Download citation
Download citation
link to html
4-Nitro­benzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes but the known structures of the alkali metal salts of PNBA do not include the rubidium salt. The structures of the isomorphous potassium and rubidium polymeric coordination complexes with PNBA, namely poly[μ2-aqua-aqua-μ3-(4-nitro­benzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I), and poly[μ3-aqua-aqua-μ5-(4-nitro­ben­zo­ato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II), have been determined. In (I), the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl­ate O-atom donor and two water mol­ecules, one of which is bridging. In Rb complex (II), the same basic MO6 coordination is found in the repeat unit, but it is expanded to RbO9 through a slight increase in the accepted Rb—O bond-length range and includes an additional Rb—Ocarboxyl­ate bond, completing a bidentate O,O′-chelate inter­action, and additional bridging Rb—Onitro and Rb—Owater bonds. The comparative K—O and Rb—O bond-length ranges are 2.7352 (14)–3.0051 (14) and 2.884 (2)–3.182 (2) Å, respectively. The structure of (II) is also isomorphous, as well as isostructural, with the known structure of the nine-coordinate caesium 4-nitro­benzoate analogue, (III), in which the Cs—O bond-length range is 3.047 (4)–3.338 (4) Å. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging inter­actions through both water and nitro groups, as well as extensions along c through the para-related carboxyl­ate group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges involving the nitro and water O atoms. In all three structures, the two water mol­ecules are involved in similar intra-polymer O—H...O hydrogen-bonding inter­actions to both carboxyl­ate and water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li–Cs salts with 4-nitro­benzoic acid is also made.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961500947X/ky3080sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961500947X/ky3080Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961500947X/ky3080IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322961500947X/ky3080Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S205322961500947X/ky3080IIsup5.cml
Supplementary material

CCDC references: 1401591; 1401590

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR92 (Altomare et al., 1993) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Poly[µ2-aqua-aqua-µ3-(4-nitrobenzoato)-potassium] top
Crystal data top
[K(C7H4N2O2)(H2O)2]F(000) = 496
Mr = 241.24Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1787 reflections
a = 5.8217 (4) Åθ = 3.6–28.4°
b = 6.9692 (5) ŵ = 0.56 mm1
c = 23.8602 (16) ÅT = 200 K
β = 97.299 (6)°Plate, colourless
V = 960.23 (12) Å30.30 × 0.25 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1886 independent reflections
Radiation source: Enhance (Mo) X-ray source1755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 58
Tmin = 0.945, Tmax = 0.980l = 2529
3638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.1983P]
where P = (Fo2 + 2Fc2)/3
1886 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.77670 (6)0.69041 (6)1.02388 (1)0.0276 (1)
O1W0.7292 (2)0.9884 (2)0.94571 (5)0.0356 (4)
O2W0.7330 (2)0.30012 (19)1.01672 (5)0.0370 (4)
O111.0168 (3)0.6385 (2)0.63127 (5)0.0437 (5)
O120.7106 (2)0.4571 (3)0.60516 (6)0.0514 (5)
O410.4839 (3)0.4220 (3)0.88176 (6)0.0512 (5)
O420.8214 (3)0.5415 (2)0.90923 (6)0.0452 (5)
N40.6699 (3)0.4893 (2)0.87230 (6)0.0311 (5)
C10.7928 (3)0.5361 (2)0.70211 (7)0.0209 (5)
C20.5842 (3)0.4621 (2)0.71540 (7)0.0247 (5)
C30.5418 (3)0.4481 (2)0.77096 (8)0.0248 (5)
C40.7122 (3)0.5086 (2)0.81307 (7)0.0227 (5)
C50.9195 (3)0.5860 (2)0.80152 (7)0.0233 (5)
C60.9576 (3)0.6003 (2)0.74560 (7)0.0218 (5)
C110.8449 (3)0.5455 (3)0.64141 (7)0.0292 (5)
H20.469700.420700.685900.0300*
H30.399300.398100.780000.0300*
H51.032700.628300.831100.0280*
H61.098200.654600.736700.0260*
H11W0.594500.982500.925600.0530*
H12W0.814901.014400.920600.0530*
H21W0.741600.241301.048200.0550*
H22W0.722400.210500.991400.0550*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0331 (2)0.0256 (2)0.0239 (2)0.0001 (2)0.0034 (2)0.0004 (2)
O1W0.0388 (7)0.0417 (8)0.0262 (7)0.0009 (6)0.0043 (5)0.0039 (6)
O2W0.0593 (8)0.0268 (7)0.0238 (6)0.0026 (7)0.0011 (6)0.0046 (6)
O110.0629 (9)0.0411 (9)0.0311 (8)0.0084 (8)0.0212 (7)0.0019 (6)
O120.0420 (8)0.0806 (12)0.0294 (8)0.0082 (8)0.0037 (6)0.0264 (8)
O410.0514 (9)0.0649 (11)0.0418 (8)0.0068 (8)0.0231 (7)0.0122 (8)
O420.0664 (9)0.0480 (9)0.0211 (7)0.0090 (8)0.0055 (6)0.0036 (6)
N40.0429 (9)0.0255 (8)0.0265 (8)0.0026 (7)0.0111 (7)0.0042 (7)
C10.0253 (8)0.0139 (8)0.0228 (8)0.0052 (7)0.0006 (6)0.0004 (6)
C20.0268 (8)0.0183 (8)0.0269 (9)0.0007 (7)0.0051 (7)0.0009 (7)
C30.0208 (8)0.0185 (8)0.0352 (10)0.0009 (7)0.0043 (6)0.0034 (7)
C40.0309 (8)0.0173 (8)0.0205 (8)0.0031 (7)0.0060 (7)0.0034 (7)
C50.0268 (8)0.0199 (8)0.0220 (8)0.0008 (7)0.0014 (6)0.0003 (7)
C60.0223 (8)0.0194 (8)0.0237 (9)0.0010 (7)0.0028 (6)0.0009 (7)
C110.0366 (9)0.0275 (10)0.0228 (9)0.0126 (9)0.0010 (7)0.0023 (8)
Geometric parameters (Å, º) top
K1—O1W2.7816 (14)O2W—H22W0.8700
K1—O2W2.7352 (14)N4—C41.471 (2)
K1—O422.9681 (15)C1—C21.393 (2)
K1—O2Wi3.0029 (12)C1—C61.394 (2)
K1—O41i2.9752 (17)C1—C111.518 (2)
K1—O11ii3.0051 (14)C2—C31.382 (3)
O11—C111.242 (2)C3—C41.385 (2)
O12—C111.252 (2)C4—C51.381 (2)
O41—N41.227 (2)C5—C61.384 (2)
O42—N41.220 (2)C2—H20.9500
O1W—H11W0.8700C3—H30.9500
O1W—H12W0.8500C5—H50.9500
O2W—H21W0.8500C6—H60.9500
O1W—K1—O2W134.43 (4)K1i—O2W—H22W79.00
O1W—K1—O4269.87 (4)O41—N4—O42123.70 (16)
O1W—K1—O2Wi75.95 (4)O41—N4—C4118.10 (15)
O1W—K1—O41i133.41 (5)O42—N4—C4118.20 (16)
O1W—K1—O11ii105.75 (4)C2—C1—C6119.13 (15)
O2W—K1—O4267.24 (4)C2—C1—C11121.26 (15)
O2W—K1—O2Wi85.49 (4)C6—C1—C11119.61 (15)
O2W—K1—O41i74.52 (5)C1—C2—C3120.77 (16)
O2W—K1—O11ii118.51 (4)C2—C3—C4118.39 (16)
O2Wi—K1—O4284.78 (4)N4—C4—C5118.98 (15)
O41i—K1—O42135.91 (5)C3—C4—C5122.52 (16)
O11ii—K1—O42147.02 (5)N4—C4—C3118.50 (15)
O2Wi—K1—O41i70.85 (4)C4—C5—C6118.14 (15)
O2Wi—K1—O11ii126.86 (4)C1—C6—C5121.00 (16)
O11ii—K1—O41i71.70 (5)O11—C11—C1118.17 (15)
K1—O2W—K1i94.51 (4)O12—C11—C1117.06 (16)
K1iii—O11—C1194.25 (11)O11—C11—O12124.78 (16)
K1i—O41—N4141.87 (11)C1—C2—H2120.00
K1—O42—N4129.04 (13)C3—C2—H2120.00
H11W—O1W—H12W101.00C2—C3—H3121.00
K1—O1W—H11W110.00C4—C3—H3121.00
K1—O1W—H12W128.00C4—C5—H5121.00
K1i—O2W—H21W104.00C6—C5—H5121.00
K1—O2W—H21W115.00C1—C6—H6119.00
K1—O2W—H22W139.00C5—C6—H6120.00
H21W—O2W—H22W105.00
O1W—K1—O2W—K1i65.28 (6)K1i—O41—N4—C4177.52 (15)
O42—K1—O2W—K1i86.23 (5)K1—O42—N4—O4128.5 (2)
O2Wi—K1—O2W—K1i0.00 (5)K1—O42—N4—C4151.36 (11)
O41i—K1—O2W—K1i71.36 (4)O41—N4—C4—C30.7 (2)
O11ii—K1—O2W—K1i129.94 (4)O41—N4—C4—C5179.30 (17)
O1W—K1—O42—N486.38 (14)O42—N4—C4—C3179.45 (15)
O2W—K1—O42—N477.84 (14)O42—N4—C4—C50.5 (2)
O2Wi—K1—O42—N49.45 (14)C6—C1—C2—C31.4 (2)
O41i—K1—O42—N445.96 (16)C11—C1—C2—C3177.75 (15)
O11ii—K1—O42—N4174.44 (12)C2—C1—C6—C52.0 (2)
O1W—K1—O2Wi—K1i138.03 (4)C11—C1—C6—C5177.18 (15)
O2W—K1—O2Wi—K1i0.00 (4)C2—C1—C11—O11169.32 (16)
O42—K1—O2Wi—K1i67.51 (4)C2—C1—C11—O1211.1 (3)
O1W—K1—O41i—N4i70.9 (3)C6—C1—C11—O1111.5 (3)
O2W—K1—O41i—N4i66.6 (2)C6—C1—C11—O12168.09 (17)
O42—K1—O41i—N4i36.3 (3)C1—C2—C3—C40.3 (2)
O1W—K1—O11ii—C11ii72.22 (12)C2—C3—C4—N4178.47 (13)
O2W—K1—O11ii—C11ii119.01 (11)C2—C3—C4—C51.5 (2)
O42—K1—O11ii—C11ii149.37 (11)N4—C4—C5—C6179.03 (13)
K1iii—O11—C11—O1241.0 (2)C3—C4—C5—C61.0 (2)
K1iii—O11—C11—C1139.42 (15)C4—C5—C6—C10.8 (2)
K1i—O41—N4—O422.7 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12iv0.871.842.6994 (17)170
O1W—H12W···O11v0.851.882.7101 (19)165
O2W—H21W···O12vi0.851.962.785 (2)162
O2W—H22W···O1Wvii0.871.902.7534 (18)170
Symmetry codes: (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2; (vi) x, y+1/2, z+1/2; (vii) x, y1, z.
(II) Poly[µ3-aqua-aqua-µ5-(4-nitrobenzoato)-rubidium] top
Crystal data top
[Rb(C7H4N2O2)(H2O)2]F(000) = 568
Mr = 287.61Dx = 1.910 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1174 reflections
a = 5.9355 (5) Åθ = 3.5–28.5°
b = 7.0456 (7) ŵ = 4.96 mm1
c = 24.204 (2) ÅT = 200 K
β = 98.739 (8)°Plate, colourless
V = 1000.44 (16) Å30.31 × 0.24 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1969 independent reflections
Radiation source: Enhance (Mo) X-ray source1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 74
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 78
Tmin = 0.549, Tmax = 0.980l = 2829
3439 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
1969 reflectionsΔρmax = 0.51 e Å3
137 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0184 (13)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.78049 (5)0.69598 (4)1.02561 (1)0.0255 (1)
O1W0.7211 (4)0.9980 (4)0.94096 (11)0.0354 (8)
O2W0.7393 (4)0.2888 (3)1.01744 (11)0.0337 (8)
O111.0358 (4)0.6237 (4)0.63766 (11)0.0383 (9)
O120.7228 (4)0.4612 (4)0.60615 (10)0.0374 (9)
O410.4706 (5)0.4209 (5)0.87570 (12)0.0519 (10)
O420.8054 (5)0.5305 (4)0.90717 (11)0.0437 (10)
N40.6575 (5)0.4828 (4)0.86862 (13)0.0310 (10)
C10.7987 (5)0.5306 (4)0.70310 (13)0.0186 (9)
C20.5929 (5)0.4550 (5)0.71350 (14)0.0231 (10)
C30.5446 (5)0.4405 (4)0.76745 (15)0.0235 (10)
C40.7062 (5)0.5016 (4)0.81099 (13)0.0212 (10)
C50.9124 (5)0.5805 (5)0.80252 (14)0.0236 (10)
C60.9564 (5)0.5940 (5)0.74803 (13)0.0215 (9)
C110.8583 (6)0.5394 (5)0.64466 (15)0.0244 (10)
H20.483900.412800.683100.0280*
H30.403400.389600.774400.0280*
H51.019800.623900.833000.0280*
H61.096500.647300.741100.0260*
H11W0.573800.993000.920800.0530*
H12W0.801201.030100.918000.0530*
H21W0.747900.230001.049000.0500*
H22W0.728700.199200.992200.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0287 (2)0.0251 (2)0.0233 (2)0.0002 (1)0.0059 (1)0.0004 (2)
O1W0.0353 (13)0.0451 (16)0.0268 (15)0.0013 (12)0.0076 (11)0.0027 (13)
O2W0.0494 (16)0.0275 (14)0.0246 (14)0.0020 (11)0.0069 (12)0.0045 (11)
O110.0453 (15)0.0437 (16)0.0295 (15)0.0112 (13)0.0172 (12)0.0049 (13)
O120.0357 (14)0.0540 (17)0.0222 (14)0.0036 (12)0.0032 (11)0.0130 (13)
O410.0537 (17)0.069 (2)0.0381 (17)0.0099 (16)0.0234 (14)0.0118 (16)
O420.0633 (18)0.0499 (18)0.0185 (14)0.0014 (14)0.0081 (13)0.0027 (13)
N40.0446 (18)0.0286 (16)0.0216 (17)0.0024 (14)0.0110 (14)0.0030 (14)
C10.0243 (16)0.0133 (15)0.0179 (17)0.0003 (13)0.0026 (13)0.0002 (13)
C20.0280 (17)0.0173 (16)0.0226 (18)0.0031 (14)0.0004 (14)0.0004 (14)
C30.0227 (16)0.0205 (16)0.0282 (19)0.0022 (14)0.0071 (13)0.0032 (16)
C40.0298 (17)0.0181 (16)0.0163 (17)0.0023 (13)0.0058 (14)0.0031 (14)
C50.0274 (17)0.0204 (17)0.0216 (18)0.0012 (14)0.0006 (13)0.0008 (15)
C60.0197 (15)0.0209 (16)0.0241 (18)0.0014 (13)0.0042 (13)0.0009 (15)
C110.0279 (18)0.0214 (17)0.0245 (19)0.0083 (15)0.0059 (14)0.0013 (15)
Geometric parameters (Å, º) top
Rb1—O1W2.938 (3)O2W—H21W0.8600
Rb1—O2W2.884 (2)O2W—H22W0.8700
Rb1—O423.119 (3)N4—C41.473 (4)
Rb1—O2Wi3.105 (2)C1—C21.390 (4)
Rb1—O41i3.112 (3)C1—C61.396 (4)
Rb1—O2Wii3.182 (2)C1—C111.511 (5)
Rb1—O42ii3.165 (3)C2—C31.383 (5)
Rb1—O11iii3.165 (3)C3—C41.382 (5)
Rb1—O12iii3.155 (3)C4—C51.388 (4)
O11—C111.243 (4)C5—C61.386 (5)
O12—C111.262 (4)C2—H20.9500
O41—N41.228 (4)C3—H30.9500
O42—N41.227 (4)C5—H50.9500
O1W—H11W0.9300C6—H60.9500
O1W—H12W0.8200
O1W—Rb1—O2W132.29 (8)Rb1iv—O12—C1190.3 (2)
O1W—Rb1—O4269.34 (7)Rb1i—O41—N4138.5 (2)
O1W—Rb1—O2Wi74.52 (7)Rb1—O42—N4132.3 (2)
O1W—Rb1—O41i134.93 (8)Rb1—O42—Rb1ii81.81 (6)
O1W—Rb1—O2Wii76.45 (6)Rb1ii—O42—N4131.5 (2)
O1W—Rb1—O42ii136.48 (7)H11W—O1W—H12W104.00
O1W—Rb1—O11iii107.34 (7)Rb1—O1W—H11W110.00
O1W—Rb1—O12iii82.16 (7)Rb1—O1W—H12W131.00
O2W—Rb1—O4265.19 (7)Rb1i—O2W—H21W104.00
O2W—Rb1—O2Wi86.66 (6)Rb1—O2W—H21W115.00
O2W—Rb1—O41i75.16 (8)Rb1—O2W—H22W140.00
O2W—Rb1—O2Wii94.70 (6)H21W—O2W—H22W105.00
O2W—Rb1—O42ii65.47 (7)Rb1ii—O2W—H22W77.00
O2W—Rb1—O11iii118.86 (7)Rb1ii—O2W—H21W112.00
O2W—Rb1—O12iii142.00 (7)Rb1i—O2W—H22W80.00
O2Wi—Rb1—O4283.56 (7)O41—N4—O42123.3 (3)
O41i—Rb1—O42134.56 (8)O42—N4—C4118.4 (3)
O2Wii—Rb1—O4262.72 (7)O41—N4—C4118.4 (3)
O42—Rb1—O42ii98.19 (7)C2—C1—C11121.5 (3)
O11iii—Rb1—O42148.68 (7)C2—C1—C6119.0 (3)
O12iii—Rb1—O42151.50 (7)C6—C1—C11119.5 (3)
O2Wi—Rb1—O41i72.51 (7)C1—C2—C3120.9 (3)
O2Wi—Rb1—O2Wii141.53 (7)C2—C3—C4118.6 (3)
O2Wi—Rb1—O42ii147.60 (7)C3—C4—C5122.5 (3)
O2Wi—Rb1—O11iii126.57 (7)N4—C4—C3118.8 (3)
O2Wi—Rb1—O12iii89.16 (6)N4—C4—C5118.7 (3)
O2Wii—Rb1—O41i144.83 (7)C4—C5—C6117.8 (3)
O41i—Rb1—O42ii84.10 (8)C1—C6—C5121.2 (3)
O11iii—Rb1—O41i70.81 (7)O11—C11—O12124.5 (3)
O12iii—Rb1—O41i67.59 (8)O11—C11—C1118.1 (3)
O2Wii—Rb1—O42ii61.38 (7)O12—C11—C1117.4 (3)
O2Wii—Rb1—O11iii86.04 (6)C1—C2—H2120.00
O2Wii—Rb1—O12iii111.30 (6)C3—C2—H2120.00
O11iii—Rb1—O42ii61.88 (7)C2—C3—H3121.00
O12iii—Rb1—O42ii102.54 (7)C4—C3—H3121.00
O11iii—Rb1—O12iii41.06 (7)C4—C5—H5121.00
Rb1—O2W—Rb1i93.34 (6)C6—C5—H5121.00
Rb1—O2W—Rb1ii85.30 (6)C1—C6—H6119.00
Rb1i—O2W—Rb1ii141.53 (9)C5—C6—H6119.00
Rb1iv—O11—C1190.2 (2)
O1W—Rb1—O2W—Rb1i65.51 (10)O1W—Rb1—O42ii—Rb1ii68.52 (11)
O1W—Rb1—O2W—Rb1ii75.94 (9)O1W—Rb1—O42ii—N4ii72.8 (3)
O42—Rb1—O2W—Rb1i84.45 (8)O2W—Rb1—O42ii—Rb1ii57.88 (7)
O42—Rb1—O2W—Rb1ii57.00 (7)O2W—Rb1—O42ii—N4ii160.8 (3)
O2Wi—Rb1—O2W—Rb1i0.00 (8)O42—Rb1—O42ii—Rb1ii0.00 (8)
O2Wi—Rb1—O2W—Rb1ii141.45 (7)O42—Rb1—O42ii—N4ii141.3 (3)
O41i—Rb1—O2W—Rb1i72.78 (7)O1W—Rb1—O11iii—C11iii73.8 (2)
O41i—Rb1—O2W—Rb1ii145.77 (8)O2W—Rb1—O11iii—C11iii118.5 (2)
O2Wii—Rb1—O2W—Rb1i141.45 (7)O42—Rb1—O11iii—C11iii152.4 (2)
O2Wii—Rb1—O2W—Rb1ii0.00 (7)O1W—Rb1—O12iii—C11iii146.7 (2)
O42ii—Rb1—O2W—Rb1i163.01 (9)O2W—Rb1—O12iii—C11iii55.3 (2)
O42ii—Rb1—O2W—Rb1ii55.54 (7)O42—Rb1—O12iii—C11iii146.4 (2)
O11iii—Rb1—O2W—Rb1i130.49 (7)Rb1iv—O11—C11—O1240.4 (4)
O11iii—Rb1—O2W—Rb1ii88.06 (7)Rb1iv—O11—C11—C1139.2 (3)
O12iii—Rb1—O2W—Rb1i84.35 (11)Rb1iv—O12—C11—O1140.5 (4)
O12iii—Rb1—O2W—Rb1ii134.21 (9)Rb1iv—O12—C11—C1139.0 (3)
O1W—Rb1—O42—N482.5 (3)Rb1i—O41—N4—O425.7 (6)
O1W—Rb1—O42—Rb1ii136.78 (8)Rb1i—O41—N4—C4174.6 (2)
O2W—Rb1—O42—N482.7 (3)Rb1—O42—N4—O4130.2 (5)
O2W—Rb1—O42—Rb1ii58.09 (7)Rb1—O42—N4—C4149.5 (2)
O2Wi—Rb1—O42—N46.6 (3)Rb1ii—O42—N4—O4193.0 (4)
O2Wi—Rb1—O42—Rb1ii147.38 (7)Rb1ii—O42—N4—C487.3 (3)
O41i—Rb1—O42—N451.0 (3)O41—N4—C4—C33.1 (4)
O41i—Rb1—O42—Rb1ii89.76 (11)O41—N4—C4—C5176.7 (3)
O2Wii—Rb1—O42—N4167.5 (3)O42—N4—C4—C3177.2 (3)
O2Wii—Rb1—O42—Rb1ii51.78 (6)O42—N4—C4—C53.0 (4)
O42ii—Rb1—O42—N4140.8 (3)C6—C1—C2—C30.7 (5)
O42ii—Rb1—O42—Rb1ii0.00 (8)C11—C1—C2—C3177.3 (3)
O11iii—Rb1—O42—N4172.1 (2)C2—C1—C6—C50.9 (5)
O11iii—Rb1—O42—Rb1ii47.18 (15)C11—C1—C6—C5177.1 (3)
O12iii—Rb1—O42—N482.8 (3)C2—C1—C11—O11173.8 (3)
O12iii—Rb1—O42—Rb1ii136.44 (12)C2—C1—C11—O125.8 (5)
O1W—Rb1—O2Wi—Rb1i135.69 (9)C6—C1—C11—O118.3 (5)
O2W—Rb1—O2Wi—Rb1i0.00 (7)C6—C1—C11—O12172.1 (3)
O42—Rb1—O2Wi—Rb1i65.39 (7)C1—C2—C3—C40.5 (5)
O1W—Rb1—O41i—N4i66.1 (4)C2—C3—C4—N4178.8 (3)
O2W—Rb1—O41i—N4i69.8 (4)C2—C3—C4—C51.4 (5)
O42—Rb1—O41i—N4i40.3 (4)N4—C4—C5—C6179.0 (3)
O1W—Rb1—O2Wii—Rb1ii132.43 (8)C3—C4—C5—C61.2 (5)
O2W—Rb1—O2Wii—Rb1ii0.00 (7)C4—C5—C6—C10.1 (5)
O42—Rb1—O2Wii—Rb1ii58.93 (7)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12v0.931.802.720 (3)169
O1W—H12W···O11vi0.821.892.706 (4)174
O2W—H21W···O12vii0.861.952.790 (4)163
O2W—H22W···O1Wviii0.871.882.752 (4)176
Symmetry codes: (v) x+1, y+1/2, z+3/2; (vi) x+2, y+1/2, z+3/2; (vii) x, y+1/2, z+1/2; (viii) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds