Download citation
Download citation
link to html
A novel polymorph of RbCuCl3 (rubidium copper trichloride), denoted [epsilon]-RbCuCl3, has been prepared by chemical vapour transport (CVT) from a mixture of CuO, CuCl2, SeO2 and RbCl. The new polymorph crystallizes in the ortho­rhom­bic space group C2221. The crystal structure is based on an octa­hedral framework of the 4H perovskite type. The Rb+ and Cl ions form a four-layer closest-packing array with an ABCB sequence. The Cu2+ cations reside in octa­hedral cavities with a typical [4 + 2]-Jahn–Teller-distorted coordination, forming four short and two long Cu—Cl bonds. [epsilon]-RbCuCl3 is the most structurally complex and most dense among all currently known RbCuCl3 polymorphs, which allows us to suggest that it is a high-pressure phase, which is unstable under ambient conditions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618004539/ku3218sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618004539/ku3218Isup2.hkl
Contains datablock I

CCDC reference: 1830660

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Rubidium copper trichloride top
Crystal data top
RbCuCl3Dx = 3.440 Mg m3
Mr = 255.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 1041 reflections
a = 7.053 (3) Åθ = 3.4–33.6°
b = 11.864 (5) ŵ = 15.67 mm1
c = 11.785 (6) ÅT = 100 K
V = 986.1 (8) Å3Prism, red
Z = 80.08 × 0.05 × 0.03 mm
F(000) = 936
Data collection top
Bruker APEXII CCD
diffractometer
1042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scanh = 99
k = 1515
4745 measured reflectionsl = 815
1184 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.012P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.044Δρmax = 0.60 e Å3
S = 1.02Δρmin = 0.70 e Å3
1184 reflectionsAbsolute structure: Refined as an inversion twin
49 parametersAbsolute structure parameter: 0.495 (19)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Data were collected using Bruker Kappa Duo diffractometer equipped with an APEX II CCD detector operated with monochromated MoKα radiation at 50 kV and 40 mA. Diffraction data were collected at 100 K with the frame width of 0.5o in ω and φ, and exposure of 60 s spent per each frame. Data were integrated and corrected for background, Lorentz, and polarization effects using an empirical spherical model by means of the Bruker programs APEX2 and XPREP. Absorption correction was applied using SADABS program. The unit-cell parameters were refined by the least-squares techniques. The structure was solved by direct methods and refined using the SHELX program (Sheldrick, 2008) incorporated in the OLEX2 program package (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.00000.32138 (6)0.25000.0105 (2)
Rb20.01172 (15)0.00000.00000.0111 (2)
Cu10.51064 (15)0.15615 (6)0.11987 (7)0.00720 (18)
Cl10.50000.30598 (14)0.25000.0089 (4)
Cl20.2142 (2)0.26279 (13)0.51375 (15)0.0108 (4)
Cl30.2555 (2)0.07319 (11)0.27800 (13)0.0089 (3)
Cl40.0034 (4)0.50000.00000.0123 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0105 (4)0.0090 (4)0.0119 (5)0.0000.0003 (6)0.000
Rb20.0094 (4)0.0099 (4)0.0141 (5)0.0000.0000.0020 (4)
Cu10.0086 (4)0.0061 (3)0.0069 (4)0.0010 (4)0.0018 (4)0.0008 (3)
Cl10.0115 (10)0.0067 (8)0.0085 (11)0.0000.0000 (14)0.000
Cl20.0111 (8)0.0109 (8)0.0105 (9)0.0022 (7)0.0043 (7)0.0016 (7)
Cl30.0083 (6)0.0090 (6)0.0094 (9)0.0018 (6)0.0001 (8)0.0011 (6)
Cl40.0139 (9)0.0105 (9)0.0125 (12)0.0000.0000.0061 (9)
Geometric parameters (Å, º) top
Rb1—Cl13.5313 (15)Cu1—Rb1xiii4.2554 (17)
Rb1—Cl1i3.5313 (15)Cu1—Rb1xii4.2581 (19)
Rb1—Cl2ii3.579 (2)Cu1—Rb2xiii4.2330 (19)
Rb1—Cl2iii3.525 (2)Cu1—Cl12.3489 (16)
Rb1—Cl2iv3.579 (2)Cu1—Cl2iv2.2372 (19)
Rb1—Cl23.525 (2)Cu1—Cl3xiv2.2667 (19)
Rb1—Cl3v3.4651 (19)Cu1—Cl4xii2.3303 (11)
Rb1—Cl3vi3.4651 (19)Cl1—Rb1xiii3.5313 (16)
Rb1—Cl33.4680 (19)Cl1—Rb2xv3.7397 (17)
Rb1—Cl3iii3.4680 (19)Cl1—Rb2xvi3.7397 (17)
Rb1—Cl43.6292 (14)Cl1—Cu1xiv2.3489 (16)
Rb1—Cl4vii3.6292 (14)Cl2—Rb1xv3.579 (2)
Rb2—Cl1viii3.7397 (17)Cl2—Rb2xv3.418 (2)
Rb2—Cl1iv3.7397 (17)Cl2—Rb2xvii3.505 (2)
Rb2—Cl2iv3.418 (2)Cl2—Cu1xv2.2372 (19)
Rb2—Cl2ix3.418 (2)Cl3—Rb1xii3.4651 (19)
Rb2—Cl2iii3.505 (2)Cl3—Rb2xvii3.339 (2)
Rb2—Cl2x3.505 (2)Cl3—Cu1xiv2.2666 (19)
Rb2—Cl3iii3.339 (2)Cl4—Rb1xviii3.6292 (14)
Rb2—Cl3x3.339 (2)Cl4—Rb2v3.468 (4)
Rb2—Cl3xi3.800 (2)Cl4—Rb2xvi3.585 (4)
Rb2—Cl33.800 (2)Cl4—Cu1xix2.3303 (11)
Rb2—Cl4xii3.468 (4)Cl4—Cu1v2.3303 (11)
Rb2—Cl4viii3.585 (4)
Cl1—Rb1—Cl1i174.07 (6)Cl3x—Rb2—Cl2ix93.90 (4)
Cl1i—Rb1—Cl2iv123.22 (3)Cl3x—Rb2—Cl2iv124.78 (4)
Cl1—Rb1—Cl2ii123.22 (3)Cl3iii—Rb2—Cl2x86.47 (4)
Cl1—Rb1—Cl2iv54.77 (3)Cl3iii—Rb2—Cl2ix124.78 (4)
Cl1i—Rb1—Cl2ii54.77 (3)Cl3x—Rb2—Cl2iii86.47 (4)
Cl1i—Rb1—Cl4vii91.35 (5)Cl3x—Rb2—Cl2x63.15 (4)
Cl1i—Rb1—Cl492.11 (5)Cl3iii—Rb2—Cl3xi171.95 (4)
Cl1—Rb1—Cl491.35 (5)Cl3xi—Rb2—Cl3126.20 (6)
Cl1—Rb1—Cl4vii92.11 (5)Cl3x—Rb2—Cl3iii111.27 (7)
Cl2—Rb1—Cl164.01 (3)Cl3x—Rb2—Cl3171.95 (4)
Cl2iii—Rb1—Cl1114.70 (3)Cl3iii—Rb2—Cl361.35 (5)
Cl2iii—Rb1—Cl1i64.01 (3)Cl3x—Rb2—Cl3xi61.35 (5)
Cl2—Rb1—Cl1i114.70 (3)Cl3iii—Rb2—Cl4viii55.64 (3)
Cl2iv—Rb1—Cl2ii147.60 (6)Cl3x—Rb2—Cl4xii124.36 (3)
Cl2iii—Rb1—Cl2157.25 (6)Cl3iii—Rb2—Cl4xii124.36 (3)
Cl2—Rb1—Cl2ii60.03 (3)Cl3x—Rb2—Cl4viii55.64 (3)
Cl2iii—Rb1—Cl2iv60.03 (3)Cl4xii—Rb2—Cl1viii91.267 (16)
Cl2—Rb1—Cl2iv112.92 (3)Cl4viii—Rb2—Cl1viii88.733 (16)
Cl2iii—Rb1—Cl2ii112.92 (3)Cl4xii—Rb2—Cl1iv91.267 (16)
Cl2iv—Rb1—Cl461.82 (5)Cl4viii—Rb2—Cl1iv88.733 (16)
Cl2iii—Rb1—Cl453.29 (4)Cl4xii—Rb2—Cl2x117.04 (3)
Cl2ii—Rb1—Cl4vii61.82 (5)Cl4xii—Rb2—Cl2iii117.04 (3)
Cl2ii—Rb1—Cl4142.95 (6)Cl4xii—Rb2—Cl363.10 (3)
Cl2iv—Rb1—Cl4vii142.95 (6)Cl4viii—Rb2—Cl3116.90 (3)
Cl2—Rb1—Cl4145.90 (5)Cl4xii—Rb2—Cl3xi63.10 (3)
Cl2iii—Rb1—Cl4vii145.90 (5)Cl4viii—Rb2—Cl3xi116.90 (3)
Cl2—Rb1—Cl4vii53.29 (4)Cl4xii—Rb2—Cl4viii180.0
Cl3vi—Rb1—Cl1i122.79 (4)Rb1xiii—Cu1—Rb1xii108.31 (3)
Cl3v—Rb1—Cl1122.79 (4)Rb2xiii—Cu1—Rb1xii74.14 (2)
Cl3iii—Rb1—Cl1118.36 (4)Rb2—Cu1—Rb1xii72.33 (2)
Cl3—Rb1—Cl1i118.36 (4)Rb2xiii—Cu1—Rb1xiii69.19 (4)
Cl3vi—Rb1—Cl163.10 (4)Rb2—Cu1—Rb1xiii177.68 (3)
Cl3iii—Rb1—Cl1i55.74 (4)Rb2—Cu1—Rb2xiii113.10 (3)
Cl3—Rb1—Cl155.74 (4)Cl1—Cu1—Rb1xii118.05 (5)
Cl3v—Rb1—Cl1i63.10 (4)Cl1—Cu1—Rb1xiii56.08 (3)
Cl3iii—Rb1—Cl2iii61.70 (4)Cl1—Cu1—Rb2xiii125.15 (4)
Cl3v—Rb1—Cl2iii92.33 (4)Cl1—Cu1—Rb2121.61 (4)
Cl3iii—Rb1—Cl2ii62.90 (4)Cl2iv—Cu1—Rb1xii126.15 (6)
Cl3vi—Rb1—Cl2iii107.42 (4)Cl2iv—Cu1—Rb1xiii125.34 (6)
Cl3vi—Rb1—Cl2ii126.50 (4)Cl2iv—Cu1—Rb2xiii126.41 (6)
Cl3vi—Rb1—Cl2iv83.47 (4)Cl2iv—Cu1—Rb253.87 (5)
Cl3vi—Rb1—Cl292.33 (4)Cl2iv—Cu1—Cl190.97 (6)
Cl3v—Rb1—Cl2iv126.50 (4)Cl2iv—Cu1—Cl3xiv178.05 (8)
Cl3—Rb1—Cl2iii98.00 (4)Cl2iv—Cu1—Cl4xii89.27 (8)
Cl3—Rb1—Cl2iv62.90 (4)Cl3xiv—Cu1—Rb1xii54.31 (4)
Cl3v—Rb1—Cl2ii83.47 (4)Cl3xiv—Cu1—Rb1xiii54.44 (5)
Cl3iii—Rb1—Cl2iv88.95 (4)Cl3xiv—Cu1—Rb2xiii51.66 (5)
Cl3—Rb1—Cl261.70 (4)Cl3xiv—Cu1—Rb2126.43 (5)
Cl3iii—Rb1—Cl298.00 (4)Cl3xiv—Cu1—Cl190.30 (6)
Cl3v—Rb1—Cl2107.42 (4)Cl3xiv—Cu1—Cl4xii89.58 (7)
Cl3—Rb1—Cl2ii88.95 (4)Cl4xii—Cu1—Rb1xii58.43 (4)
Cl3vi—Rb1—Cl3iii168.98 (5)Cl4xii—Cu1—Rb1xiii127.05 (8)
Cl3vi—Rb1—Cl3118.85 (3)Cl4xii—Cu1—Rb255.24 (7)
Cl3vi—Rb1—Cl3v60.89 (6)Cl4xii—Cu1—Rb2xiii57.87 (8)
Cl3v—Rb1—Cl3iii118.85 (3)Cl4xii—Cu1—Cl1175.37 (6)
Cl3—Rb1—Cl3iii63.78 (6)Rb1—Cl1—Rb1xiii174.07 (6)
Cl3v—Rb1—Cl3168.98 (5)Rb1xiii—Cl1—Rb2xv89.44 (2)
Cl3v—Rb1—Cl4vii54.27 (4)Rb1—Cl1—Rb2xv86.91 (3)
Cl3vi—Rb1—Cl454.27 (4)Rb1—Cl1—Rb2xvi89.44 (2)
Cl3—Rb1—Cl4vii114.96 (4)Rb1xiii—Cl1—Rb2xvi86.91 (3)
Cl3iii—Rb1—Cl4114.96 (4)Rb2xv—Cl1—Rb2xvi104.02 (5)
Cl3iii—Rb1—Cl4vii124.72 (4)Cu1xiv—Cl1—Rb1xiii94.08 (3)
Cl3v—Rb1—Cl464.99 (4)Cu1—Cl1—Rb194.08 (3)
Cl3—Rb1—Cl4124.72 (4)Cu1xiv—Cl1—Rb190.42 (3)
Cl3vi—Rb1—Cl4vii64.99 (4)Cu1—Cl1—Rb1xiii90.42 (3)
Cl4vii—Rb1—Cl4108.55 (4)Cu1—Cl1—Rb2xvi87.18 (4)
Cl1iv—Rb2—Cl1viii177.47 (3)Cu1—Cl1—Rb2xv168.77 (5)
Cl1iv—Rb2—Cl3123.26 (4)Cu1xiv—Cl1—Rb2xvi168.77 (5)
Cl1viii—Rb2—Cl3xi123.26 (4)Cu1xiv—Cl1—Rb2xv87.18 (4)
Cl1iv—Rb2—Cl3xi58.10 (4)Cu1xiv—Cl1—Cu181.64 (7)
Cl1viii—Rb2—Cl358.10 (4)Rb1—Cl2—Rb1xv169.18 (5)
Cl2x—Rb2—Cl1viii53.56 (4)Rb2xv—Cl2—Rb192.19 (5)
Cl2x—Rb2—Cl1iv125.02 (4)Rb2xvii—Cl2—Rb1xv92.51 (5)
Cl2ix—Rb2—Cl1viii62.81 (4)Rb2xvii—Cl2—Rb186.55 (4)
Cl2iii—Rb2—Cl1viii125.02 (4)Rb2xv—Cl2—Rb1xv87.03 (4)
Cl2iii—Rb2—Cl1iv53.56 (4)Rb2xv—Cl2—Rb2xvii170.86 (6)
Cl2iv—Rb2—Cl1iv62.81 (4)Cu1xv—Cl2—Rb195.98 (6)
Cl2ix—Rb2—Cl1iv118.82 (4)Cu1xv—Cl2—Rb1xv94.84 (7)
Cl2iv—Rb2—Cl1viii118.82 (4)Cu1xv—Cl2—Rb2xvii94.93 (6)
Cl2ix—Rb2—Cl2x61.77 (3)Cu1xv—Cl2—Rb2xv94.21 (6)
Cl2iv—Rb2—Cl2ix111.13 (7)Rb1xii—Cl3—Rb1168.98 (5)
Cl2x—Rb2—Cl2iii125.91 (6)Rb1—Cl3—Rb282.93 (4)
Cl2iv—Rb2—Cl2iii61.77 (3)Rb1xii—Cl3—Rb286.91 (4)
Cl2ix—Rb2—Cl2iii170.86 (5)Rb2xvii—Cl3—Rb190.11 (4)
Cl2iv—Rb2—Cl2x170.86 (5)Rb2xvii—Cl3—Rb1xii97.55 (4)
Cl2iii—Rb2—Cl392.43 (4)Rb2xvii—Cl3—Rb2111.14 (5)
Cl2ix—Rb2—Cl388.46 (4)Cu1xiv—Cl3—Rb1xii93.60 (6)
Cl2iv—Rb2—Cl361.00 (4)Cu1xiv—Cl3—Rb193.44 (5)
Cl2x—Rb2—Cl3xi92.43 (4)Cu1xiv—Cl3—Rb2152.40 (6)
Cl2x—Rb2—Cl3111.66 (4)Cu1xiv—Cl3—Rb2xvii96.18 (7)
Cl2iii—Rb2—Cl3xi111.66 (4)Rb1xviii—Cl4—Rb1179.24 (10)
Cl2ix—Rb2—Cl3xi61.00 (4)Rb2v—Cl4—Rb1xviii89.62 (5)
Cl2iv—Rb2—Cl3xi88.46 (4)Rb2v—Cl4—Rb189.62 (5)
Cl2ix—Rb2—Cl4viii124.44 (3)Rb2xvi—Cl4—Rb1xviii90.38 (5)
Cl2ix—Rb2—Cl4xii55.56 (3)Rb2xvi—Cl4—Rb190.38 (5)
Cl2iv—Rb2—Cl4viii124.44 (3)Rb2v—Cl4—Rb2xvi180.0
Cl2x—Rb2—Cl4viii62.96 (3)Cu1xix—Cl4—Rb1xviii88.41 (4)
Cl2iii—Rb2—Cl4viii62.96 (3)Cu1v—Cl4—Rb188.41 (4)
Cl2iv—Rb2—Cl4xii55.56 (3)Cu1v—Cl4—Rb1xviii91.61 (4)
Cl3x—Rb2—Cl1viii116.40 (4)Cu1xix—Cl4—Rb191.61 (4)
Cl3iii—Rb2—Cl1iv116.40 (4)Cu1xix—Cl4—Rb2v91.26 (7)
Cl3x—Rb2—Cl1iv61.99 (4)Cu1v—Cl4—Rb2xvi88.74 (7)
Cl3iii—Rb2—Cl1viii61.99 (4)Cu1v—Cl4—Rb2v91.26 (7)
Cl3iii—Rb2—Cl2iv93.90 (4)Cu1xix—Cl4—Rb2xvi88.74 (7)
Cl3iii—Rb2—Cl2iii63.15 (4)Cu1xix—Cl4—Cu1v177.49 (14)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z+1/2; (x) x, y, z1/2; (xi) x, y, z; (xii) x+1/2, y1/2, z; (xiii) x+1, y, z; (xiv) x+1, y, z+1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z; (xvii) x, y, z+1/2; (xviii) x, y+1, z1/2; (xix) x1/2, y+1/2, z.
Complexity, density and average <Rb—Cl> bond lengths in the RbCuCl3 polymorphs top
PolymorphSpace groupIG (bits per atom)IG,total (bits per unit cell)Density (Mg m-3)<Rb—Cl> (Å)
αP63/mmc1.37113.7103.273.619
βPbcn1.92238.4393.293.610
γC2/c2.52250.4393.393.567
εC22212.72254.4393.443.508, 3.555
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds