research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Coordination chemistry of nitrile-functionalized mixed thia-aza macrocycles [9]aneN2S and [9]aneNS2 towards silver(I)

crossmark logo

aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK, bDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, and cDepartment of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
*Correspondence e-mail: alexanderjohnblake@outlook.com

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom (Received 11 January 2022; accepted 30 January 2022; online 14 February 2022)

The coordination chemistry towards silver(I) of the small-ring macrocycles [9]aneN2S (1-thia-4,7-di­aza­cyclo­nona­ne) and [9]aneNS2 (1,4-di­thia-7-aza­cyclo­nona­ne) incorporating nitrile-functionalized pendant arms is considered both in the presence and the absence of exogenous bridging ligands. The aim is to understand the influence of the number and length of the pendant arms on the nuclearity and dimensionality of the resulting com­plexes. The X-ray crystal structures of the com­plexes bis­[4,7-bis­(cyano­meth­yl)-1-thia-4,7-di­aza­cyclo­non­ane-κ3N,N′,S]silver(I) tetra­fluorido­borate, [Ag(C10H16N4S)2]BF4 or [Ag(L1)2]BF4, [4,7-bis­(2-cyano­eth­yl)-1-thia-4,7-di­aza­cyclo­nonane-κ3N,N′,S](thio­cyanato-κS)silver(I), [Ag(C12H20N4S)(NCS)] or [Ag(L2)(SCN)], and μ-thio­cyanato-κ2S:S-bis­{[7-(2-cyano­eth­yl)-1,4-di­thia-7-aza­cyclo­nonane-κ3N,S,S′]silver(I)} tetra­fluor­ido­borate, [Ag2(C9H16N2S2)2(SCN)]BF4 or [Ag2(L3)2(μ-SCN)]BF4, are discus­sed in relation to analogous com­pounds in the literature.

1. Introduction

In previously published articles (Tei et al., 1998[Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633-2634.], 2002[Tei, L., Blake, A. J., Cooke, P. A., Caltagirone, C., Demartin, F., Lippolis, V., Morale, F., Wilson, C. & Schröder, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1662-1670.]), we have considered the nitrile-functionalized pendant-arm derivatives of mixed-donor macrocycles as multidentate ligands for the syn­thesis of multidimensional polymeric com­plexes with silver(I). We argued that nitrile-containing pendant arms would promote exocyclic rather than endocyclic com­plex­ation, thereby preventing the formation of mononuclear com­plexes in favour of coordination polymers. The results confirmed this hypothesis, with the nitrile groups playing an active role in linking different silver(I) centres in the obtained polynuclear com­plexes whose dimensionality is strictly de­pen­dent upon the number of nitrile-functionalized pendant arms present in the ligand, upon their length, and upon the donor set and ring size of the macrocyclic framework. However, in the presence CN, the coordination site left free on the metal centre by the macrocyclic moiety of the nitrile-functionalized ligands in Scheme 1[link] [L1 = 4,7-bis­(cyano­meth­yl)-1-thia-4,7-di­aza­cyclo­nonane, L2 = 4,7-bis­(2-cyano­eth­yl)-1-thia-4,7-di­aza­cyclo­nonane and L3 = 7-(2-cyano­eth­yl)-1,4-di­thia-7-aza­cyclo­nonane] was occupied by the exogenous anionic ligand instead of nitrile groups, thus preventing the formation of inorganic polymers involving the pendant nitriles and favouring the isolation of unusual com­pounds (Lippolis et al., 1999[Lippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987-1991.]; Blake et al., 1998[Blake, A. J., Danks, J. P., Lippolis, V., Parsons, S. & Schröder, M. (1998). New J. Chem. 22, 1301-1303.]).

In particular, while the discrete binuclear com­plex [Ag2(L1)2(μ-CN)]BF4·MeCN, featuring a side-on two-electron (σ) μ2-κC:κC bridging cyanide, was isolated from the reaction of L1, AgBF4 and nBu4NCN in a 1:1:0.5 molar ratio, the com­plexes [Ag2(L2)2(μ-CN)]BF4 and [Ag2(L3)2(μ-CN)]BF4, exhibiting a CN ligand bridging two metal centres in a linear four-electron (σ + π) μ2-κC:κN manner (Vahrenkamp et al., 1997[Vahrenkamp, H., Gei, A. & Richardson, G. N. (1997). J. Chem. Soc. Dalton Trans. pp. 3643-3652.]), were isolated starting from L2 and L3, respectively, under the same experimental conditions (Lippolis et al., 1999[Lippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987-1991.]). [Ag2(L1)2(μ-CN)]BF4·MeCN was the first discrete binuclear com­plex, and is still the only one reported in the literature, featuring a pure two-electron (σ) μ2-κC:κC bridging cyanide, to be structurally characterized. This result was initially attributed to the different length of the pendant arms in the macrocyclic ligands employed; the presence of shorter and less sterically demanding arms in L1 as com­pared to L2 would allow a closer approach of two [Ag(L1)]+ units in the binuclear com­plex featuring a side-on bridging cyanide. Herein we report a further development of this chemistry from a crystallographic point of view, with the aim of better understanding the role played by the length of the aliphatic chain in nitrile-functionalized derivatives of the small-ring macrocycles [9]aneN2S (1-thia-4,7-di­aza­cyclo­nona­ne) and [9]aneNS2 (1,4-di­thia-7-aza­cyclo­nona­ne) in determining the coordination chemistry towards silver(I) both in the absence or in the presence of exogenous bridging ligands.

[Scheme 1]

The com­pounds studied are [Ag(L1)2]BF4, [Ag(L2)(SCN)] and [Ag2(L3)2(μ-SCN)]BF4 (Scheme 2).

2. Experimental

2.1. Material and methods

All starting materials were obtained from Aldrich and were used without further purification. Microanalyses were per­formed by the University of Nottingham School of Chemistry Microanalytical Service. IR spectra were recorded as KBr discs using a PerkinElmer 598 spectrometer over the range 200–4000 cm−1. Fast atom bombardment (FAB) mass spectra were recorded at the EPSRC Centre for Mass Spectroscopy at the University of Swansea, UK.

2.2. Synthesis and crystallization

4,7-Bis(cyano­meth­yl)-1-thia-4,7-di­aza­cyclo­nonane (L1), 4,7-bis­(2-cyano­eth­yl)-1-thia-4,7-di­aza­cyclo­nonane (L2) and 7-(2-cyano­eth­yl)-1,4-di­thia-7-aza­cyclo­nonane (L3) were prepared according to adaptations of procedures reported in the literature (Fortier & McAuley, 1989[Fortier, D. G. & McAuley, A. (1989). Inorg. Chem. 28, 655-662.]; Chak et al., 1994[Chak, B., McAuley, A. & Whitcombe, T. W. (1994). Can. J. Chem. 72, 1525-1532.]). The experimental conditions considered for the reaction of L2 and L3 with silver(I) in the presence of thio­cyanate, namely, an L/Ag+/SCN molar ratio of 1:1:0.5, were the same as those used for the reactions in the presence of cyanate. In both cases, the aim was to favour the bridging coordination mode of the anionic ligand.

[Scheme 2]
2.2.1. Synthesis of [Ag(L1)2]BF4

A mixture of 4,7-bis­(cyano­meth­yl)-1-thia-4,7-di­aza­cyclo­nonane (L1) (20 mg, 0.089 mmol) and AgBF4 (17.33 mg, 0.089 mmol) in MeCN (5 ml) was stirred in the dark at room temperature for 12 h. The solvent was partially removed under reduced pressure and Et2O vapour was allowed to diffuse into the remaining solution. Colourless block-shaped crystals of the desired com­plex were obtained (yield 15.2 mg, 53%; m.p. 160 °C, with decom­posi­tion). Analysis calculated (%) for [Ag(L1)2]BF4, C20H32AgBF4N8S2: C 37.34, H 5.01, N 17.42; found: C 37.28, H 4.99, N 17.20. FAB mass spectrum (3-NOBA) m/z: 555 and 331 for [107Ag(L1)2]+ and [107Ag(L1)]+, respectively. IR spectrum (KBr disc) ν (cm−1): 2928 (m), 2833 (m), 2243 (s) (νCN stretch in L1), 1452 (s), 1335 (s), 1223 (w), 1109 (m), 998 (s), 920 (w), 878 (m).

2.2.2. Synthesis of [Ag(L2)(SCN)]

A mixture of 4,7-bis(2-cyano­eth­yl)-1-thia-4,7-di­aza­cyclo­nonane (L2) (21.7 mg, 0.086 mmol) and AgBF4 (16.74 mg, 0.086 mmol) in MeCN (3 ml) was stirred in the dark at room temperature for 30 min. A solution of nBu4NSCN (12.92 mg, 0.043 mmol) in MeCN (2.5 ml) was then added and the resulting mixture was stirred for a further 30 min in the dark at room temperature. After partial removal of the solvent under reduced pressure and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution (yield 10.5 mg; 58%; m.p. 135 °C, with decom­posi­tion). Analysis calculated (%) for [Ag(L2)(SCN)], C13H20AgN5S2: C 37.32, H 4.82, N 16.74; found: C 37.30, H 4.87, N 16.65. FAB mass spectrum (3-NOBA) m/z: 359 for [107Ag(L2)]+. IR spectrum (KBr disc) ν (cm−1): 2923 (m), 2824 (m), 2239 (m) (νCN stretch in L2), 2085 (m) (νCN stretch in SCN), 1472 (m), 1445 (m), 1415 (m), 1363 (m), 1306 (w), 1047 (s), 968 (m), 848 (w), 750 (w).

2.2.3. Synthesis of [Ag2(L3)2(μ-SCN)]BF4

A mixture of 7-(2-cyano­eth­yl)-1,4-di­thia-7-aza­cyclo­nonane (L3) (21.7 mg, 0.100 mmol) and AgBF4 (19.47 mg, 0.100 mmol) in MeCN (2.5 ml) was stirred in the dark at room temperature for 30 min. A solution of nBu4NSCN (15.027 mg, 0.050 mmol) in MeCN (2.5 ml) was then added and the resulting mixture was stirred for a further 30 min in the dark at room temperature. After partial removal of the solvent under reduced pressure and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution (yield 18.3 mg; 46%; m.p. 140–142 °C). Analysis calculated (%) for [Ag2(L3)2(μ-SCN)]BF4, C19H32Ag2BF4N5S5: C 28.76, H 4.07, N 8.83; found: C 28.65, H 3.98, N 8.78. FAB mass spectrum (3-NOBA) m/z: 323 for [107Ag(L3)]+. IR spectrum (KBr disc) ν (cm−1): 2911 (m), 2826 (m), 2246 (m) (νCN stretch in L3), 2105 (m) (νCN stretch in SCN), 1462 (m), 1410 (m), 1361 (m), 1303 (m), 1037 (s), 958 (w), 940 (w), 899 (w), 830 (w), 810 (w), 710 (w).

2.3. Refinement of X-ray data

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Methyl­ene H atoms were refined as riding on their parent C atoms, with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Experiments were carried out at 150 K with Mo Kα radiation. H-atom parameters were constrained.

  [Ag(L1)2]BF4 [Ag(L2)(SCN)] [Ag2(L3)2(μ-SCN)]BF4
Crystal data
Chemical formula [Ag(C10H16N4S)2]BF4 [Ag(C12H20N4S)(NCS)] [Ag2(C9H16N2S2)2(SCN)]BF4
Mr 643.33 418.33 793.34
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, C2/c
a, b, c (Å) 10.1813 (6), 10.2237 (6), 15.0154 (9) 8.4426 (6), 8.5739 (6), 11.8497 (8) 28.537 (3), 8.4362 (11), 27.216 (3)
α, β, γ (°) 73.446 (2), 82.398 (2), 61.781 (2) 96.585 (1), 99.023 (1), 95.313 (1) 90, 119.940 (9), 90
V3) 1320.11 (14) 836.19 (1) 5677.6 (12)
Z 2 2 8
μ (mm−1) 0.98 1.46 1.79
Crystal size (mm) 0.3 × 0.2 × 0.14 0.36 × 0.30 × 0.07 0.27 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector Bruker SMART1000 CCD area-detector Stoe STADI4 4-circle
Absorption correction Multi-scan (SADABS; Bruker, 1996[Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Integration (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.729, 0.828 0.606, 0.819 0.713, 0.822
No. of measured, independent and observed [I > 2σ(I)] reflections 13703, 6151, 5420 5159, 3668, 3401 5547, 4972, 4138
Rint 0.035 0.022 0.025
(sin θ/λ)max−1) 0.679 0.675 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.07 0.021, 0.055, 1.06 0.036, 0.075, 1.15
No. of reflections 6151 3668 4972
No. of parameters 328 190 326
Δρmax, Δρmin (e Å−3) 0.46, −0.34 0.34, −0.41 0.56, −0.52
Computer programs: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), STADI-4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

3. Results and discussion

Following the synthetic strategy adopted in previous studies to favour the formation of inorganic polymers, we reacted L1 with AgBF4 in MeCN using a 1:1 metal-to-ligand molar ratio. Colourless tabular crystals formed after partial removal of the solvent and subsequent diffusion of Et2O vapour into the remaining solution. A single-crystal X-ray structure determination confirmed the product to be the discrete mononuclear AgI homoleptic com­plex [Ag(L1)2]BF4. Two ligands bind facially to the metal centre via the tridentate macrocyclic moiety, thus conferring a distorted octa­hedral coordination geometry of four N-donor and two S-donor atoms (Fig. 1[link]), with no involvement of the nitrile groups from the pendant arms in metal coordination. The sandwich com­plex cations lie on crystallographic inversion centres, with the asymmetric unit consisting of two half-cations and one BF4 anion (Z = 2). Each equatorial plane is defined by the N-donor atoms of two macrocyclic moieties [Ag1—N4 = 2.6173 (12), Ag1—N7 = 2.6822 (14), Ag1′—N4′ = 2.6363 (12) and Ag1′—N7′ = 2.6108 (13) Å], while the apical positions are occupied by the S-donor atoms [Ag1—S1 = 2.5273 (4) and Ag1′—S1′ = 2.5605 (4) Å] (Table 2[link]). The Ag—N bond lengths are slightly longer than those reported for the sandwich com­plex [Ag(Me3[9]aneN3)2]PF6 [Ag—N = 2.543 (10) and 2.607 (7) Å; Me3[9]aneN3 = 1,4,7-trimethyl-1,4,7-tri­aza­cyclo­nonane] (Stock­heim et al., 1991[Stockheim, C., Wieghardt, K., Nuber, B., Weiss, J., Flöurke, U. & Haupt, H.-J. (1991). J. Chem. Soc. Dalton Trans. pp. 1487-1490.]), while the Ag—S bond length is significantly shorter than those observed in the sandwich com­plex [Ag([9]aneS3)2](CF3SO3) [2.696 (2)–2.753 (1) Å; [9]aneS3 = 1,4,7-ththia­cyclo­nona­ne] (Blower et al., 1989[Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E. Jr, Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040-4046.]).

Table 2
Selected geometric parameters (Å, °)

[Ag(L1)2]BF4      
Ag1—S1 2.5273 (4) Ag1′—S1′ 2.5605 (4)
Ag1—N4 2.6173 (12) Ag1′—N4′ 2.6363 (12)
Ag1—N7 2.6822 (14) Ag1′—N7′ 2.6108 (13)
       
S1—Ag1—N4 77.67 (3) S1′—Ag1′—N4′ 76.92 (3)
S1—Ag1—N7 76.40 (3) S1′—Ag1′—N7′ 76.70 (3)
N4—Ag1—N7 68.50 (4) N7′—Ag1′—N4′ 69.72 (4)
       
[Ag(L2)(SCN)]      
Ag1—S1 2.5074 (5) Ag1—N7 2.5561 (15)
Ag1—S 2.4390 (5) C—N 1.152 (3)
Ag1—N4 2.5490 (14) C—S 1.670 (2)
       
S1—Ag1—N4 79.60 (4) S—Ag1—N7 111.02 (4)
S1—Ag1—N7 79.77 (4) N4—Ag1—N7 71.15 (5)
S—Ag1—S1 160.21 (2) N—C—S 177.7 (2)
S—Ag1—N4 119.16 (4)    
       
[Ag2(L3)2(μ-SCN)]BF4      
Ag1—Ag2 3.0716 (6) Ag2—S1A 2.5329 (13)
Ag1—S4 2.6065 (13) Ag2—S4A 2.6046 (13)
Ag1—S1 2.5966 (13) Ag2—S 2.4441 (13)
Ag1—S 2.4943 (13) Ag2—N7A 2.557 (4)
Ag1—N7 2.492 (4)    
       
S1—Ag1—S4 83.55 (4) S1A—Ag2—S4A 86.88 (4)
S—Ag1—S4 129.95 (4) S1A—Ag2—N7A 78.06 (9)
S—Ag1—S1 142.23 (4) S4A—Ag2—Ag1 85.08 (3)
N7—Ag1—Ag2 120.33 (9) S—Ag2—S1A 143.47 (4)
N7—Ag1—S4 80.45 (9) S—Ag2—S4A 124.09 (4)
N7—Ag1—S1 79.96 (9) S—Ag2—N7A 123.39 (9)
N7—Ag1—S 117.91 (9) N7A—Ag2—S4A 77.95 (9)
Ag1—S—Ag2 76.91 (4)    
[Figure 1]
Figure 1
Two asymmetric units of com­plex [Ag(L1)2]BF4, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The heteroatoms of the asymmetric unit are labelled.

The extended structure of [Ag(L1)2]BF4 features C—H⋯N and C—H⋯F inter­actions characterized by H⋯A distances of 2.36–2.62 Å and D—H⋯A angles of 128–161° (see Table S1 in the supporting information). These inter­actions link cations and anions into chains (see Fig. 2[link]; com­plementary views of the packing are available as Figs. S1 and S2 in the supporting information) and crosslink these chains to form layers.

[Figure 2]
Figure 2
The extended structure of [Ag(L1)2]BF4, viewed approximately along the a axis. The structure features C—H⋯F and C—H⋯N inter­actions (shown as dotted lines), which link cations and anions into layers.

The formation of the mononuclear sandwich com­plex [Ag(L1)2]BF4 upon reaction of L1 with silver(I) appears to support the hypothesis that longer nitrile pendant arms favour the formation of polynuclear com­plexes via bridging different metal centres that occupy different ring cavities. Thus, reaction of L2 with AgBF4 afforded the binuclear com­plex [Ag2(L2)2[(BF4)2, in which two inversion-related [Ag(L2)]+ units are held together by Ag—N bonds involving one nitrile-functionalized pendant arm from each ligand; the remaining two pendant arms are uncoordinated (Tei et al., 2002[Tei, L., Blake, A. J., Cooke, P. A., Caltagirone, C., Demartin, F., Lippolis, V., Morale, F., Wilson, C. & Schröder, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1662-1670.]). Also, the formation of a sinusoidal one-dimensional polymer is observed in {[Ag(L3)]BF4}[\infty], in which each AgI ion of the [Ag(L3)]+ repeating unit is bound by the [9]aneN2S macrocyclic moiety of the ligand and by the nitrile group of a symmetry-related [Ag(L3)]+ unit (Tei et al., 2002[Tei, L., Blake, A. J., Cooke, P. A., Caltagirone, C., Demartin, F., Lippolis, V., Morale, F., Wilson, C. & Schröder, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1662-1670.]).

The observed steric influence of nitrile-functionalized pendant arms on the formation of a polynuclear silver(I) com­plex cannot be the same in the presence of exogenous bridging ligands. The results obtained in the presence of CN {side-on coordination in the case of the binuclear com­plex cation [Ag2(L1)2(μ-CN)]+ and end-on coordination in the case of [Ag2(L2)2(μ-CN)]+ and [Ag2(L3)2(μ-CN)]+} seem to indicate the same trend observed in the absence of the pseudo-halogen (Lippolis et al., 1999[Lippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987-1991.]). In order to test this idea, we considered the reaction of L2 and L3 with NCS that, like CN, can coordinate to metals in both terminal and bridging modes; moreover, as bridging ligands, NCS can also link metal centres in either an end-on or a side-on bonded fashion.

Reaction of L2 with 1 equiv. of AgBF4 in MeCN in the presence of 0.5 equiv. of nBu4NSCN was carried out under the same experimental conditions used for the reaction performed in the presence of CN. After partial removal of the solvent and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution. Microanalytical data suggested the formulation [Ag(L2)(SCN)] for the product obtained and an X-ray diffraction analysis was undertaken to elucidate the coordination mode of the ligand NCS. The com­pound consists of mononuclear units and shows the metal centre facially coordinated to the macrocyclic moiety of L2 [Ag1—N4 = 2.5490 (14), Ag1—N7 = 2.5561 (15) and Ag1—S1 = 2.5074 (5) Å] and to a terminal SCN anion ligand via its S-donor atom [Ag1—S 2.4390 (5) Å] in a tetra­hedral geom­etry (Fig. 3[link]).

[Figure 3]
Figure 3
The asymmetric unit of com­plex [Ag(L2)(SCN)]BF4, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The structure is very similar to that observed for [Ag([9]aneN2S)Cl] (Heinzel & Mattes; 1992[Heinzel, U. & Mattes, R. (1992). Polyhedron, 11, 597-600.]), in which the Ag—N and Ag—S distances [Ag—N = 2.414 (5) and Ag—S = 2.629 (2) Å] are significantly shorter and longer, respectively, than those observed in [Ag(L2)(SCN)] and in [Ag(Me3[9]aneN3)(SCN)] (Stockheim et al., 1991[Stockheim, C., Wieghardt, K., Nuber, B., Weiss, J., Flöurke, U. & Haupt, H.-J. (1991). J. Chem. Soc. Dalton Trans. pp. 1487-1490.]). The Ag—N distances in [Ag(Me3[9]aneN3)(SCN)] are com­parable with those in [Ag([9]aneN2S)Cl]. As observed in [Ag(Me3[9]aneN3)(SCN)], the structure of [Ag(L2)(SCN)] shows mol­ecular com­plex units packed pairwise, with the silver(I) ion and the S-donor from the thio­cyanate ligand of two different com­plex units inter­acting in a head-to-tail manner to form a planar four-membered rhombohedral ring with inter­molecular Ag⋯S inter­actions of 3.2421 (6) Å (Fig. 4[link]).

[Figure 4]
Figure 4
View of a pair of [Ag(L2)(SCN)] mol­ecules, showing inter­molecular Ag⋯S inter­actions. H atoms have been omitted for clarity. [Symmetry code: (′) −x + 1, −y + 1, −z + 1.]

Presumably these inter­actions, rather than steric factors, are responsible for the fact that the nitrile groups are not involved in metal coordination and the thio­cyanate ligand prefers to coordinate the metal centre in terminal rather than in bridging mode. Furthermore, pairs of [Ag(L2)(SCN)] com­plex units are linked into chains of mol­ecules by C42—H42A⋯N74i inter­actions [N74i⋯H42A = 2.34 Å and C42—H42A⋯N74i = 157°; symmetry code: (i) −x + 1, −y + 1, −z] (Fig. 5[link]). These chains run parallel to the c axis. The C—H⋯N(nitrile) inter­actions are supported by C—H⋯N(thio­cyanate) inter­actions (not shown for clarity in Fig. 5[link]) [C72—H72A⋯Ni: Ni⋯H72A = 2.51 Å and C72—H72A⋯Ni = 142°; see Table S2 in the supporting information for short contacts in the structure].

[Figure 5]
Figure 5
Partial view, approximatively along the a axis, of a chain of pairs of [Ag(L2)(SCN)] mol­ecules linked via C—H⋯N(nitrile) inter­actions.

Surprisingly, the reaction of L3 with AgBF4 and nBu4NSCN under the same experimental conditions used for [Ag(L2)(SCN)] afforded the binuclear com­plex [Ag2(L3)2(μ-SCN)]BF4, which shows a μ2-κS:κS bridging NCS ligand acting as a σ two-electron donor between two metal centres of [Ag(L3)]+ com­plex cationic units [Ag1—S = 2.4943 (13) and Ag2—S = 2.4441 (13) Å] (Fig. 6[link]).

[Figure 6]
Figure 6
The asymmetric unit of com­plex [Ag2(L3)2(μ-SCN)]BF4, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The structure is very similar to that observed for the [Ag2(L1)2(μ-CN)]+ com­plex cation except that L1 (which has two –CH2CN pendant arms) and CN are replaced by L3 (which has only one –CH2CH2CN pendant arm) and NCS. The Ag1—S—Ag2 angle of 76.91 (4)° is slightly smaller than the angle at the side-on bridging cyanide [Ag1—C—Ag2 = 79.5 (3)°] in [Ag2(L1)2(μ-CN)]+ (Lippolis et al., 1999[Lippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987-1991.]), with the Ag—Ag distance being significantly longer [3.0716 (6) Å] com­pared to the value of 2.7557 (10) Å in [Ag2(L1)2(μ-CN)]+; this could be a consequence of the longer Ag—S distances com­pared to Ag—C [2.153 (8) and 2.155 (8) Å, respectively]. The packing in [Ag2(L3)2(μ-SCN)]BF4 is a 3D network built up by an array of C—H⋯N, C—H⋯F and C—H⋯S inter­actions (see Fig. S3 and Table S3 in the supporting information).

The com­plex cation [Ag2(L3)2(μ-SCN)]+ represents the first discrete binuclear silver(I) com­plex featuring a two-electron (σ) μ2-κS:κS bridging thio­cyanate. A similar coordination mode of SCN in discrete binuclear com­plexes has only been observed in the com­plex anion [Hg2(SCN)7]3− in [Co(NH3)6][Hg2(SCN)7] (Bala et al., 2006[Bala, L., Sharma, R. P., Sharma, R. & Kariuki, B. M. (2006). Inorg. Chem. Commun. 9, 852-855.]).

4. Conclusions

In this article, we have described the crystal structures of three new silver(I) com­plexes of nitrile-functionalized pendant-arm derivatives of the tridentate macrocyclic ligands [9]aneN3, [9]aneN2S and [9]aneNS2, including the presence of thio­cyanate (NCS). The results obtained, as com­pared to those previously reported in the presence of cyanate (CN), allow a better understanding of the role played by the number and length of the pendant arms in the coordination chemistry of this type of ligand towards silver(I). In general, longer more sterically-demanding nitrile-functionalized pendant arms in the macrocyclic derivatives (L) do not appear to prevent CN or NCS forming a side-on two-electron (σ) bridge rather than a linear four-electron (σ + π) one between two [Ag(L)]+ units, provided the appropriate pseudo-halide is used, i.e. steric factors appear not to be responsible for the fact that CN shows a linear μ2-κC:κN bridging mode in [Ag2(L3)2(μ-CN)]BF4, whereas NCS forms a side-on μ2-κS:κS bridge in the binuclear com­plex [Ag2(L3)2(μ-SCN)]BF4. In fact, steric factors cannot be considered solely responsible for this because an end-on μ2-κS:κN bridging mode for NCS would have allowed the two [Ag(L3)]+ units to dispose themselves further apart than in the case of [Ag2(L3)2(μ-CN)]+ where the shorter CN acts as a linear μ2-κC:κN bridging donor. On the other hand, with L2 presenting two longer pendant arms as in L3, a linear μ2-κC:κN bridging mode is observed in [Ag2(L2)2(μ-CN)]BF4 for the cyanide ligand, while a terminal coordination mode is observed for NCS in the mononuclear tetra­hedral com­plex [Ag(L2)(SCN)]. A side-on μ2-κC:κN bridging mode is observed in [Ag2(L1)2(μ-CN)]BF4, where the macrocyclic ligand L1 incorporates shorter pendant arms com­pared to L2 and L3. This result suggests that some steric effects might also come into play, in combination with electronic requirements, in the coordination chemistry of nitrile-functionalized pendant arm derivative of small tridentate macrocycles with silver(I) in the presence of anionic ligands CN and NCS.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998) for AgL12BF4, AgL2SCN; STADI-4 (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. Cell refinement: SMART (Bruker, 1998) for AgL12BF4, AgL2SCN; STADI-4 (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. Data reduction: SAINT (Bruker, 1999) for AgL12BF4, AgL2SCN; X-RED (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[4,7-bis(cyanomethyl)-1-thia-4,7-diazacyclononane-κ3N,N',S]silver(I) tetrafluoridoborate (AgL12BF4) top
Crystal data top
[Ag(C10H16N4S)2]BF4Z = 2
Mr = 643.33F(000) = 656
Triclinic, P1Dx = 1.618 Mg m3
a = 10.1813 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2237 (6) ÅCell parameters from 4462 reflections
c = 15.0154 (9) Åθ = 2.3–28.8°
α = 73.446 (2)°µ = 0.98 mm1
β = 82.398 (2)°T = 150 K
γ = 61.781 (2)°Tablet, colourless
V = 1320.11 (14) Å30.3 × 0.2 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
13703 independent reflections
Radiation source: X-ray5420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1996}
h = 1313
Tmin = 0.729, Tmax = 0.828k = 1312
6151 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
6151 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A small number of predominantly low-angle reflections showed poor agreement and were suppressed individually. There were no other systematic trends and the reasons for the poor agreement were not pursued.

Diffraction data were collected on Stoe STADI4 4-circle and Bruker SMART CCD area detector diffractometers. Structures were solved by direct methods and developed by iterative cycles of least-squares refinement on F2 and difference Fourier synthesis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag1'0.0000001.0000000.5000000.02157 (5)
S10.80965 (5)0.73691 (4)0.89254 (3)0.02367 (9)
C20.7080 (2)0.66111 (19)0.84889 (11)0.0288 (4)
H2A0.6079060.6954240.8776280.035*
H2B0.6939970.7065600.7810440.035*
C30.78180 (19)0.48679 (18)0.86677 (10)0.0252 (3)
H3A0.7131630.4580390.8457370.030*
H3B0.8730600.4540560.8284790.030*
N40.82224 (14)0.40209 (14)0.96400 (8)0.0187 (3)
C50.69353 (17)0.43080 (18)1.02663 (11)0.0223 (3)
H5A0.6709680.3428541.0406850.027*
H5B0.6056980.5232920.9946100.027*
C60.71893 (18)0.45403 (18)1.11751 (11)0.0225 (3)
H6A0.6287250.4720711.1565540.027*
H6B0.8027800.3591041.1514430.027*
N70.75219 (14)0.58322 (14)1.10358 (8)0.0195 (3)
C80.68686 (18)0.82805 (18)0.97989 (11)0.0239 (3)
H8A0.7396320.8651781.0093590.029*
H8B0.5984900.9194140.9475530.029*
C90.63217 (17)0.73218 (17)1.05647 (11)0.0235 (3)
H9A0.5781970.7910501.1031060.028*
H9B0.5605080.7138401.0296390.028*
C410.91605 (18)0.23839 (18)0.97407 (12)0.0257 (3)
H41C0.9464230.1876971.0399540.031*
H41D1.0074820.2228170.9366450.031*
C420.8399 (2)0.16515 (19)0.94421 (12)0.0287 (4)
N430.7762 (2)0.11560 (19)0.91955 (11)0.0406 (4)
C710.79990 (18)0.58746 (19)1.18970 (10)0.0250 (3)
H71C0.8281280.6714501.1763210.030*
H71D0.8894470.4896961.2137190.030*
C720.6831 (2)0.6111 (2)1.26223 (11)0.0319 (4)
N730.5894 (2)0.6280 (2)1.31473 (11)0.0499 (5)
Ag11.0000000.5000001.0000000.02228 (5)
S1'0.10514 (5)1.09797 (5)0.34563 (3)0.02568 (9)
C2'0.0767 (2)0.98966 (19)0.27946 (10)0.0264 (3)
H2'A0.0317591.0335630.2695790.032*
H2'B0.1226811.0058410.2175830.032*
C3'0.13787 (18)0.81697 (18)0.32141 (10)0.0230 (3)
H3'A0.1061380.7738250.2821310.028*
H3'B0.2481440.7688020.3204010.028*
N4'0.08854 (14)0.77649 (14)0.41728 (8)0.0203 (3)
C5'0.20750 (17)0.65164 (17)0.48137 (10)0.0230 (3)
H5'A0.2474130.5567190.4599820.028*
H5'B0.1641960.6325220.5438410.028*
C6'0.33462 (18)0.68556 (18)0.48879 (11)0.0238 (3)
H6'A0.4098060.5971360.5328770.029*
H6'B0.3828790.6967310.4272930.029*
N7'0.28727 (14)0.82627 (15)0.52028 (9)0.0220 (3)
C8'0.35356 (19)0.9247 (2)0.46700 (12)0.0293 (4)
H8'A0.4634080.8632940.4698300.035*
H8'B0.3267221.0084180.4972140.035*
C9'0.3061 (2)0.9960 (2)0.36514 (12)0.0316 (4)
H9'A0.3501100.9134930.3320840.038*
H9'B0.3480541.0683180.3372950.038*
C41'0.03903 (18)0.74723 (19)0.42178 (11)0.0250 (3)
H41A0.1208860.8391740.3840230.030*
H41B0.0737720.7320350.4869320.030*
C42'0.00916 (19)0.6118 (2)0.38874 (11)0.0282 (4)
N43'0.01303 (19)0.50939 (19)0.36215 (11)0.0378 (4)
C71'0.31270 (19)0.7887 (2)0.61963 (11)0.0291 (4)
H71A0.2588480.7300410.6532720.035*
H71B0.2706070.8851130.6395670.035*
C72'0.4724 (2)0.6977 (2)0.64596 (13)0.0433 (5)
N73'0.5960 (2)0.6277 (3)0.66227 (15)0.0718 (7)
B10.2911 (2)0.9973 (2)0.79979 (14)0.0293 (4)
F10.28390 (16)0.86125 (13)0.81549 (8)0.0536 (3)
F20.33708 (13)1.03340 (13)0.70886 (8)0.0448 (3)
F30.15010 (12)1.11335 (13)0.81049 (9)0.0483 (3)
F40.38827 (14)0.98516 (16)0.86048 (9)0.0616 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag1'0.02112 (9)0.02284 (9)0.01874 (8)0.00723 (7)0.00187 (6)0.00835 (6)
S10.0314 (2)0.02153 (19)0.02038 (18)0.01508 (17)0.00034 (15)0.00316 (14)
C20.0373 (10)0.0247 (8)0.0259 (8)0.0160 (8)0.0122 (7)0.0000 (7)
C30.0323 (9)0.0277 (8)0.0204 (7)0.0163 (7)0.0037 (6)0.0068 (6)
N40.0208 (6)0.0158 (6)0.0201 (6)0.0081 (5)0.0002 (5)0.0058 (5)
C50.0212 (8)0.0210 (8)0.0279 (8)0.0120 (6)0.0017 (6)0.0073 (6)
C60.0250 (8)0.0218 (8)0.0222 (7)0.0128 (7)0.0055 (6)0.0064 (6)
N70.0221 (7)0.0179 (6)0.0196 (6)0.0095 (5)0.0025 (5)0.0068 (5)
C80.0253 (8)0.0159 (7)0.0286 (8)0.0073 (6)0.0031 (6)0.0052 (6)
C90.0200 (8)0.0196 (8)0.0292 (8)0.0065 (6)0.0029 (6)0.0094 (6)
C410.0246 (8)0.0197 (8)0.0310 (8)0.0068 (7)0.0016 (7)0.0091 (6)
C420.0360 (10)0.0196 (8)0.0299 (8)0.0118 (7)0.0060 (7)0.0098 (6)
N430.0561 (11)0.0391 (9)0.0428 (9)0.0320 (9)0.0111 (8)0.0203 (7)
C710.0276 (8)0.0282 (8)0.0218 (7)0.0138 (7)0.0050 (6)0.0106 (6)
C720.0408 (10)0.0314 (9)0.0240 (8)0.0160 (8)0.0058 (7)0.0114 (7)
N730.0547 (11)0.0539 (11)0.0350 (9)0.0227 (10)0.0207 (8)0.0160 (8)
Ag10.01716 (9)0.02577 (10)0.02614 (9)0.00879 (7)0.00062 (6)0.01193 (7)
S1'0.0355 (2)0.0231 (2)0.02031 (18)0.01553 (18)0.00362 (16)0.00607 (15)
C2'0.0380 (9)0.0268 (8)0.0166 (7)0.0171 (8)0.0006 (6)0.0046 (6)
C3'0.0290 (8)0.0243 (8)0.0180 (7)0.0130 (7)0.0024 (6)0.0084 (6)
N4'0.0241 (7)0.0201 (6)0.0169 (6)0.0102 (5)0.0014 (5)0.0043 (5)
C5'0.0284 (8)0.0177 (7)0.0203 (7)0.0075 (7)0.0026 (6)0.0056 (6)
C6'0.0221 (8)0.0234 (8)0.0230 (7)0.0054 (7)0.0003 (6)0.0108 (6)
N7'0.0208 (7)0.0239 (7)0.0213 (6)0.0076 (6)0.0001 (5)0.0105 (5)
C8'0.0259 (9)0.0349 (10)0.0341 (9)0.0169 (8)0.0040 (7)0.0150 (7)
C9'0.0327 (9)0.0371 (10)0.0319 (9)0.0227 (8)0.0097 (7)0.0107 (7)
C41'0.0280 (8)0.0242 (8)0.0231 (8)0.0123 (7)0.0009 (6)0.0055 (6)
C42'0.0339 (9)0.0319 (9)0.0238 (8)0.0201 (8)0.0032 (7)0.0033 (7)
N43'0.0520 (10)0.0380 (9)0.0341 (8)0.0281 (8)0.0014 (7)0.0103 (7)
C71'0.0261 (9)0.0319 (9)0.0247 (8)0.0052 (7)0.0037 (6)0.0134 (7)
C72'0.0351 (11)0.0521 (12)0.0371 (10)0.0053 (9)0.0099 (8)0.0253 (9)
N73'0.0368 (11)0.0989 (17)0.0652 (13)0.0017 (11)0.0190 (9)0.0509 (13)
B10.0315 (10)0.0238 (9)0.0314 (10)0.0075 (8)0.0075 (8)0.0113 (8)
F10.0917 (10)0.0313 (6)0.0421 (6)0.0330 (7)0.0030 (6)0.0055 (5)
F20.0504 (7)0.0477 (7)0.0391 (6)0.0267 (6)0.0020 (5)0.0085 (5)
F30.0328 (6)0.0443 (7)0.0628 (8)0.0073 (5)0.0011 (5)0.0246 (6)
F40.0453 (7)0.0756 (9)0.0647 (8)0.0106 (7)0.0226 (6)0.0396 (7)
Geometric parameters (Å, º) top
Ag1'—S1'2.5605 (4)C71—C721.481 (2)
Ag1'—S1'i2.5606 (4)C72—N731.133 (2)
Ag1'—N4'2.6363 (12)S1'—C2'1.8174 (16)
Ag1'—N4'i2.6363 (12)S1'—C9'1.8237 (18)
Ag1'—N7'i2.6108 (13)C2'—H2'A0.9900
Ag1'—N7'2.6108 (13)C2'—H2'B0.9900
S1—C21.8242 (17)C2'—C3'1.527 (2)
S1—C81.8200 (17)C3'—H3'A0.9900
S1—Ag12.5273 (4)C3'—H3'B0.9900
C2—H2A0.9900C3'—N4'1.4702 (18)
C2—H2B0.9900N4'—C5'1.4727 (18)
C2—C31.526 (2)N4'—C41'1.454 (2)
C3—H3A0.9900C5'—H5'A0.9900
C3—H3B0.9900C5'—H5'B0.9900
C3—N41.4670 (19)C5'—C6'1.514 (2)
N4—C51.4681 (19)C6'—H6'A0.9900
N4—C411.4555 (19)C6'—H6'B0.9900
N4—Ag12.6173 (12)C6'—N7'1.482 (2)
C5—H5A0.9900N7'—C8'1.466 (2)
C5—H5B0.9900N7'—C71'1.4565 (19)
C5—C61.524 (2)C8'—H8'A0.9900
C6—H6A0.9900C8'—H8'B0.9900
C6—H6B0.9900C8'—C9'1.527 (2)
C6—N71.4661 (19)C9'—H9'A0.9900
N7—C91.4723 (19)C9'—H9'B0.9900
N7—C711.4589 (19)C41'—H41A0.9900
C8—H8A0.9900C41'—H41B0.9900
C8—H8B0.9900C41'—C42'1.486 (2)
C8—C91.516 (2)C42'—N43'1.139 (2)
C9—H9A0.9900C71'—H71A0.9900
C9—H9B0.9900C71'—H71B0.9900
C41—H41C0.9900C71'—C72'1.482 (2)
C41—H41D0.9900C72'—N73'1.134 (2)
C41—C421.482 (2)B1—F11.379 (2)
C42—N431.138 (2)B1—F21.388 (2)
C71—H71C0.9900B1—F31.390 (2)
C71—H71D0.9900B1—F41.372 (2)
S1'—Ag1'—S1'i180.0S1—Ag1—S1ii180.0
S1'—Ag1'—N4'76.92 (3)S1—Ag1—N477.67 (3)
S1'i—Ag1'—N4'103.08 (3)S1ii—Ag1—N4102.33 (3)
S1'—Ag1'—N4'i103.08 (3)S1—Ag1—N4ii102.33 (3)
S1'i—Ag1'—N4'i76.92 (3)S1ii—Ag1—N4ii77.67 (3)
S1'—Ag1'—N7'i103.30 (3)N4ii—Ag1—N4180.0
S1'—Ag1'—N7'76.70 (3)C2'—S1'—Ag1'97.19 (5)
S1'i—Ag1'—N7'i76.70 (3)C2'—S1'—C9'102.79 (8)
S1'i—Ag1'—N7'103.30 (3)C9'—S1'—Ag1'103.55 (6)
N4'i—Ag1'—N4'180.0S1'—C2'—H2'A108.0
N7'i—Ag1'—N4'110.28 (4)S1'—C2'—H2'B108.0
N7'—Ag1'—N4'69.72 (4)H2'A—C2'—H2'B107.3
N7'i—Ag1'—N4'i69.72 (4)C3'—C2'—S1'117.00 (11)
N7'—Ag1'—N4'i110.28 (4)C3'—C2'—H2'A108.0
N7'i—Ag1'—N7'180.0C3'—C2'—H2'B108.0
C2—S1—Ag1102.58 (5)C2'—C3'—H3'A108.8
C8—S1—C2104.31 (8)C2'—C3'—H3'B108.8
C8—S1—Ag198.56 (5)H3'A—C3'—H3'B107.7
S1—C2—H2A108.4N4'—C3'—C2'113.64 (13)
S1—C2—H2B108.4N4'—C3'—H3'A108.8
H2A—C2—H2B107.5N4'—C3'—H3'B108.8
C3—C2—S1115.46 (11)C3'—N4'—Ag1'112.22 (9)
C3—C2—H2A108.4C3'—N4'—C5'114.60 (12)
C3—C2—H2B108.4C5'—N4'—Ag1'100.41 (8)
C2—C3—H3A108.5C41'—N4'—Ag1'104.94 (9)
C2—C3—H3B108.5C41'—N4'—C3'112.44 (12)
H3A—C3—H3B107.5C41'—N4'—C5'111.21 (12)
N4—C3—C2114.90 (13)N4'—C5'—H5'A108.9
N4—C3—H3A108.5N4'—C5'—H5'B108.9
N4—C3—H3B108.5N4'—C5'—C6'113.43 (13)
C3—N4—C5113.57 (12)H5'A—C5'—H5'B107.7
C3—N4—Ag1101.77 (9)C6'—C5'—H5'A108.9
C5—N4—Ag1112.87 (9)C6'—C5'—H5'B108.9
C41—N4—C3112.17 (12)C5'—C6'—H6'A108.9
C41—N4—C5111.24 (12)C5'—C6'—H6'B108.9
C41—N4—Ag1104.52 (9)H6'A—C6'—H6'B107.7
N4—C5—H5A109.0N7'—C6'—C5'113.51 (13)
N4—C5—H5B109.0N7'—C6'—H6'A108.9
N4—C5—C6113.06 (12)N7'—C6'—H6'B108.9
H5A—C5—H5B107.8C6'—N7'—Ag1'110.86 (9)
C6—C5—H5A109.0C8'—N7'—Ag1'104.80 (9)
C6—C5—H5B109.0C8'—N7'—C6'113.74 (13)
C5—C6—H6A109.0C71'—N7'—Ag1'104.38 (9)
C5—C6—H6B109.0C71'—N7'—C6'110.96 (13)
H6A—C6—H6B107.8C71'—N7'—C8'111.53 (13)
N7—C6—C5112.88 (12)N7'—C8'—H8'A108.5
N7—C6—H6A109.0N7'—C8'—H8'B108.5
N7—C6—H6B109.0N7'—C8'—C9'114.91 (13)
C6—N7—C9113.82 (12)H8'A—C8'—H8'B107.5
C71—N7—C6111.68 (12)C9'—C8'—H8'A108.5
C71—N7—C9112.43 (12)C9'—C8'—H8'B108.5
S1—C8—H8A107.9S1'—C9'—H9'A108.6
S1—C8—H8B107.9S1'—C9'—H9'B108.6
H8A—C8—H8B107.2C8'—C9'—S1'114.86 (12)
C9—C8—S1117.58 (11)C8'—C9'—H9'A108.6
C9—C8—H8A107.9C8'—C9'—H9'B108.6
C9—C8—H8B107.9H9'A—C9'—H9'B107.5
N7—C9—C8113.72 (13)N4'—C41'—H41A108.6
N7—C9—H9A108.8N4'—C41'—H41B108.6
N7—C9—H9B108.8N4'—C41'—C42'114.51 (14)
C8—C9—H9A108.8H41A—C41'—H41B107.6
C8—C9—H9B108.8C42'—C41'—H41A108.6
H9A—C9—H9B107.7C42'—C41'—H41B108.6
N4—C41—H41C109.1N43'—C42'—C41'179.01 (18)
N4—C41—H41D109.1N7'—C71'—H71A108.9
N4—C41—C42112.62 (13)N7'—C71'—H71B108.9
H41C—C41—H41D107.8N7'—C71'—C72'113.33 (15)
C42—C41—H41C109.1H71A—C71'—H71B107.7
C42—C41—H41D109.1C72'—C71'—H71A108.9
N43—C42—C41176.78 (19)C72'—C71'—H71B108.9
N7—C71—H71C109.0N73'—C72'—C71'177.1 (2)
N7—C71—H71D109.0F1—B1—F2108.17 (14)
N7—C71—C72112.90 (14)F1—B1—F3109.32 (17)
H71C—C71—H71D107.8F2—B1—F3108.64 (15)
C72—C71—H71C109.0F4—B1—F1111.04 (16)
C72—C71—H71D109.0F4—B1—F2110.29 (17)
N73—C72—C71176.3 (2)F4—B1—F3109.33 (15)
Ag1'—S1'—C2'—C3'51.77 (13)Ag1—S1—C2—C313.93 (14)
Ag1'—S1'—C9'—C8'17.07 (14)Ag1—S1—C8—C951.59 (12)
Ag1'—N4'—C5'—C6'61.91 (13)Ag1—N4—C5—C621.40 (15)
Ag1'—N4'—C41'—C42'173.20 (10)Ag1—N4—C41—C42172.44 (11)
Ag1'—N7'—C8'—C9'55.84 (15)S1'—C2'—C3'—N4'52.76 (17)
Ag1'—N7'—C71'—C72'176.18 (13)C2'—S1'—C9'—C8'117.84 (13)
S1—C2—C3—N452.98 (19)C2'—C3'—N4'—Ag1'21.06 (15)
S1—C8—C9—N751.09 (17)C2'—C3'—N4'—C5'134.74 (13)
C2—S1—C8—C953.82 (13)C2'—C3'—N4'—C41'96.97 (16)
C2—C3—N4—C563.48 (17)C3'—N4'—C5'—C6'58.55 (17)
C2—C3—N4—C41169.32 (14)C3'—N4'—C41'—C42'64.55 (17)
C2—C3—N4—Ag158.13 (14)N4'—C5'—C6'—N7'58.50 (17)
C3—N4—C5—C6136.60 (13)C5'—N4'—C41'—C42'65.49 (16)
C3—N4—C41—C4262.98 (18)C5'—C6'—N7'—Ag1'17.74 (15)
N4—C5—C6—N759.09 (17)C5'—C6'—N7'—C8'135.52 (14)
C5—N4—C41—C4265.45 (17)C5'—C6'—N7'—C71'97.76 (15)
C5—C6—N7—C960.78 (17)C6'—N7'—C8'—C9'65.39 (18)
C5—C6—N7—C71170.60 (13)C6'—N7'—C71'—C72'64.36 (19)
C6—N7—C9—C8134.70 (14)N7'—C8'—C9'—S1'52.39 (19)
C6—N7—C71—C7262.77 (17)C8'—N7'—C71'—C72'63.56 (19)
C8—S1—C2—C3116.31 (13)C9'—S1'—C2'—C3'53.94 (14)
C9—N7—C71—C7266.59 (17)C41'—N4'—C5'—C6'172.54 (12)
C41—N4—C5—C695.72 (15)C71'—N7'—C8'—C9'168.20 (14)
C71—N7—C9—C897.06 (15)
Symmetry codes: (i) x, y+2, z+1; (ii) x+2, y+1, z+2.
[4,7-Bis(2-cyanoethyl)-1-thia-4,7-diazacyclononane-\ κ3N,N',S](thiocyanato-κS)silver(I) (AgL2SCN) top
Crystal data top
[Ag(C12H20N4S)(NCS)]Z = 2
Mr = 418.33F(000) = 424
Triclinic, P1Dx = 1.661 Mg m3
a = 8.4426 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5739 (6) ÅCell parameters from 4102 reflections
c = 11.8497 (8) Åθ = 2.4–28.7°
α = 96.585 (1)°µ = 1.46 mm1
β = 99.023 (1)°T = 150 K
γ = 95.313 (1)°Block, colourless
V = 836.19 (1) Å30.36 × 0.30 × 0.07 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
5159 independent reflections
Graphite monochromator3401 reflections with I > 2σ(I)
Detector resolution: 8.336 pixels mm-1Rint = 0.022
ω scansθmax = 28.7°, θmin = 1.8°
Absorption correction: integration
(SHELXTL; Sheldrick, 2008)
h = 1110
Tmin = 0.606, Tmax = 0.819k = 1111
3668 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1835P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Diffraction data were collected on Stoe STADI4 4-circle and Bruker SMART CCD area detector diffractometers. Structures were solved by direct methods and developed by iterative cycles of least-squares refinement on F2 and difference Fourier synthesis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.45271 (2)0.67967 (2)0.39303 (2)0.02735 (6)
C0.5932 (2)0.4009 (2)0.26281 (19)0.0313 (4)
N0.5567 (2)0.3379 (2)0.16981 (19)0.0448 (5)
S10.30887 (6)0.91065 (6)0.45249 (4)0.02851 (11)
C20.1077 (2)0.8015 (2)0.41856 (16)0.0284 (4)
H2A0.0992040.7256990.4749270.034*
H2B0.0277100.8770850.4291620.034*
S0.65402 (7)0.49300 (7)0.39676 (4)0.03595 (12)
C30.0617 (2)0.7106 (2)0.29747 (16)0.0248 (4)
H3A0.0466070.6515420.2901880.030*
H3B0.0547690.7871910.2408560.030*
N40.17585 (17)0.59921 (17)0.26873 (13)0.0223 (3)
C50.2127 (2)0.5974 (2)0.15067 (15)0.0244 (4)
H5A0.1113490.5672380.0947710.029*
H5B0.2856710.5156800.1374770.029*
C60.2913 (2)0.7554 (2)0.12755 (15)0.0243 (4)
H6A0.3201740.7425550.0494550.029*
H6B0.2120440.8334520.1287980.029*
N70.43751 (17)0.81746 (17)0.21205 (13)0.0222 (3)
C80.4433 (2)0.9845 (2)0.25684 (16)0.0262 (4)
H8A0.4297331.0459620.1908600.031*
H8B0.5516911.0200020.3027590.031*
C710.5874 (2)0.7824 (2)0.17176 (16)0.0241 (4)
H71A0.5777510.6684120.1427630.029*
H71B0.6770220.8039380.2381900.029*
C720.6311 (2)0.8775 (2)0.07605 (16)0.0261 (4)
H72A0.5432880.8557540.0084500.031*
H72B0.6425220.9919180.1041940.031*
C730.7826 (2)0.8348 (2)0.04165 (16)0.0304 (4)
N740.8999 (2)0.7988 (3)0.01779 (17)0.0445 (5)
C410.1307 (2)0.4406 (2)0.29564 (16)0.0253 (4)
H41A0.1119820.4488860.3764170.030*
H41B0.2223440.3775950.2899550.030*
C420.0216 (2)0.3510 (2)0.21647 (16)0.0277 (4)
H42A0.1116950.4173300.2154390.033*
H42B0.0002360.3300670.1367800.033*
C430.0679 (2)0.2013 (2)0.25739 (17)0.0283 (4)
N440.1000 (2)0.0852 (2)0.29014 (16)0.0380 (4)
C90.3168 (2)1.0231 (2)0.33171 (17)0.0290 (4)
H9A0.2093101.0056670.2819110.035*
H9B0.3372991.1367930.3623390.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02301 (8)0.02802 (9)0.03002 (9)0.00191 (6)0.00023 (6)0.00685 (6)
C0.0219 (9)0.0251 (9)0.0493 (13)0.0034 (7)0.0053 (9)0.0149 (9)
N0.0426 (11)0.0317 (9)0.0544 (12)0.0026 (8)0.0034 (9)0.0016 (8)
S10.0299 (2)0.0280 (2)0.0258 (2)0.00200 (19)0.00382 (19)0.00125 (17)
C20.0266 (9)0.0286 (9)0.0303 (10)0.0004 (8)0.0082 (8)0.0029 (7)
S0.0347 (3)0.0463 (3)0.0320 (3)0.0160 (2)0.0066 (2)0.0164 (2)
C30.0208 (8)0.0243 (9)0.0292 (9)0.0023 (7)0.0036 (7)0.0038 (7)
N40.0185 (7)0.0223 (7)0.0258 (7)0.0002 (6)0.0026 (6)0.0044 (6)
C50.0195 (8)0.0267 (9)0.0252 (9)0.0003 (7)0.0017 (7)0.0014 (7)
C60.0184 (8)0.0283 (9)0.0254 (9)0.0002 (7)0.0004 (7)0.0060 (7)
N70.0179 (7)0.0230 (7)0.0244 (7)0.0005 (6)0.0007 (6)0.0041 (6)
C80.0262 (9)0.0231 (9)0.0282 (9)0.0008 (7)0.0021 (7)0.0051 (7)
C710.0188 (8)0.0262 (9)0.0276 (9)0.0021 (7)0.0007 (7)0.0091 (7)
C720.0211 (9)0.0295 (9)0.0284 (9)0.0020 (7)0.0023 (7)0.0097 (7)
C730.0282 (10)0.0375 (10)0.0250 (9)0.0010 (8)0.0020 (8)0.0069 (8)
N740.0317 (10)0.0655 (13)0.0382 (10)0.0107 (9)0.0095 (8)0.0052 (9)
C410.0214 (9)0.0229 (8)0.0303 (9)0.0009 (7)0.0017 (7)0.0048 (7)
C420.0243 (9)0.0284 (9)0.0283 (9)0.0045 (7)0.0039 (7)0.0020 (7)
C430.0205 (9)0.0290 (10)0.0326 (10)0.0027 (7)0.0045 (7)0.0033 (8)
N440.0312 (9)0.0305 (9)0.0494 (11)0.0045 (7)0.0039 (8)0.0034 (8)
C90.0317 (10)0.0222 (9)0.0333 (10)0.0017 (7)0.0063 (8)0.0049 (7)
Geometric parameters (Å, º) top
Ag1—S12.5074 (5)N7—C81.462 (2)
Ag1—S2.4390 (5)N7—C711.465 (2)
Ag1—N42.5490 (14)C8—H8A0.9900
Ag1—N72.5561 (15)C8—H8B0.9900
C—N1.152 (3)C8—C91.528 (3)
C—S1.670 (2)C71—H71A0.9900
S1—C21.8241 (19)C71—H71B0.9900
S1—C91.8211 (19)C71—C721.541 (2)
C2—H2A0.9900C72—H72A0.9900
C2—H2B0.9900C72—H72B0.9900
C2—C31.526 (3)C72—C731.467 (3)
C3—H3A0.9900C73—N741.132 (3)
C3—H3B0.9900C41—H41A0.9900
C3—N41.468 (2)C41—H41B0.9900
N4—C51.479 (2)C41—C421.548 (2)
N4—C411.462 (2)C42—H42A0.9900
C5—H5A0.9900C42—H42B0.9900
C5—H5B0.9900C42—C431.464 (3)
C5—C61.525 (2)C43—N441.135 (2)
C6—H6A0.9900C9—H9A0.9900
C6—H6B0.9900C9—H9B0.9900
C6—N71.476 (2)
S1—Ag1—N479.60 (4)C8—N7—C6114.09 (14)
S1—Ag1—N779.77 (4)C8—N7—C71111.70 (14)
S—Ag1—S1160.21 (2)C71—N7—Ag1101.89 (10)
S—Ag1—N4119.16 (4)C71—N7—C6113.25 (14)
S—Ag1—N7111.02 (4)N7—C8—H8A108.5
N4—Ag1—N771.15 (5)N7—C8—H8B108.5
N—C—S177.7 (2)N7—C8—C9115.13 (15)
C2—S1—Ag195.16 (7)H8A—C8—H8B107.5
C9—S1—Ag1101.15 (6)C9—C8—H8A108.5
C9—S1—C2103.37 (9)C9—C8—H8B108.5
S1—C2—H2A108.3N7—C71—H71A108.6
S1—C2—H2B108.3N7—C71—H71B108.6
H2A—C2—H2B107.4N7—C71—C72114.52 (14)
C3—C2—S1115.81 (13)H71A—C71—H71B107.6
C3—C2—H2A108.3C72—C71—H71A108.6
C3—C2—H2B108.3C72—C71—H71B108.6
C—S—Ag197.17 (7)C71—C72—H72A109.5
C2—C3—H3A108.8C71—C72—H72B109.5
C2—C3—H3B108.8H72A—C72—H72B108.1
H3A—C3—H3B107.7C73—C72—C71110.56 (15)
N4—C3—C2113.77 (15)C73—C72—H72A109.5
N4—C3—H3A108.8C73—C72—H72B109.5
N4—C3—H3B108.8N74—C73—C72177.8 (2)
C3—N4—Ag1110.77 (10)N4—C41—H41A108.7
C3—N4—C5114.32 (14)N4—C41—H41B108.7
C5—N4—Ag1102.34 (10)N4—C41—C42114.42 (15)
C41—N4—Ag1103.42 (10)H41A—C41—H41B107.6
C41—N4—C3112.58 (14)C42—C41—H41A108.7
C41—N4—C5112.35 (14)C42—C41—H41B108.7
N4—C5—H5A108.8C41—C42—H42A109.5
N4—C5—H5B108.8C41—C42—H42B109.5
N4—C5—C6113.72 (14)H42A—C42—H42B108.1
H5A—C5—H5B107.7C43—C42—C41110.59 (16)
C6—C5—H5A108.8C43—C42—H42A109.5
C6—C5—H5B108.8C43—C42—H42B109.5
C5—C6—H6A108.9N44—C43—C42178.4 (2)
C5—C6—H6B108.9S1—C9—H9A108.3
H6A—C6—H6B107.7S1—C9—H9B108.3
N7—C6—C5113.24 (14)C8—C9—S1116.03 (14)
N7—C6—H6A108.9C8—C9—H9A108.3
N7—C6—H6B108.9C8—C9—H9B108.3
C6—N7—Ag1111.38 (10)H9A—C9—H9B107.4
C8—N7—Ag1103.40 (10)
Ag1—S1—C2—C352.45 (14)N4—C41—C42—C43173.76 (16)
Ag1—S1—C9—C818.86 (15)C5—N4—C41—C4260.7 (2)
Ag1—N4—C5—C658.42 (15)C5—C6—N7—Ag116.69 (18)
Ag1—N4—C41—C42170.34 (13)C5—C6—N7—C8133.28 (16)
Ag1—N7—C8—C954.08 (16)C5—C6—N7—C7197.45 (17)
Ag1—N7—C71—C72168.44 (12)C6—N7—C8—C967.1 (2)
S1—C2—C3—N455.39 (19)C6—N7—C71—C7271.83 (19)
C2—S1—C9—C8116.97 (15)N7—C8—C9—S153.5 (2)
C2—C3—N4—Ag123.22 (17)N7—C71—C72—C73179.87 (15)
C2—C3—N4—C5138.19 (15)C8—N7—C71—C7258.6 (2)
C2—C3—N4—C4192.03 (18)C71—N7—C8—C9162.91 (15)
C3—N4—C5—C661.40 (19)C41—N4—C5—C6168.71 (14)
C3—N4—C41—C4270.1 (2)C9—S1—C2—C350.32 (16)
N4—C5—C6—N754.1 (2)
µ-Thiocyanato-κ2S:S-bis{[7-(2-cyanoethyl)-1,4-dithia-7-azacyclononane-κ3N,S,S']silver(I)} tetrafluoridoborate (Ag2L32mu-SCNBF4) top
Crystal data top
[Ag2(C9H16N2S2)2(SCN)]BF4F(000) = 3168
Mr = 793.34Dx = 1.856 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.537 (3) ÅCell parameters from 35 reflections
b = 8.4362 (11) Åθ = 11.1–15.4°
c = 27.216 (3) ŵ = 1.79 mm1
β = 119.940 (9)°T = 150 K
V = 5677.6 (12) Å3Tablet, colourless
Z = 80.27 × 0.15 × 0.12 mm
Data collection top
Stoe STADI4 4-circle
diffractometer
4138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Planar graphite monochromatorθmax = 25.0°, θmin = 2.6°
Scan width (ω) = 1.04 – 1.20, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = 3333
Absorption correction: integration
(SHELXTL; Sheldrick, 2008)
k = 100
Tmin = 0.713, Tmax = 0.822l = 3232
5547 measured reflections3 standard reflections every 60 min
4972 independent reflections intensity decay: 7.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.015P)2 + 34.6966P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
4972 reflectionsΔρmax = 0.56 e Å3
326 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000099 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.08025 (2)0.93692 (4)0.41389 (2)0.02154 (11)
Ag20.09609 (2)0.98647 (5)0.31130 (2)0.02240 (11)
S1A0.04351 (5)0.82782 (15)0.22085 (5)0.0216 (3)
S4A0.16145 (5)0.74507 (15)0.35120 (5)0.0200 (3)
S40.02877 (5)0.87553 (15)0.46833 (5)0.0215 (3)
S10.07752 (5)0.63126 (14)0.40150 (5)0.0189 (3)
S0.08733 (5)1.18937 (14)0.37032 (5)0.0210 (3)
F10.33209 (13)1.0994 (4)0.31883 (13)0.0432 (9)
C8A0.11625 (18)1.0142 (6)0.20333 (19)0.0210 (11)
H8AA0.1370241.0202490.1831660.025*
H8AB0.0920611.1076470.1920290.025*
F20.32206 (13)1.0454 (4)0.39447 (15)0.0442 (9)
C0.0214 (2)1.2361 (6)0.3298 (2)0.0244 (12)
F40.39578 (15)0.9572 (5)0.39134 (17)0.0588 (11)
N7A0.15398 (14)1.0213 (4)0.26449 (16)0.0164 (8)
F30.38643 (15)1.2183 (4)0.40266 (15)0.0518 (10)
C60.14043 (18)0.8308 (6)0.54970 (19)0.0178 (10)
H6A0.1696130.8661830.5873380.021*
H6B0.1358470.7152650.5520390.021*
C72A0.2050 (2)1.2596 (6)0.2569 (2)0.0234 (11)
H72A0.2289581.1806500.2535130.028*
H72B0.1788931.2981190.2183690.028*
C90.13812 (19)0.5770 (6)0.46780 (19)0.0201 (10)
H9A0.1270400.5385700.4948680.024*
H9B0.1563430.4882750.4602500.024*
N70.15811 (15)0.8593 (4)0.50755 (16)0.0154 (8)
C50.08767 (18)0.9137 (6)0.5373 (2)0.0225 (11)
H5A0.0942401.0294960.5411320.027*
H5B0.0789550.8814270.5668350.027*
C3A0.12826 (19)0.6089 (6)0.2919 (2)0.0231 (11)
H3AA0.1458430.6180640.2685010.028*
H3AB0.1343080.4994880.3069490.028*
N74A0.26226 (18)1.4920 (5)0.32126 (19)0.0292 (10)
N740.26658 (19)1.3362 (6)0.56519 (19)0.0342 (11)
C30.0239 (2)0.6604 (6)0.4664 (2)0.0226 (11)
H3A0.0545300.6181000.5018320.027*
H3B0.0098220.6306550.4661590.027*
C720.1858 (2)1.1416 (6)0.5362 (2)0.0234 (11)
H72C0.1538351.1776280.5006230.028*
H72D0.1757521.1382190.5661780.028*
C6A0.19758 (18)0.9034 (6)0.28424 (19)0.0178 (10)
H6AA0.2294080.9532010.2851370.021*
H6AB0.1855320.8153200.2565430.021*
C710.20226 (18)0.9769 (6)0.5278 (2)0.0207 (11)
H71A0.2150470.9835060.5000820.025*
H71B0.2328830.9397930.5642350.025*
C80.17881 (18)0.7127 (6)0.4957 (2)0.0201 (11)
H8A0.2091730.6732610.5318750.024*
H8B0.1936900.7398960.4707630.024*
N0.02324 (19)1.2731 (6)0.3034 (2)0.0405 (13)
C5A0.21473 (18)0.8355 (6)0.3426 (2)0.0208 (11)
H5AA0.2312750.9217510.3707830.025*
H5AB0.2431030.7549230.3515210.025*
C9A0.08164 (19)0.8633 (6)0.1847 (2)0.0229 (11)
H9AA0.1055910.7712530.1912530.027*
H9AB0.0559600.8698200.1434220.027*
C2A0.06761 (19)0.6337 (6)0.2535 (2)0.0244 (11)
H2AA0.0498920.6091130.2759160.029*
H2AB0.0546990.5543520.2226100.029*
C73A0.23715 (19)1.3917 (6)0.2920 (2)0.0194 (11)
C730.2306 (2)1.2535 (6)0.5525 (2)0.0239 (11)
B10.3592 (2)1.0805 (7)0.3769 (2)0.0235 (13)
C20.02391 (19)0.5797 (6)0.4164 (2)0.0221 (11)
H2A0.0111220.6028550.3819830.027*
H2B0.0254090.4637500.4226920.027*
C71A0.17420 (19)1.1811 (6)0.2842 (2)0.0189 (10)
H71C0.1986671.1774620.3258240.023*
H71D0.1431871.2496740.2768360.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0239 (2)0.0180 (2)0.0196 (2)0.00354 (16)0.00846 (16)0.00433 (16)
Ag20.0245 (2)0.0204 (2)0.0276 (2)0.00087 (16)0.01692 (17)0.00617 (17)
S1A0.0141 (6)0.0252 (7)0.0230 (6)0.0016 (5)0.0075 (5)0.0031 (5)
S4A0.0210 (6)0.0194 (6)0.0204 (6)0.0003 (5)0.0108 (5)0.0021 (5)
S40.0164 (6)0.0248 (7)0.0211 (6)0.0004 (5)0.0076 (5)0.0045 (5)
S10.0201 (6)0.0171 (6)0.0170 (6)0.0003 (5)0.0074 (5)0.0011 (5)
S0.0257 (6)0.0147 (6)0.0216 (6)0.0015 (5)0.0110 (5)0.0020 (5)
F10.046 (2)0.049 (2)0.0232 (16)0.0090 (17)0.0084 (15)0.0060 (15)
C8A0.019 (2)0.025 (3)0.017 (2)0.001 (2)0.008 (2)0.002 (2)
F20.0427 (19)0.047 (2)0.058 (2)0.0115 (17)0.0365 (18)0.0007 (18)
C0.037 (3)0.012 (3)0.032 (3)0.003 (2)0.023 (3)0.001 (2)
F40.049 (2)0.058 (3)0.073 (3)0.021 (2)0.034 (2)0.025 (2)
N7A0.0141 (19)0.011 (2)0.019 (2)0.0033 (16)0.0050 (16)0.0016 (16)
F30.059 (2)0.056 (2)0.051 (2)0.033 (2)0.0348 (19)0.0278 (19)
C60.017 (2)0.021 (3)0.013 (2)0.001 (2)0.0061 (19)0.001 (2)
C72A0.031 (3)0.018 (3)0.025 (3)0.007 (2)0.017 (2)0.006 (2)
C90.024 (3)0.011 (2)0.018 (2)0.007 (2)0.006 (2)0.003 (2)
N70.0156 (19)0.012 (2)0.017 (2)0.0005 (16)0.0068 (16)0.0001 (16)
C50.019 (2)0.030 (3)0.021 (3)0.003 (2)0.011 (2)0.011 (2)
C3A0.022 (3)0.015 (3)0.034 (3)0.002 (2)0.016 (2)0.002 (2)
N74A0.032 (2)0.026 (3)0.030 (2)0.007 (2)0.016 (2)0.006 (2)
N740.041 (3)0.032 (3)0.033 (3)0.012 (2)0.021 (2)0.012 (2)
C30.020 (3)0.023 (3)0.024 (3)0.003 (2)0.011 (2)0.000 (2)
C720.028 (3)0.015 (3)0.024 (3)0.005 (2)0.011 (2)0.003 (2)
C6A0.016 (2)0.019 (3)0.020 (2)0.000 (2)0.010 (2)0.002 (2)
C710.018 (2)0.023 (3)0.019 (2)0.004 (2)0.008 (2)0.001 (2)
C80.019 (2)0.018 (3)0.021 (3)0.006 (2)0.008 (2)0.004 (2)
N0.034 (3)0.029 (3)0.061 (3)0.010 (2)0.025 (3)0.014 (3)
C5A0.017 (2)0.018 (3)0.022 (3)0.000 (2)0.006 (2)0.002 (2)
C9A0.023 (3)0.027 (3)0.016 (2)0.001 (2)0.007 (2)0.003 (2)
C2A0.024 (3)0.020 (3)0.030 (3)0.007 (2)0.014 (2)0.003 (2)
C73A0.019 (2)0.019 (3)0.026 (3)0.002 (2)0.015 (2)0.001 (2)
C730.033 (3)0.021 (3)0.017 (3)0.002 (2)0.012 (2)0.003 (2)
B10.018 (3)0.024 (3)0.024 (3)0.003 (2)0.007 (2)0.001 (3)
C20.021 (2)0.015 (3)0.025 (3)0.002 (2)0.008 (2)0.000 (2)
C71A0.021 (2)0.016 (3)0.020 (2)0.003 (2)0.010 (2)0.004 (2)
Geometric parameters (Å, º) top
Ag1—Ag23.0716 (6)C9—H9A0.9900
Ag1—S42.6065 (13)C9—H9B0.9900
Ag1—S12.5966 (13)C9—C81.535 (7)
Ag1—S2.4943 (13)N7—C711.477 (6)
Ag1—N72.492 (4)N7—C81.474 (6)
Ag2—S1A2.5329 (13)C5—H5A0.9900
Ag2—S4A2.6046 (13)C5—H5B0.9900
Ag2—S2.4441 (13)C3A—H3AA0.9900
Ag2—N7A2.557 (4)C3A—H3AB0.9900
S1A—C9A1.819 (5)C3A—C2A1.525 (7)
S1A—C2A1.826 (5)N74A—C73A1.137 (6)
S4A—C3A1.816 (5)N74—C731.142 (6)
S4A—C5A1.818 (5)C3—H3A0.9900
S4—C51.818 (5)C3—H3B0.9900
S4—C31.819 (5)C3—C21.523 (7)
S1—C91.828 (5)C72—H72C0.9900
S1—C21.820 (5)C72—H72D0.9900
S—C1.685 (5)C72—C711.520 (7)
F1—B11.379 (6)C72—C731.470 (7)
C8A—H8AA0.9900C6A—H6AA0.9900
C8A—H8AB0.9900C6A—H6AB0.9900
C8A—N7A1.464 (6)C6A—C5A1.520 (6)
C8A—C9A1.534 (7)C71—H71A0.9900
F2—B11.395 (7)C71—H71B0.9900
C—N1.151 (7)C8—H8A0.9900
F4—B11.384 (7)C8—H8B0.9900
N7A—C6A1.469 (6)C5A—H5AA0.9900
N7A—C71A1.460 (6)C5A—H5AB0.9900
F3—B11.380 (7)C9A—H9AA0.9900
C6—H6A0.9900C9A—H9AB0.9900
C6—H6B0.9900C2A—H2AA0.9900
C6—N71.485 (6)C2A—H2AB0.9900
C6—C51.537 (6)C2—H2A0.9900
C72A—H72A0.9900C2—H2B0.9900
C72A—H72B0.9900C71A—H71C0.9900
C72A—C73A1.457 (7)C71A—H71D0.9900
C72A—C71A1.556 (6)
S4—Ag1—Ag2157.53 (3)C6—C5—H5B108.2
S1—Ag1—Ag291.47 (3)H5A—C5—H5B107.3
S1—Ag1—S483.55 (4)S4A—C3A—H3AA108.4
S—Ag1—Ag250.81 (3)S4A—C3A—H3AB108.4
S—Ag1—S4129.95 (4)H3AA—C3A—H3AB107.4
S—Ag1—S1142.23 (4)C2A—C3A—S4A115.6 (3)
N7—Ag1—Ag2120.33 (9)C2A—C3A—H3AA108.4
N7—Ag1—S480.45 (9)C2A—C3A—H3AB108.4
N7—Ag1—S179.96 (9)S4—C3—H3A108.3
N7—Ag1—S117.91 (9)S4—C3—H3B108.3
S1A—Ag2—Ag1121.80 (3)H3A—C3—H3B107.4
S1A—Ag2—S4A86.88 (4)C2—C3—S4115.9 (4)
S1A—Ag2—N7A78.06 (9)C2—C3—H3A108.3
S4A—Ag2—Ag185.08 (3)C2—C3—H3B108.3
S—Ag2—Ag152.28 (3)H72C—C72—H72D108.2
S—Ag2—S1A143.47 (4)C71—C72—H72C109.6
S—Ag2—S4A124.09 (4)C71—C72—H72D109.6
S—Ag2—N7A123.39 (9)C73—C72—H72C109.6
N7A—Ag2—Ag1153.28 (8)C73—C72—H72D109.6
N7A—Ag2—S4A77.95 (9)C73—C72—C71110.1 (4)
C9A—S1A—Ag2102.39 (16)N7A—C6A—H6AA108.7
C9A—S1A—C2A103.2 (2)N7A—C6A—H6AB108.7
C2A—S1A—Ag296.01 (17)N7A—C6A—C5A114.2 (4)
C3A—S4A—Ag2100.17 (16)H6AA—C6A—H6AB107.6
C3A—S4A—C5A104.4 (2)C5A—C6A—H6AA108.7
C5A—S4A—Ag295.11 (16)C5A—C6A—H6AB108.7
C5—S4—Ag193.39 (16)N7—C71—C72113.5 (4)
C5—S4—C3103.0 (2)N7—C71—H71A108.9
C3—S4—Ag1103.85 (17)N7—C71—H71B108.9
C9—S1—Ag199.68 (16)C72—C71—H71A108.9
C2—S1—Ag1100.52 (16)C72—C71—H71B108.9
C2—S1—C9101.9 (2)H71A—C71—H71B107.7
Ag2—S—Ag176.91 (4)C9—C8—H8A108.2
C—S—Ag1100.51 (18)C9—C8—H8B108.2
C—S—Ag2100.38 (18)N7—C8—C9116.6 (4)
H8AA—C8A—H8AB107.7N7—C8—H8A108.2
N7A—C8A—H8AA108.9N7—C8—H8B108.2
N7A—C8A—H8AB108.9H8A—C8—H8B107.3
N7A—C8A—C9A113.3 (4)S4A—C5A—H5AA108.3
C9A—C8A—H8AA108.9S4A—C5A—H5AB108.3
C9A—C8A—H8AB108.9C6A—C5A—S4A116.0 (3)
N—C—S177.3 (5)C6A—C5A—H5AA108.3
C8A—N7A—Ag2105.7 (3)C6A—C5A—H5AB108.3
C8A—N7A—C6A113.4 (4)H5AA—C5A—H5AB107.4
C6A—N7A—Ag2112.3 (3)S1A—C9A—H9AA108.6
C71A—N7A—Ag299.1 (3)S1A—C9A—H9AB108.6
C71A—N7A—C8A112.8 (4)C8A—C9A—S1A114.7 (3)
C71A—N7A—C6A112.6 (4)C8A—C9A—H9AA108.6
H6A—C6—H6B107.5C8A—C9A—H9AB108.6
N7—C6—H6A108.4H9AA—C9A—H9AB107.6
N7—C6—H6B108.4S1A—C2A—H2AA107.7
N7—C6—C5115.5 (4)S1A—C2A—H2AB107.7
C5—C6—H6A108.4C3A—C2A—S1A118.6 (3)
C5—C6—H6B108.4C3A—C2A—H2AA107.7
H72A—C72A—H72B108.2C3A—C2A—H2AB107.7
C73A—C72A—H72A109.8H2AA—C2A—H2AB107.1
C73A—C72A—H72B109.8N74A—C73A—C72A177.3 (5)
C73A—C72A—C71A109.4 (4)N74—C73—C72177.7 (6)
C71A—C72A—H72A109.8F1—B1—F2109.2 (4)
C71A—C72A—H72B109.8F1—B1—F4108.9 (5)
S1—C9—H9A108.7F1—B1—F3109.6 (5)
S1—C9—H9B108.7F4—B1—F2109.8 (5)
H9A—C9—H9B107.6F3—B1—F2109.6 (5)
C8—C9—S1114.3 (3)F3—B1—F4109.6 (4)
C8—C9—H9A108.7S1—C2—H2A107.8
C8—C9—H9B108.7S1—C2—H2B107.8
C6—N7—Ag1111.1 (3)C3—C2—S1117.9 (3)
C71—N7—Ag1111.4 (3)C3—C2—H2A107.8
C71—N7—C6112.1 (4)C3—C2—H2B107.8
C8—N7—Ag1104.3 (3)H2A—C2—H2B107.2
C8—N7—C6111.2 (4)N7A—C71A—C72A115.5 (4)
C8—N7—C71106.5 (3)N7A—C71A—H71C108.4
S4—C5—H5A108.2N7A—C71A—H71D108.4
S4—C5—H5B108.2C72A—C71A—H71C108.4
C6—C5—S4116.4 (3)C72A—C71A—H71D108.4
C6—C5—H5A108.2H71C—C71A—H71D107.5
Ag1—S4—C5—C649.6 (4)C9—S1—C2—C359.1 (4)
Ag1—S4—C3—C227.3 (4)N7—C6—C5—S454.9 (5)
Ag1—S1—C9—C820.8 (4)C5—S4—C3—C2124.1 (4)
Ag1—S1—C2—C343.3 (4)C5—C6—N7—Ag123.3 (5)
Ag1—N7—C71—C7260.8 (4)C5—C6—N7—C71102.0 (4)
Ag1—N7—C8—C955.7 (4)C5—C6—N7—C8138.9 (4)
Ag2—S1A—C9A—C8A22.3 (4)C3A—S4A—C5A—C6A50.6 (4)
Ag2—S1A—C2A—C3A49.9 (4)C3—S4—C5—C655.5 (4)
Ag2—S4A—C3A—C2A25.5 (4)C6A—N7A—C71A—C72A70.4 (5)
Ag2—S4A—C5A—C6A51.3 (4)C71—N7—C8—C9173.6 (4)
Ag2—N7A—C6A—C5A24.6 (5)C8—N7—C71—C72173.9 (4)
Ag2—N7A—C71A—C72A170.8 (3)C5A—S4A—C3A—C2A123.6 (4)
S4A—C3A—C2A—S1A56.3 (5)C9A—S1A—C2A—C3A54.4 (4)
S4—C3—C2—S151.2 (5)C9A—C8A—N7A—Ag255.0 (4)
S1—C9—C8—N755.5 (5)C9A—C8A—N7A—C6A68.4 (5)
C8A—N7A—C6A—C5A144.3 (4)C9A—C8A—N7A—C71A162.2 (4)
C8A—N7A—C71A—C72A59.5 (5)C2A—S1A—C9A—C8A121.6 (4)
N7A—C8A—C9A—S1A55.3 (5)C73A—C72A—C71A—N7A161.9 (4)
N7A—C6A—C5A—S4A56.0 (5)C73—C72—C71—N7176.1 (4)
C6—N7—C71—C7264.3 (5)C2—S1—C9—C8123.8 (4)
C6—N7—C8—C964.0 (5)C71A—N7A—C6A—C5A86.2 (5)
Selected geometric parameters (Å, °) top
`[Ag(L1)2]BF4`
Ag1—S12.5273 (4)Ag1'—S1'2.5605 (4)
Ag1—N42.6173 (12)Ag1'—N4'2.6363 (12)
Ag1—N72.6822 (14)Ag1'—N7'2.6108 (13)
S1—Ag1—N477.67 (3)S1'—Ag1'—N4'76.92 (3)
S1—Ag1—N776.40 (3)S1'—Ag1'—N7'76.70 (3)
N4—Ag1—N768.50 (4)N7'—Ag1'—N4'69.72 (4)
`[Ag(L2)(SCN)]`
Ag1—S12.5074 (5)Ag1—N72.5561 (15)
Ag1—S2.4390 (5)C—N1.152 (3)
Ag1—N42.5490 (14)C—S1.670 (2)
S1—Ag1—N479.60 (4)S—Ag1—N7111.02 (4)
S1—Ag1—N779.77 (4)N4—Ag1—N771.15 (5)
S—Ag1—S1160.21 (2)N—C—S177.7 (2)
S—Ag1—N4119.16 (4)
`[Ag2(L3)2(µ-SCN)]BF4`
Ag1—Ag23.0716 (6)Ag2—S1A2.5329 (13)
Ag1—S42.6065 (13)Ag2—S4A2.6046 (13)
Ag1—S12.5966 (13)Ag2—S2.4441 (13)
Ag1—S2.4943 (13)Ag2—N7A2.557 (4)
Ag1—N72.492 (4)
S1—Ag1—S483.55 (4)S1A—Ag2—S4A86.88 (4)
S—Ag1—S4129.95 (4)S1A—Ag2—N7A78.06 (9)
S—Ag1—S1142.23 (4)S4A—Ag2—Ag185.08 (3)
N7—Ag1—Ag2120.33 (9)S—Ag2—S1A143.47 (4)
N7—Ag1—S480.45 (9)S—Ag2—S4A124.09 (4)
N7—Ag1—S179.96 (9)S—Ag2—N7A123.39 (9)
N7—Ag1—S117.91 (9)N7A—Ag2—S4A77.95 (9)
Ag1—S—Ag276.91 (4)
 

Acknowledgements

We thank the University of Cagliari (Italy), the University of Nottingham (UK) and the EPSRC for support.

References

First citationBala, L., Sharma, R. P., Sharma, R. & Kariuki, B. M. (2006). Inorg. Chem. Commun. 9, 852–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Danks, J. P., Lippolis, V., Parsons, S. & Schröder, M. (1998). New J. Chem. 22, 1301–1303.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E. Jr, Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040–4046.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChak, B., McAuley, A. & Whitcombe, T. W. (1994). Can. J. Chem. 72, 1525–1532.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFortier, D. G. & McAuley, A. (1989). Inorg. Chem. 28, 655–662.  CSD CrossRef CAS Web of Science Google Scholar
First citationHeinzel, U. & Mattes, R. (1992). Polyhedron, 11, 597–600.  CSD CrossRef CAS Web of Science Google Scholar
First citationLippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987–1991.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStockheim, C., Wieghardt, K., Nuber, B., Weiss, J., Flöurke, U. & Haupt, H.-J. (1991). J. Chem. Soc. Dalton Trans. pp. 1487–1490.  CSD CrossRef Web of Science Google Scholar
First citationStoe & Cie (1996). STADI-4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTei, L., Blake, A. J., Cooke, P. A., Caltagirone, C., Demartin, F., Lippolis, V., Morale, F., Wilson, C. & Schröder, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1662–1670.  Web of Science CSD CrossRef Google Scholar
First citationTei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.  Web of Science CSD CrossRef Google Scholar
First citationVahrenkamp, H., Gei, A. & Richardson, G. N. (1997). J. Chem. Soc. Dalton Trans. pp. 3643–3652.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds