Download citation
Download citation
link to html
Synchrotrons are capable of producing intense low-energy X-rays that enable the photoactivation of high-Z elements. Photoactivation therapy (PAT) consists of loading tumors with photoactivatable drugs and thereafter irradiating them at an energy, generally close to the K-edge of the element, that enhances the photoelectric effect. To date, three major photoactivatable elements are used in PAT: platinum (cisplatin and carboplatin), iodine (iodinated contrast agents and iododeoxyuridine) and gadolinium (motexafin gadolinium). However, the molecular and cellular events specific to PAT and the radiobiological properties of these photoactivatable drugs are still misknown. Here, it is examined how standard and synchrotron X-rays combined with photoactivatable drugs impact on the cellular response of human endothelial cells. These findings suggest that the radiolysis products of the photoactivatable drugs may participate in the synergetic effects of PAT by increasing the severity of radiation-induced DNA double-strand breaks. Interestingly, subpopulation of highly damaged cells was found to be a cellular pattern specific to PAT. The data show that the efficiency of emerging anti-cancer modalities involving synchrotron photoactivation strongly depends on the choice of photoactivatable drugs, and important series of experiments are required to secure their clinical transfer before applying to humans.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds