Download citation
Download citation
link to html
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three-dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two-dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ∼2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619001712/ku3234sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619001712/ku3234Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619001712/ku3234sup3.pdf
Additional details of the UV-Vis experiment, the PXRD pattern and the IR spectgrum

CCDC reference: 1883687

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Poly[(2-azaniumylethyl)trimethylphosphanium [tetra-µ-bromido-plumbate(II)]] top
Crystal data top
(C5H16NP)[PbBr4]F(000) = 580
Mr = 647.99Dx = 2.980 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.0127 (12) ÅCell parameters from 2927 reflections
b = 12.056 (2) Åθ = 3.4–27.5°
c = 9.962 (2) ŵ = 22.82 mm1
β = 90.43 (3)°T = 293 K
V = 722.1 (2) Å3Prism, colourless
Z = 20.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2927 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.050
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 77
Tmin = 0.761, Tmax = 0.797k = 1415
5045 measured reflectionsl = 1112
3093 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0192P)2 + 1.5138P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.001
wR(F2) = 0.083Δρmax = 1.62 e Å3
S = 1.10Δρmin = 1.80 e Å3
3093 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
115 parametersExtinction coefficient: 0.0255 (9)
2 restraintsAbsolute structure: Refined as an inversion twin.
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.501 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.99441 (8)0.47547 (5)1.01083 (5)0.01630 (18)
Br20.9858 (3)0.22134 (17)1.04342 (17)0.0348 (4)
Br30.9976 (3)0.40750 (16)0.72279 (16)0.0314 (4)
Br40.9586 (3)0.50865 (16)1.30396 (17)0.0406 (6)
P10.5945 (6)0.2047 (4)0.4259 (4)0.0216 (9)
Br10.5008 (2)0.4928 (3)0.99230 (18)0.0355 (7)
C30.490 (3)0.2820 (19)0.289 (2)0.046 (6)
H3A0.58590.34410.27250.070*
H3B0.34330.30810.30910.070*
H3C0.48440.23570.21050.070*
C40.504 (3)0.2613 (12)0.5792 (17)0.025 (4)
H4A0.57550.33270.59220.030*
H4B0.34500.27430.57310.030*
C10.506 (3)0.0669 (16)0.407 (2)0.048 (6)
H1A0.35630.05980.43850.073*
H1B0.60200.01890.45740.073*
H1C0.51090.04680.31350.073*
C50.551 (3)0.1901 (15)0.7009 (16)0.033 (4)
H5A0.48450.11750.68740.039*
H5B0.70990.18020.71090.039*
N10.463 (3)0.2386 (14)0.8236 (14)0.047 (5)
H1D0.55000.29410.85020.071*
H1E0.45800.18710.88760.071*
H1F0.32600.26420.80810.071*
C20.888 (2)0.2065 (16)0.4267 (16)0.031 (4)
H2A0.94300.16170.49940.046*
H2B0.93970.28140.43790.046*
H2C0.94170.17760.34320.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0116 (3)0.0198 (3)0.0176 (3)0.0001 (2)0.00187 (18)0.0012 (3)
Br20.0516 (11)0.0196 (7)0.0332 (9)0.0005 (9)0.0074 (8)0.0007 (9)
Br30.0330 (10)0.0420 (9)0.0192 (8)0.0051 (8)0.0024 (7)0.0049 (7)
Br40.0507 (12)0.0502 (12)0.0211 (9)0.0198 (9)0.0067 (8)0.0090 (7)
P10.0174 (19)0.025 (2)0.022 (2)0.0001 (18)0.0033 (16)0.0007 (16)
Br10.0111 (7)0.0474 (19)0.0480 (10)0.0018 (8)0.0007 (7)0.0085 (9)
C30.019 (9)0.083 (15)0.037 (12)0.006 (10)0.001 (9)0.030 (11)
C40.025 (9)0.024 (8)0.025 (9)0.004 (7)0.009 (8)0.003 (6)
C10.045 (13)0.040 (10)0.060 (14)0.016 (10)0.019 (11)0.026 (11)
C50.028 (9)0.044 (11)0.027 (10)0.008 (9)0.012 (8)0.010 (8)
N10.069 (12)0.049 (10)0.023 (8)0.030 (9)0.006 (8)0.002 (7)
C20.017 (7)0.048 (10)0.027 (9)0.010 (8)0.008 (7)0.004 (8)
Geometric parameters (Å, º) top
Pb1—Br42.9568 (18)Br2—Pb1iii3.016 (2)
Pb1—Br12.9798 (15)P1—C11.754 (18)
Pb1—Br32.9844 (17)P1—C41.763 (16)
Pb1—Br2i3.016 (2)P1—C31.764 (17)
Pb1—Br1ii3.0587 (16)P1—C21.766 (14)
Pb1—Br23.082 (2)Br1—Pb1iv3.0587 (15)
C4—C51.510 (17)C5—N11.46 (2)
Br4—Pb1—Br188.39 (6)N1—C5—C4112.2 (14)
Br4—Pb1—Br3171.02 (6)Br4—Pb1—Br2i92.71 (5)
Br1—Pb1—Br388.47 (6)Br1—Pb1—Br2i87.76 (7)
Br4—Pb1—Br291.67 (5)Br3—Pb1—Br2i95.57 (5)
Br1—Pb1—Br293.35 (7)Br4—Pb1—Br1ii97.48 (6)
Br3—Pb1—Br280.13 (5)Br1—Pb1—Br1ii169.41 (10)
C1—P1—C4111.5 (9)Br3—Pb1—Br1ii86.96 (6)
C1—P1—C3108.0 (12)Br2i—Pb1—Br1ii83.19 (7)
C4—P1—C3110.9 (9)Br2i—Pb1—Br2175.51 (2)
C1—P1—C2108.3 (9)Br1ii—Pb1—Br295.26 (7)
C4—P1—C2107.9 (8)Pb1iii—Br2—Pb1163.28 (6)
C3—P1—C2110.3 (8)Pb1—Br1—Pb1iv169.41 (10)
C5—C4—P1114.8 (11)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+1, y, z; (iii) x+2, y1/2, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···Br2v0.963.053.871 (16)145
C2—H2B···Br4v0.963.053.866 (19)144
C2—H2A···Br4iii0.962.753.702 (18)170
N1—H1F···Br3iv0.892.753.596 (15)159
N1—H1E···Br1vi0.892.643.491 (16)160
N1—H1D···Br10.892.803.502 (16)137
C5—H5B···Br4iii0.972.883.674 (17)140
C5—H5A···Br4vi0.972.973.762 (19)140
C1—H1C···Br1vii0.963.124.07 (2)176
C4—H4B···Br3iv0.973.043.806 (17)137
C4—H4A···Br30.972.983.728 (18)135
C3—H3A···Br4v0.963.013.93 (2)161
Symmetry codes: (iii) x+2, y1/2, z+2; (iv) x1, y, z; (v) x, y, z1; (vi) x+1, y1/2, z+2; (vii) x+1, y1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds