Download citation
Download citation
link to html
The title compound, dimercury(II) divanadium(V) ditellurium(IV) undeca­oxide, Hg2V2Te2O11, is a new representative within the family of divalent oxovanadato(V)tellurates(IV). The anionic framework is made up of disphen­oidal [TeO4] polyhedra that are linked by corner-sharing to two neighbouring pyrovanadate units, resulting in chains of six-membered rings propagating parallel to [1\overline{1}0]. The bridging O atom of the pyrovanadate unit is located on an inversion centre, leading to a staggered conformation and a linear V—O—V angle between the two [VO4] tetra­hedra. The anionic chains are connected by inter­jacent six-coordinate Hg2+ cations into a three-dimensional framework. The 5s2 lone electron pair of the TeIV atom is stereochemically active and protrudes into the free space of the chain links.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615013406/ky3085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615013406/ky3085Isup2.hkl
Contains datablock I

CCDC reference: 1412516

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dimercury(II) divanadium(V) ditellurium(IV) undecaoxide top
Crystal data top
Hg2Te2V2O11Z = 1
Mr = 934.26F(000) = 398
Triclinic, P1Dx = 5.996 Mg m3
a = 5.4000 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6093 (17) ÅCell parameters from 2088 reflections
c = 9.132 (3) Åθ = 3.7–30.9°
α = 80.688 (6)°µ = 36.90 mm1
β = 72.990 (5)°T = 293 K
γ = 80.080 (5)°Block, light yellow
V = 258.73 (14) Å30.24 × 0.22 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1515 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
ω–scansθmax = 31.0°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.113, Tmax = 0.199k = 78
2989 measured reflectionsl = 1313
1585 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0305P)2 + 1.9407P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.001
wR(F2) = 0.066Δρmax = 2.93 e Å3
S = 1.04Δρmin = 2.17 e Å3
1585 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
80 parametersExtinction coefficient: 0.0145 (8)
0 restraints
Special details top

Experimental. Face indexing was hampered by poorly developed faces.

An absorption correction that 'optimizes' the crystal shape by using the program HABITUS (Herrendorf, 1997; University of Giessen, Germany) was attempted. On basis of the refined crystal shape (which is always an approximation to the real crystal form) a subsequent numerical absorption correction was applied. The result showed a somewhat worse Rint (0.04) and slightly higher R1 and wR2 factors in comparison with the multi-scan SADABS approach. For both corrections, the highest remaining electron densities were virtually the same (height and distance).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.24109 (4)0.24323 (4)0.97670 (3)0.02060 (11)
Te10.34338 (7)0.19514 (7)0.73176 (4)0.01211 (11)
V10.14173 (19)0.28409 (19)0.65183 (12)0.0144 (2)
O10.2740 (11)0.1080 (12)0.5811 (7)0.0325 (12)
O20.00000.50000.50000.040 (2)
O30.0888 (9)0.1032 (9)0.7452 (6)0.0209 (9)
O40.3837 (9)0.4327 (9)0.7812 (6)0.0221 (9)
O50.4249 (9)0.1130 (8)0.9002 (5)0.0190 (9)
O60.0847 (8)0.3909 (9)1.1581 (6)0.0200 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01871 (14)0.01744 (15)0.02144 (15)0.00835 (9)0.00440 (9)0.00370 (9)
Te10.01300 (17)0.01220 (19)0.01056 (17)0.00144 (13)0.00373 (13)0.00199 (13)
V10.0121 (4)0.0146 (5)0.0123 (4)0.0030 (4)0.0018 (3)0.0026 (4)
O10.028 (2)0.043 (3)0.029 (3)0.003 (2)0.011 (2)0.010 (3)
O20.039 (4)0.031 (4)0.029 (4)0.003 (4)0.007 (4)0.016 (3)
O30.020 (2)0.018 (2)0.024 (2)0.0090 (17)0.0109 (18)0.0039 (18)
O40.0165 (19)0.024 (2)0.021 (2)0.0041 (18)0.0018 (17)0.0021 (19)
O50.024 (2)0.018 (2)0.019 (2)0.0064 (17)0.0151 (18)0.0085 (17)
O60.0133 (18)0.018 (2)0.025 (2)0.0000 (16)0.0007 (17)0.0051 (18)
Geometric parameters (Å, º) top
Hg1—O62.182 (5)Te1—O6iv1.876 (5)
Hg1—O52.197 (4)Te1—O31.970 (4)
Hg1—O5i2.349 (4)Te1—O4v2.400 (5)
Hg1—O6ii2.374 (5)V1—O11.620 (6)
Hg1—O4iii2.537 (5)V1—O41.685 (5)
Hg1—O32.746 (5)V1—O21.7692 (11)
Hg1—O3iv3.217 (5)V1—O31.792 (4)
Hg1—O4ii3.400 (5)V1—O6ii3.296 (5)
Te1—O51.862 (4)V1—O1vi3.379 (6)
O6—Hg1—O5138.66 (19)O6ii—V1—O1vi120.07 (12)
O6—Hg1—O5i103.38 (17)V1vii—O2—V1180.0
O5—Hg1—O5i74.30 (17)V1—O3—Te1142.3 (3)
O6—Hg1—O6ii78.7 (2)V1—O3—Hg1124.5 (2)
O5—Hg1—O6ii131.49 (17)Te1—O3—Hg192.76 (16)
O5i—Hg1—O6ii136.92 (17)V1—O3—Hg1iv106.2 (2)
O6—Hg1—O4iii132.33 (18)Te1—O3—Hg1iv81.09 (16)
O5—Hg1—O4iii88.53 (18)Hg1—O3—Hg1iv83.30 (13)
O5i—Hg1—O4iii79.60 (17)V1—O4—Te1viii127.3 (3)
O6ii—Hg1—O4iii69.22 (15)V1—O4—Hg1ix125.4 (3)
O6—Hg1—O3113.52 (16)Te1viii—O4—Hg1ix93.00 (15)
O5—Hg1—O363.37 (14)V1—O4—Hg1ii120.3 (2)
O5i—Hg1—O3136.85 (14)Te1viii—O4—Hg1ii82.72 (14)
O6ii—Hg1—O374.12 (16)Hg1ix—O4—Hg1ii97.23 (15)
O4iii—Hg1—O390.92 (16)V1—O4—Hg1iv76.76 (17)
O6—Hg1—O3iv58.05 (15)Te1viii—O4—Hg1iv152.87 (17)
O5—Hg1—O3iv80.87 (16)Hg1ix—O4—Hg1iv60.22 (10)
O5i—Hg1—O3iv84.05 (15)Hg1ii—O4—Hg1iv95.65 (11)
O6ii—Hg1—O3iv128.12 (13)Te1—O5—Hg1116.5 (2)
O4iii—Hg1—O3iv162.44 (13)Te1—O5—Hg1i135.7 (2)
O3—Hg1—O3iv96.70 (13)Hg1—O5—Hg1i105.70 (17)
O6—Hg1—O4ii62.79 (15)Te1—O5—V1iii90.59 (18)
O5—Hg1—O4ii129.99 (13)Hg1—O5—V1iii78.01 (14)
O5i—Hg1—O4ii55.69 (13)Hg1i—O5—V1iii85.28 (14)
O6ii—Hg1—O4ii90.62 (15)Te1—O5—Hg1iv71.75 (14)
O4iii—Hg1—O4ii82.77 (15)Hg1—O5—Hg1iv82.74 (13)
O3—Hg1—O4ii164.72 (13)Hg1i—O5—Hg1iv128.90 (18)
O3iv—Hg1—O4ii93.32 (12)V1iii—O5—Hg1iv144.51 (13)
O5—Te1—O6iv97.7 (2)Te1—O5—Hg1x68.66 (14)
O5—Te1—O386.95 (19)Hg1—O5—Hg1x136.30 (19)
O6iv—Te1—O392.2 (2)Hg1i—O5—Hg1x90.39 (14)
O5—Te1—O4v82.59 (19)V1iii—O5—Hg1x144.81 (14)
O6iv—Te1—O4v80.53 (18)Hg1iv—O5—Hg1x56.66 (7)
O3—Te1—O4v166.31 (19)Te1—O5—V1iv131.7 (2)
O5—Te1—Hg134.69 (14)Hg1—O5—V1iv77.96 (13)
O1—V1—O4107.3 (3)Hg1i—O5—V1iv68.26 (11)
O1—V1—O2108.0 (2)V1iii—O5—V1iv137.41 (12)
O4—V1—O2108.63 (19)Hg1iv—O5—V1iv64.52 (8)
O1—V1—O3109.5 (3)Hg1x—O5—V1iv70.75 (9)
O4—V1—O3110.0 (2)Te1iv—O6—Hg1119.1 (2)
O2—V1—O3113.25 (18)Te1iv—O6—Hg1ii114.4 (2)
O1—V1—O6ii172.3 (2)Hg1—O6—Hg1ii101.3 (2)
O4—V1—O6ii67.99 (19)Te1iv—O6—V1ii119.0 (2)
O2—V1—O6ii79.56 (10)Hg1—O6—V1ii108.47 (16)
O3—V1—O6ii67.79 (18)Hg1ii—O6—V1ii89.41 (14)
O1—V1—O1vi63.7 (3)Te1iv—O6—V1iv61.66 (13)
O4—V1—O1vi168.6 (2)Hg1—O6—V1iv75.75 (13)
O2—V1—O1vi81.61 (12)Hg1ii—O6—V1iv171.44 (19)
O3—V1—O1vi68.90 (18)V1ii—O6—V1iv99.15 (12)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x, y, z+2; (v) x+1, y1, z; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x1, y+1, z; (ix) x1, y, z; (x) x, y1, z.
Bond-valence-sum calculations in valence units top
Atom (expected valence state)O1 (2)O2 (2)O3 (2)O4 (2)O5 (2)O6 (2)ΣΔ to expected
Hg1 (2)0.1230.2170.544, 0.3610.567, 0.3372.1490.149
Te1 (4)1.0190.3191.3651.3144.0160.016
V1 (5)1.6441.096 (2O)1.0301.3765.1460.146
Σ1.6442.1922.1721.9122.2702.218
Δ to expected0.3560.1920.1720.0880.2700.218
Calculated with the parameters compiled by Brese & O'Keeffe (1991).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds