Download citation
Download citation
link to html
In multifunctional type I restriction enzymes, active methyltransferases (MTases) are constituted of methylation (HsdM) and specificity (HsdS) subunits. In this study, the crystal structure of a putative HsdM subunit from Vibrio vulnificus YJ016 (vvHsdM) was elucidated at a resolution of 1.80 Å. A cofactor-binding site for S-adenosyl-L-methionine (SAM, a methyl-group donor) is formed within the C-terminal domain of an α/β-fold, in which a number of residues are conserved, including the GxGG and (N/D)PP(F/Y) motifs, which are likely to interact with several functional moieties of the SAM methyl-group donor. Comparison with the N6 DNA MTase of Thermus aquaticus and other HsdM structures suggests that two aromatic rings (Phe199 and Phe312) in the motifs that are conserved among the HsdMs may sandwich both sides of the adenine ring of the recognition sequence so that a conserved Asn residue (Asn309) can interact with the N6 atom of the target adenine base (a methyl-group acceptor) and locate the target adenine base close to the transferred SAM methyl group.

Supporting information

PDB reference: vvHsdM, 3ufb


Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds