Download citation
Download citation
link to html
Evaporation of an aqueous solution of sulfanilic acid (systematic name: 4-amino­benzene-1-sulfonic acid) at 273 K affords a crystalline dihydrate, C6H7NO3S·2H2O. The organic mol­ecule exists as a zwitterion; two zwitterions are aligned in an anti­parallel fashion about a crystallographic centre of inversion. They inter­act directly via two N—H...O hydrogen bonds between the ammonium group of one zwitterion and the sulfonate group of its symmetry-related counterpart, and their aromatic rings are π-stacked, with an inter­planar distance of 3.533 (3) Å. One of the cocrystallized water mol­ecules connects the resulting pairs into layers and the second crosslinks the layers into a three-dimensional network. All H atoms connected to N or O atoms find acceptors in suitable geometries. In the resulting crystal, polar and hydrogen-bond-dominated slabs alternate with stacks of organic arene rings. Although the new dihydrate shows efficient space filling, with a packing coefficient of 75.7%, it is unstable and undergoes fast desolvation at room temperature. In this process, the ortho­rhom­bic ansolvate forms as a pure phase.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617016886/ku3211sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617016886/ku3211Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617016886/ku3211Isup3.cml
Supplementary material

CCDC reference: 1587239

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

4-Aminobenzene-1-sulfonic acid dihydrate top
Crystal data top
C6H7NO3S·2H2OF(000) = 440
Mr = 209.22Dx = 1.632 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3338 (6) ÅCell parameters from 5814 reflections
b = 5.7650 (3) Åθ = 5.7–62.7°
c = 13.9048 (8) ŵ = 0.37 mm1
β = 110.3710 (11)°T = 100 K
V = 851.71 (8) Å3Transparent platelet, colourless
Z = 40.20 × 0.12 × 0.02 mm
Data collection top
Bruker D8 gonimeter with an APEX CCD detector
diffractometer
3264 independent reflections
Radiation source: Incoatec microsource2834 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.060
ω scansθmax = 33.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.898, Tmax = 1.000k = 88
28058 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.040P)2 + 0.670P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
3264 reflectionsΔρmax = 0.64 e Å3
146 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44658 (2)1.06435 (5)0.21108 (2)0.00910 (8)
O10.50583 (8)1.03106 (16)0.32230 (6)0.01236 (16)
O20.34514 (8)0.89939 (16)0.16541 (7)0.01307 (17)
O30.41028 (8)1.30458 (15)0.18416 (7)0.01308 (17)
N10.82843 (9)0.86847 (18)0.01350 (8)0.01115 (18)
H1A0.8316 (17)0.716 (3)0.0011 (13)0.018 (4)*
H1B0.904 (2)0.922 (4)0.0529 (17)0.031 (5)*
H1C0.8032 (18)0.945 (3)0.0484 (15)0.020 (5)*
C10.56405 (10)0.9992 (2)0.15760 (8)0.00969 (19)
C20.56254 (11)0.7856 (2)0.11052 (9)0.0112 (2)
H20.5016440.6718240.1098390.013*
C30.65147 (11)0.7406 (2)0.06433 (9)0.0113 (2)
H30.6515250.5958960.0316470.014*
C40.73980 (10)0.9090 (2)0.06655 (8)0.00986 (19)
C50.74390 (11)1.1202 (2)0.11611 (9)0.0114 (2)
H50.8063881.2320350.1184390.014*
C60.65530 (11)1.1652 (2)0.16215 (9)0.0113 (2)
H60.6569201.3082750.1965100.014*
O40.15086 (9)0.58774 (16)0.05400 (7)0.01464 (17)
H4A0.104 (2)0.580 (4)0.0877 (18)0.039 (6)*
H4B0.216 (2)0.643 (4)0.0974 (18)0.039 (6)*
O50.44760 (9)1.56610 (16)0.36443 (7)0.01373 (17)
H5A0.426 (2)1.499 (4)0.3081 (18)0.031 (5)*
H5B0.458 (2)1.706 (4)0.3501 (16)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00924 (12)0.00977 (13)0.00848 (12)0.00031 (9)0.00332 (9)0.00032 (9)
O10.0131 (4)0.0148 (4)0.0090 (3)0.0007 (3)0.0036 (3)0.0010 (3)
O20.0101 (3)0.0150 (4)0.0139 (4)0.0025 (3)0.0038 (3)0.0015 (3)
O30.0154 (4)0.0114 (4)0.0134 (4)0.0031 (3)0.0064 (3)0.0017 (3)
N10.0113 (4)0.0115 (4)0.0116 (4)0.0007 (3)0.0052 (3)0.0001 (3)
C10.0096 (4)0.0106 (5)0.0088 (4)0.0006 (4)0.0032 (3)0.0007 (4)
C20.0118 (4)0.0102 (5)0.0117 (5)0.0013 (4)0.0042 (4)0.0007 (4)
C30.0131 (5)0.0097 (5)0.0115 (5)0.0005 (4)0.0049 (4)0.0012 (4)
C40.0096 (4)0.0115 (5)0.0090 (4)0.0010 (4)0.0038 (4)0.0008 (4)
C50.0116 (4)0.0109 (5)0.0120 (5)0.0012 (4)0.0043 (4)0.0006 (4)
C60.0118 (4)0.0099 (5)0.0119 (5)0.0006 (4)0.0038 (4)0.0011 (4)
O40.0150 (4)0.0155 (4)0.0141 (4)0.0021 (3)0.0060 (3)0.0027 (3)
O50.0166 (4)0.0122 (4)0.0128 (4)0.0004 (3)0.0057 (3)0.0011 (3)
Geometric parameters (Å, º) top
S1—O31.4560 (9)C2—H20.9500
S1—O21.4564 (9)C3—C41.3870 (16)
S1—O11.4685 (9)C3—H30.9500
S1—C11.7765 (11)C4—C51.3919 (16)
N1—C41.4572 (14)C5—C61.3905 (16)
N1—H1A0.90 (2)C5—H50.9500
N1—H1B0.90 (2)C6—H60.9500
N1—H1C0.92 (2)O4—H4A0.83 (2)
C1—C21.3916 (16)O4—H4B0.84 (2)
C1—C61.3943 (16)O5—H5A0.83 (2)
C2—C31.3952 (15)O5—H5B0.85 (2)
O3—S1—O2113.54 (5)C1—C2—H2120.4
O3—S1—O1112.32 (5)C3—C2—H2120.4
O2—S1—O1112.09 (5)C4—C3—C2119.40 (11)
O3—S1—C1106.22 (5)C4—C3—H3120.3
O2—S1—C1105.80 (5)C2—C3—H3120.3
O1—S1—C1106.18 (5)C3—C4—C5121.51 (10)
C4—N1—H1A110.9 (11)C3—C4—N1119.74 (10)
C4—N1—H1B108.5 (14)C5—C4—N1118.73 (10)
H1A—N1—H1B111.4 (18)C6—C5—C4119.10 (11)
C4—N1—H1C110.6 (12)C6—C5—H5120.4
H1A—N1—H1C106.3 (16)C4—C5—H5120.4
H1B—N1—H1C109.0 (18)C5—C6—C1119.60 (11)
C2—C1—C6121.07 (10)C5—C6—H6120.2
C2—C1—S1119.71 (9)C1—C6—H6120.2
C6—C1—S1119.20 (9)H4A—O4—H4B101 (2)
C1—C2—C3119.25 (10)H5A—O5—H5B104 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (2)1.94 (2)2.8296 (14)168.6 (16)
N1—H1B···O5ii0.90 (2)1.87 (2)2.7610 (14)173 (2)
N1—H1C···S1iii0.92 (2)2.945 (19)3.5833 (11)127.7 (14)
N1—H1C···O2iii0.92 (2)2.09 (2)2.9056 (14)146.8 (16)
N1—H1C···O5iv0.92 (2)2.352 (19)2.8657 (13)115.0 (14)
C5—H5···O1v0.952.643.5636 (15)165
O4—H4A···O1vi0.83 (2)2.06 (2)2.8888 (13)174 (2)
O4—H4B···O20.84 (2)2.06 (2)2.8463 (13)156 (2)
O5—H5A···S10.83 (2)2.89 (2)3.5912 (10)143.0 (19)
O5—H5A···O30.83 (2)2.01 (2)2.8279 (13)168 (2)
O5—H5B···S1vii0.85 (2)2.80 (2)3.5750 (10)152.4 (19)
O5—H5B···O1vii0.85 (2)2.02 (2)2.8693 (13)173 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1/2, y+5/2, z1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x, y+1, z.
Packing descriptors for the crystal forms of sulfanilic acid top
CSD refcodeSpace groupTemperature (K)CompositionDensity (Mg m-3)Volume/formula (Å3)Volume/non-H atom (Å3)Packing coefficient (%)
AFAZEMPca21120Anhydrous C6H7NO3S1.514190.017.367.1
AFAZEM01P21/c120Anhydrous C6H7NO3S1.688170.415.575.3
SANACMP21/c293C6H7NO3S.H2O1.568201.416.872.7
SANACM01P212121150C6H7NO3S.H2O1.615196.516.473.7
This workP21/n100C6H7NO3S.2H2O1.632212.916.475.7
References for CSD refcodes: AFAZEM (Low & Glidewell, 2002); AFAZEM01 (Callear & Hursthouse, 2008); SANACM [Rae & Maslen (1962), redetermined by Nazarenko (2017a,b)]; SANACM01 (Banu & Golzar Hossain, 2006).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds