii—Cu3C—I3101.2 (3)
Cu3Ciii—I2—Cu4iii48.2 (4)Cu3A—Cu4—Cu3C19.3 (3)
Cu3Cii—I2—Cu4iii127.4 (4)Cu3A—Cu4—S458.7 (13)
Cu3Biii—I2—Cu4iii64.0 (3)Cu3C—Cu4—S478.0 (14)
Cu3Bii—I2—Cu4iii143.9 (4)Cu3A—Cu4—I357.0 (6)
Cu4—I2—Cu4iii64.3 (4)Cu3C—Cu4—I376.3 (6)
Cu4ii—I2—Cu4iii102.8 (5)S4—Cu4—I31.7 (14)
Cu3Ciii—I2—Cu3Aii104.2 (2)Cu3A—Cu4—I2162.7 (8)
Cu3Cii—I2—Cu3Aii14.6 (2)Cu3C—Cu4—I2178.0 (9)
Cu3Biii—I2—Cu3Aii111.28 (18)S4—Cu4—I2104.0 (13)
Cu3Bii—I2—Cu3Aii34.5 (3)I3—Cu4—I2105.7 (5)
Cu4—I2—Cu3Aii103.3 (3)Cu3A—Cu4—I2ii73.7 (4)
Cu4ii—I2—Cu3Aii40.3 (4)Cu3C—Cu4—I2ii63.3 (3)
Cu4iii—I2—Cu3Aii113.7 (4)S4—Cu4—I2ii109.2 (8)
Cu3Ciii—I2—Cu3Aiii14.6 (2)I3—Cu4—I2ii108.3 (5)
Cu3Cii—I2—Cu3Aiii104.2 (2)I2—Cu4—I2ii115.7 (4)
Cu3Biii—I2—Cu3Aiii34.5 (3)Cu3A—Cu4—I2iii73.7 (4)
Cu3Bii—I2—Cu3Aiii111.28 (18)Cu3C—Cu4—I2iii63.3 (3)
Cu4—I2—Cu3Aiii103.3 (3)S4—Cu4—I2iii109.2 (8)
Cu4ii—I2—Cu3Aiii113.7 (4)I3—Cu4—I2iii108.3 (5)
Cu4iii—I2—Cu3Aiii40.3 (4)I2—Cu4—I2iii115.7 (4)
Cu3Aii—I2—Cu3Aiii96.2 (3)I2ii—Cu4—I2iii102.8 (5)
Cu3A—I3—Cu1B95.8 (4)Cu3A—Cu4—Cu3B33.7 (4)
Cu3A—I3—Cu445.5 (4)Cu3C—Cu4—Cu3B14.4 (3)
Cu1B—I3—Cu4141.3 (5)S4—Cu4—Cu3B92.4 (13)
Cu3A—I3—Bi2Biii115.38 (17)I3—Cu4—Cu3B90.7 (6)
Cu1B—I3—Bi2Biii119.0 (2)I2—Cu4—Cu3B163.6 (7)
Cu4—I3—Bi2Biii85.5 (3)I2ii—Cu4—Cu3B57.1 (3)
Cu3A—I3—Bi2Bii115.38 (17)I2iii—Cu4—Cu3B57.1 (3)
Cu1B—I3—Bi2Bii119.0 (2)Cu3A—Cu4—Cu4iii129.1 (5)
Cu4—I3—Bi2Bii85.5 (3)Cu3C—Cu4—Cu4iii120.9 (6)
Bi2Biii—I3—Bi2Bii93.9 (2)S4—Cu4—Cu4iii122.5 (9)
Cu3A—I3—Cu3C0.5 (3)I3—Cu4—Cu4iii123.3 (6)
Cu1B—I3—Cu3C96.4 (4)I2—Cu4—Cu4iii58.1 (5)
Cu4—I3—Cu3C45.0 (4)I2ii—Cu4—Cu4iii128.1 (9)
Bi2Biii—I3—Cu3C115.08 (16)I2iii—Cu4—Cu4iii57.7 (3)
Bi2Bii—I3—Cu3C115.08 (16)Cu3B—Cu4—Cu4iii112.8 (6)
Cu3A—I3—Cu1A75.8 (3)Cu3A—Cu4—Cu4ii129.1 (5)
Cu1B—I3—Cu1A20.1 (3)Cu3C—Cu4—Cu4ii120.9 (6)
Cu4—I3—Cu1A121.3 (4)S4—Cu4—Cu4ii122.5 (9)
Bi2Biii—I3—Cu1A128.33 (10)I3—Cu4—Cu4ii123.3 (6)
Bi2Bii—I3—Cu1A128.33 (10)I2—Cu4—Cu4ii58.1 (5)
Cu3C—I3—Cu1A76.3 (2)I2ii—Cu4—Cu4ii57.7 (3)
Cu3A—I3—Bi2Aiii118.85 (15)I2iii—Cu4—Cu4ii128.1 (9)
Cu1B—I3—Bi2Aiii122.0 (2)Cu3B—Cu4—Cu4ii112.8 (6)
Cu4—I3—Bi2Aiii85.6 (3)Cu4iii—Cu4—Cu4ii94.9 (10)
Bi2Biii—I3—Bi2Aiii6.10 (6)Cu5vi—Cu5—Cu1Avi67.4 (10)
Bi2Bii—I3—Bi2Aiii87.9 (2)Cu5vi—Cu5—Cu1A67.4 (9)
Cu3C—I3—Bi2Aiii118.51 (14)Cu1Avi—Cu5—Cu1A134.8 (19)
Cu1A—I3—Bi2Aiii133.07 (8)Cu5vi—Cu5—S1iii125.8 (6)
Cu3A—I3—Bi2Aii118.85 (15)Cu1Avi—Cu5—S1iii151.0 (7)
Cu1B—I3—Bi2Aii122.0 (2)Cu1A—Cu5—S1iii64.8 (4)
Cu4—I3—Bi2Aii85.6 (3)Cu5vi—Cu5—S1vii125.8 (6)
Bi2Biii—I3—Bi2Aii87.9 (2)Cu1Avi—Cu5—S1vii64.8 (4)
Bi2Bii—I3—Bi2Aii6.10 (6)Cu1A—Cu5—S1vii151.0 (7)
Cu3C—I3—Bi2Aii118.51 (14)S1iii—Cu5—S1vii108.5 (11)
Cu1A—I3—Bi2Aii133.07 (8)Cu5vi—Cu5—S2vi75.6 (7)
Bi2Aiii—I3—Bi2Aii81.77 (18)Cu1Avi—Cu5—S2vi60.1 (3)
Cu3A—S4—Cu449.1 (10)Cu1A—Cu5—S2vi107.9 (7)
Cu3A—S4—Cu1B92.2 (18)S1iii—Cu5—S2vi95.9 (3)
Cu4—S4—Cu1B141 (2)S1vii—Cu5—S2vi100.8 (3)
Cu3A—S4—Bi2Biii120.9 (10)Cu5vi—Cu5—S275.6 (6)
Cu4—S4—Bi2Biii90.8 (9)Cu1Avi—Cu5—S2107.9 (7)
Cu1B—S4—Bi2Biii113.9 (10)Cu1A—Cu5—S260.1 (3)
Cu3A—S4—Bi2Bii120.9 (10)S1iii—Cu5—S2100.8 (3)
Cu4—S4—Bi2Bii90.8 (9)S1vii—Cu5—S295.9 (3)
Cu1B—S4—Bi2Bii113.9 (10)S2vi—Cu5—S2151.3 (13)
Bi2Biii—S4—Bi2Bii96.5 (16)Cu5vi—Cu5—Cu1Bvi76.6 (6)
Cu3A—S4—Bi2Aiii124.7 (9)Cu1Avi—Cu5—Cu1Bvi14.1 (3)
Cu4—S4—Bi2Aiii90.6 (10)Cu1A—Cu5—Cu1Bvi142.3 (15)
Cu1B—S4—Bi2Aiii117.2 (11)S1iii—Cu5—Cu1Bvi152.1 (9)
Bi2Biii—S4—Bi2Aiii6.34 (16)S1vii—Cu5—Cu1Bvi52.26 (13)
Bi2Bii—S4—Bi2Aiii90.1 (14)S2vi—Cu5—Cu1Bvi72.0 (3)
Cu3A—S4—Bi2Aii124.7 (9)S2—Cu5—Cu1Bvi101.2 (5)
Cu4—S4—Bi2Aii90.6 (10)Cu5vi—Cu5—Cu1B76.6 (6)
Cu1B—S4—Bi2Aii117.2 (11)Cu1Avi—Cu5—Cu1B142.3 (15)
Bi2Biii—S4—Bi2Aii90.1 (14)Cu1A—Cu5—Cu1B14.1 (3)
Bi2Bii—S4—Bi2Aii6.34 (16)S1iii—Cu5—Cu1B52.26 (13)
Bi2Aiii—S4—Bi2Aii83.8 (12)S1vii—Cu5—Cu1B152.1 (9)
Cu1B—Cu1A—Cu5vi146.3 (8)S2vi—Cu5—Cu1B101.2 (5)
Cu1B—Cu1A—Cu5146.3 (8)S2—Cu5—Cu1B72.0 (3)
Cu5vi—Cu1A—Cu545.2 (19)Cu1Bvi—Cu5—Cu1B153.1 (12)
Cu1B—Cu1A—S2126.2 (6)Cu5vi—Cu5—Cu5viii180.000 (18)
Cu5vi—Cu1A—S280.34 (15)Cu1Avi—Cu5—Cu5viii112.6 (10)
Cu5—Cu1A—S280.34 (15)Cu1A—Cu5—Cu5viii112.6 (10)
Cu1B—Cu1A—S1iii74.7 (2)S1iii—Cu5—Cu5viii54.2 (6)
Cu5vi—Cu1A—S1iii115.1 (9)S1vii—Cu5—Cu5viii54.2 (6)
Cu5—Cu1A—S1iii74.5 (9)S2vi—Cu5—Cu5viii104.4 (6)
S2—Cu1A—S1iii115.99 (10)S2—Cu5—Cu5viii104.4 (7)
Cu1B—Cu1A—S1ii74.7 (2)Cu1Bvi—Cu5—Cu5viii103.4 (6)
Cu5vi—Cu1A—S1ii74.5 (9)Cu1B—Cu5—Cu5viii103.4 (6)
Cu5—Cu1A—S1ii115.1 (9)Cu2—S1—Cu1Bii78.4 (4)
S2—Cu1A—S1ii115.99 (10)Cu2—S1—Cu1Biii78.4 (3)
S1iii—Cu1A—S1ii128.0 (2)Cu1Bii—S1—Cu1Biii128.3 (7)
Cu1B—Cu1A—I340.7 (6)Cu2—S1—Cu1Aiii108.29 (13)
Cu5vi—Cu1A—I3153.1 (8)Cu1Bii—S1—Cu1Aiii138.9 (3)
Cu5—Cu1A—I3153.1 (8)Cu1Biii—S1—Cu1Aiii30.2 (3)
S2—Cu1A—I385.46 (17)Cu2—S1—Cu1Aii108.29 (13)
S1iii—Cu1A—I391.69 (14)Cu1Bii—S1—Cu1Aii30.2 (3)
S1ii—Cu1A—I391.69 (14)Cu1Biii—S1—Cu1Aii138.9 (3)
Cu1B—Cu1A—Cu1Avi154.3 (6)Cu1Aiii—S1—Cu1Aii128.0 (2)
Cu5vi—Cu1A—Cu1Avi22.6 (10)Cu2—S1—Cu5iii144.0 (6)
Cu5—Cu1A—Cu1Avi22.6 (10)Cu1Bii—S1—Cu5iii135.6 (6)
S2—Cu1A—Cu1Avi79.53 (15)Cu1Biii—S1—Cu5iii70.3 (6)
S1iii—Cu1A—Cu1Avi94.86 (13)Cu1Aiii—S1—Cu5iii40.6 (5)
S1ii—Cu1A—Cu1Avi94.86 (13)Cu1Aii—S1—Cu5iii107.0 (5)
I3—Cu1A—Cu1Avi164.99 (18)Cu2—S1—Cu5ix144.0 (6)
Cu1A—Cu1B—I3119.2 (8)Cu1Bii—S1—Cu5ix70.3 (6)
Cu1A—Cu1B—S1ii75.0 (4)Cu1Biii—S1—Cu5ix135.6 (6)
I3—Cu1B—S1ii115.6 (3)Cu1Aiii—S1—Cu5ix107.0 (6)
Cu1A—Cu1B—S1iii75.0 (4)Cu1Aii—S1—Cu5ix40.6 (5)
I3—Cu1B—S1iii115.6 (3)Cu5iii—S1—Cu5ix71.5 (11)
S1ii—Cu1B—S1iii128.3 (7)Cu2—S1—Bi1i88.28 (14)
Cu1A—Cu1B—S4117.5 (14)Cu1Bii—S1—Bi1i112.4 (3)
I3—Cu1B—S41.7 (13)Cu1Biii—S1—Bi1i112.4 (3)
S1ii—Cu1B—S4115.5 (3)Cu1Aiii—S1—Bi1i108.37 (11)
S1iii—Cu1B—S4115.5 (3)Cu1Aii—S1—Bi1i108.37 (11)
Cu1A—Cu1B—Cu5vi19.6 (5)Cu5iii—S1—Bi1i87.56 (11)
I3—Cu1B—Cu5vi132.2 (5)Cu5ix—S1—Bi1i87.56 (11)
S1ii—Cu1B—Cu5vi57.5 (6)Cu3C—S2—Cu1A109.5 (4)
S1iii—Cu1B—Cu5vi83.2 (7)Cu3C—S2—Cu3B22.5 (3)
S4—Cu1B—Cu5vi130.5 (12)Cu1A—S2—Cu3B131.9 (3)
Cu1A—Cu1B—Cu519.6 (5)Cu3C—S2—Cu3A17.8 (3)
I3—Cu1B—Cu5132.2 (5)Cu1A—S2—Cu3A91.7 (3)
S1ii—Cu1B—Cu583.2 (7)Cu3B—S2—Cu3A40.3 (3)
S1iii—Cu1B—Cu557.5 (6)Cu3C—S2—Cu5vi144.1 (4)
S4—Cu1B—Cu5130.5 (12)Cu1A—S2—Cu5vi39.5 (2)
Cu5vi—Cu1B—Cu526.9 (12)Cu3B—S2—Cu5vi162.1 (5)
Cu1A—Cu1B—Cu2iii124.9 (5)Cu3A—S2—Cu5vi127.5 (3)
I3—Cu1B—Cu2iii94.1 (4)Cu3C—S2—Cu5144.1 (4)
S1ii—Cu1B—Cu2iii130.7 (5)Cu1A—S2—Cu539.5 (2)
S1iii—Cu1B—Cu2iii50.37 (16)Cu3B—S2—Cu5162.1 (5)
S4—Cu1B—Cu2iii95.2 (9)Cu3A—S2—Cu5127.5 (3)
Cu5vi—Cu1B—Cu2iii127.4 (6)Cu5vi—S2—Cu528.7 (13)
Cu5—Cu1B—Cu2iii105.9 (6)Cu3C—S2—Bi1ii107.2 (2)
Cu1A—Cu1B—Cu2ii124.9 (5)Cu1A—S2—Bi1ii115.83 (11)
I3—Cu1B—Cu2ii94.1 (4)Cu3B—S2—Bi1ii93.27 (18)
S1ii—Cu1B—Cu2ii50.37 (16)Cu3A—S2—Bi1ii117.09 (16)
S1iii—Cu1B—Cu2ii130.7 (5)Cu5vi—S2—Bi1ii82.6 (5)
S4—Cu1B—Cu2ii95.2 (9)Cu5—S2—Bi1ii104.6 (5)
Cu5vi—Cu1B—Cu2ii105.9 (6)Cu3C—S2—Bi1iii107.2 (2)
Cu5—Cu1B—Cu2ii127.4 (6)Cu1A—S2—Bi1iii115.83 (11)
Cu2iii—Cu1B—Cu2ii91.5 (4)Cu3B—S2—Bi1iii93.27 (18)
S3—Cu2—S1140.0 (2)Cu3A—S2—Bi1iii117.09 (16)
S3—Cu2—I1iv106.00 (11)Cu5vi—S2—Bi1iii104.6 (5)
S1—Cu2—I1iv101.32 (10)Cu5—S2—Bi1iii82.6 (5)
S3—Cu2—I1v106.00 (11)Bi1ii—S2—Bi1iii100.48 (12)
S1—Cu2—I1v101.32 (10)Cu2—S3—Bi2B108.3 (2)
I1iv—Cu2—I1v92.47 (11)Cu2—S3—Bi2A118.36 (19)
S3—Cu2—Cu1Biii106.4 (3)Bi2B—S3—Bi2A10.02 (8)
S1—Cu2—Cu1Biii51.2 (2)Cu2—S3—Bi2Aiv120.90 (11)
I1iv—Cu2—Cu1Biii147.6 (3)Bi2B—S3—Bi2Aiv103.95 (12)
I1v—Cu2—Cu1Biii79.03 (18)Bi2A—S3—Bi2Aiv97.44 (11)
S3—Cu2—Cu1Bii106.4 (3)Cu2—S3—Bi2Av120.90 (11)
S1—Cu2—Cu1Bii51.2 (2)Bi2B—S3—Bi2Av103.95 (12)
I1iv—Cu2—Cu1Bii79.03 (18)Bi2A—S3—Bi2Av97.44 (11)
I1v—Cu2—Cu1Bii147.6 (3)Bi2Aiv—S3—Bi2Av96.47 (16)
Cu1Biii—Cu2—Cu1Bii91.5 (4)Cu2—S3—Bi2Biv127.10 (13)
S3—Cu2—Bi1i170.52 (18)Bi2B—S3—Bi2Biv102.63 (15)
S1—Cu2—Bi1i49.44 (10)Bi2A—S3—Bi2Biv95.29 (13)
I1iv—Cu2—Bi1i67.89 (7)Bi2Aiv—S3—Bi2Biv6.69 (5)
I1v—Cu2—Bi1i67.89 (7)Bi2Av—S3—Bi2Biv90.49 (15)
Cu1Biii—Cu2—Bi1i80.0 (3)Cu2—S3—Bi2Bv127.10 (13)
Cu1Bii—Cu2—Bi1i80.0 (3)Bi2B—S3—Bi2Bv102.63 (15)
Cu3C—Cu3A—Cu3B5.4 (8)Bi2A—S3—Bi2Bv95.29 (13)
Cu3C—Cu3A—Cu4100.4 (11)Bi2Aiv—S3—Bi2Bv90.49 (15)
Cu3B—Cu3A—Cu4105.8 (7)Bi2Av—S3—Bi2Bv6.69 (5)
Cu3C—Cu3A—S4172.6 (15)Bi2Biv—S3—Bi2Bv84.37 (16)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y, z+1; (vii) x1/2, y+1/2, z; (viii) x, y+1, z+1; (ix) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaBi2Cu3.26I2.62S3.38
Mr1065.97
Crystal system, space groupMonoclinic, C2/m
Temperature (K)299
a, b, c (Å)28.056 (6), 4.1048 (9), 10.580 (2)
β (°) 110.572 (4)
V3)1140.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)44.86
Crystal size (mm)1.0 × 0.04 × 0.02
Data collection
DiffractometerSMART 1000CCD, P4
diffractometer
Absorption correctionGaussian
Tmin, Tmax0.291, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
5437, 2276, 1471
Rint0.071
(sin θ/λ)max1)0.781
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 0.89
No. of reflections2276
No. of parameters94
No. of restraints1
Δρmax, Δρmin (e Å3)3.94, 4.60

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds