Download citation
Download citation
link to html
Functionalized acid amides are widely used in biology, medicine, environmental chemistry and many other areas. Among them, pyridine-substituted amides, in particular N-(pyridin-2-yl)acetamide and its derivatives, play an important role due to their excellent chelating properties. The donor properties of these ligands can be effectively modified by introducing electron-donating substituents (e.g. alkyl groups) into the heterocycle. On the other hand, substituents in the α-position of the pyridine ring can create steric hindrance, which significantly influences the coordination number and geometry. To achieve a better under­standing of these effects, copper(II) complexes with sterically demanding N-(6-methyl­pyridin-2-yl)acetamide ligands (L) and monoanions of different size, shape and coordination ability have been chosen as model compounds. The crystal structures of three new compounds, bromido­bis­[N-(6-methyl­pyridin-2-yl-κN)acetamide-κO]copper(II) bromide, [CuBr(C8H10N2O)]Br, (I), aqua­bis­[N-(6-methyl­pyridin-2-yl-κN)acetamide-κO]copper(II) dinitrate, [Cu(C8H10N2O)(H2O)](NO3)2, (II), and aqua­bis­[N-(6-methyl­pyridin-2-yl-κN)acetamide-κO]copper(II) bis­(perchlorate), [Cu(C8H10N2O)(H2O)](ClO4)2, (III), have been determined by single-crystal X-ray diffraction analysis. It has been shown that the presence of the 6-methyl group results in either a distorted square-pyramidal or a distorted trigonal–bipyramidal coordination geometry around the CuII centres instead of the typical octa­hedral geometry observed when the methyl substituent is absent or occupies any other position on the pyridine ring. Moreover, due to the steric hindrance provided by the L ligands, only the bromide ligand, the smallest of the series, enters into the first coordination sphere of the CuII ion in (I). In (II) and (III), the vacant coordination site of the CuII ion is occupied by a water mol­ecule, while the nitrate and perchlorate anions are not involved in coordination to the metal centre. The structures of (I)–(III) are characterized by the presence of one-dimensional infinite chains formed by hydrogen bonds of the types N—H...Br [in (I)], N—H...O and O—H...O [in (II) and (III)] between the amide groups of the L ligands, the coordinated water mol­ecules and the uncoordinated anions. The hydrogen-bonded chains are further inter­connected through π–π stacking inter­actions between the pyridine rings of the L ligands, with approximate inter­planar separations of 3.5–3.6 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617009949/ku3201sup1.cif
Contains datablocks 1, 2, 3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009949/ku32011sup2.hkl
Contains datablock 1

mol

MDL mol file https://doi.org/10.1107/S2053229617009949/ku32011sup5.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009949/ku32012sup3.hkl
Contains datablock 2

mol

MDL mol file https://doi.org/10.1107/S2053229617009949/ku32012sup6.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009949/ku32013sup4.hkl
Contains datablock 3

mol

MDL mol file https://doi.org/10.1107/S2053229617009949/ku32013sup7.mol
Supplementary material

CCDC references: 1560309; 1560308; 1560307

Computing details top

For all structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Bruker, 2004; Sheldrick, 2015); program(s) used to refine structure: SHELXTL (Bruker, 2004; Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Bruker, 2004; Sheldrick, 2015).

Bromidobis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bromide (1) top
Crystal data top
[CuBr(C8H10N2O)2]BrZ = 2
Mr = 523.72F(000) = 518
Triclinic, P1Dx = 1.775 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0673 (12) ÅCell parameters from 5072 reflections
b = 10.1144 (14) Åθ = 2.3–27.6°
c = 11.7417 (14) ŵ = 5.21 mm1
α = 69.013 (5)°T = 296 K
β = 77.791 (5)°Plate, brown
γ = 81.901 (5)°0.35 × 0.20 × 0.02 mm
V = 980.2 (2) Å3
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
4436 independent reflections
Radiation source: fine-focus sealed tube3569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 25 pixels mm-1θmax = 27.7°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.263, Tmax = 0.903l = 1215
10439 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4667P]
where P = (Fo2 + 2Fc2)/3
4436 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43216 (4)0.30182 (4)0.01955 (3)0.05539 (12)
Br20.26809 (4)0.58501 (4)0.35313 (4)0.05613 (12)
Cu10.27507 (4)0.16494 (3)0.20270 (3)0.03078 (10)
O10.1365 (2)0.1547 (2)0.36932 (19)0.0443 (5)
O20.2495 (2)0.0530 (2)0.2521 (2)0.0467 (6)
N10.0848 (3)0.2317 (2)0.1274 (2)0.0323 (5)
N20.0147 (3)0.3446 (2)0.2768 (2)0.0369 (6)
H20.05460.42500.28190.044*
N30.4527 (3)0.1134 (2)0.2929 (2)0.0308 (5)
N40.4876 (3)0.1248 (2)0.2904 (2)0.0394 (6)
H40.55670.19180.28790.047*
C10.0203 (3)0.3210 (3)0.1677 (3)0.0327 (6)
C20.1395 (3)0.3904 (3)0.1073 (3)0.0413 (7)
H2A0.20860.45270.13700.050*
C30.1536 (4)0.3658 (4)0.0033 (3)0.0505 (8)
H30.23190.41210.03950.061*
C40.0507 (4)0.2718 (4)0.0373 (3)0.0514 (9)
H4A0.06060.25280.10710.062*
C50.0678 (4)0.2050 (3)0.0251 (3)0.0408 (7)
C60.1786 (5)0.1010 (4)0.0187 (4)0.0579 (9)
H6A0.27960.12760.03010.087*
H6B0.15890.10110.09590.087*
H6C0.16810.00760.04190.087*
C70.0460 (3)0.2562 (3)0.3755 (3)0.0361 (6)
C80.0019 (4)0.2854 (4)0.4944 (3)0.0546 (9)
H8A0.03270.19970.56000.082*
H8B0.08500.35640.48700.082*
H8C0.08130.31880.51270.082*
C90.5347 (3)0.0119 (3)0.3137 (3)0.0337 (6)
C100.6668 (4)0.0379 (3)0.3617 (3)0.0492 (8)
H100.72230.12490.37290.059*
C110.7157 (4)0.0647 (4)0.3925 (4)0.0559 (10)
H110.80440.04860.42480.067*
C120.6308 (4)0.1925 (3)0.3746 (3)0.0450 (8)
H120.66060.26290.39670.054*
C130.5020 (3)0.2154 (3)0.3241 (3)0.0363 (6)
C140.4137 (4)0.3562 (3)0.3021 (4)0.0541 (9)
H14A0.37700.37130.37970.081*
H14B0.32960.35760.26370.081*
H14C0.47780.43010.24870.081*
C150.3528 (3)0.1463 (3)0.2714 (3)0.0345 (6)
C160.3361 (4)0.2932 (3)0.2760 (3)0.0480 (8)
H16A0.23610.29910.26400.072*
H16B0.35230.35990.35520.072*
H16C0.40920.31480.21180.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0420 (2)0.0658 (2)0.0432 (2)0.01122 (17)0.00237 (15)0.00054 (16)
Br20.0585 (2)0.0443 (2)0.0718 (3)0.02596 (16)0.02546 (19)0.03025 (17)
Cu10.02643 (18)0.02570 (17)0.0359 (2)0.00479 (13)0.00552 (14)0.00774 (14)
O10.0406 (12)0.0437 (12)0.0349 (11)0.0194 (10)0.0054 (9)0.0058 (9)
O20.0357 (12)0.0266 (10)0.0743 (16)0.0041 (9)0.0132 (11)0.0132 (10)
N10.0286 (12)0.0283 (11)0.0372 (13)0.0003 (9)0.0066 (10)0.0081 (10)
N20.0349 (13)0.0308 (12)0.0423 (14)0.0120 (10)0.0095 (11)0.0128 (10)
N30.0298 (12)0.0262 (11)0.0342 (12)0.0029 (9)0.0050 (10)0.0099 (9)
N40.0373 (14)0.0284 (12)0.0534 (16)0.0114 (10)0.0114 (12)0.0180 (11)
C10.0275 (14)0.0288 (13)0.0366 (15)0.0018 (11)0.0062 (12)0.0059 (11)
C20.0298 (15)0.0371 (16)0.0478 (18)0.0038 (12)0.0088 (13)0.0045 (13)
C30.0415 (19)0.053 (2)0.054 (2)0.0002 (15)0.0228 (16)0.0078 (16)
C40.054 (2)0.055 (2)0.051 (2)0.0086 (17)0.0197 (17)0.0179 (16)
C50.0414 (17)0.0386 (16)0.0452 (18)0.0062 (13)0.0103 (14)0.0147 (13)
C60.067 (3)0.056 (2)0.062 (2)0.0047 (18)0.0163 (19)0.0346 (19)
C70.0256 (14)0.0399 (16)0.0381 (16)0.0051 (12)0.0040 (12)0.0111 (12)
C80.050 (2)0.065 (2)0.047 (2)0.0217 (17)0.0119 (16)0.0246 (17)
C90.0321 (15)0.0261 (13)0.0376 (16)0.0048 (11)0.0069 (12)0.0066 (11)
C100.0411 (18)0.0331 (16)0.068 (2)0.0074 (13)0.0241 (17)0.0059 (15)
C110.049 (2)0.0467 (19)0.067 (2)0.0063 (16)0.0292 (18)0.0024 (17)
C120.051 (2)0.0395 (17)0.0436 (18)0.0115 (15)0.0144 (15)0.0071 (13)
C130.0407 (17)0.0294 (14)0.0347 (15)0.0025 (12)0.0023 (13)0.0082 (12)
C140.053 (2)0.0351 (17)0.082 (3)0.0027 (15)0.0124 (19)0.0314 (17)
C150.0380 (16)0.0261 (13)0.0352 (15)0.0017 (12)0.0012 (12)0.0099 (11)
C160.053 (2)0.0316 (16)0.062 (2)0.0019 (14)0.0075 (17)0.0223 (15)
Geometric parameters (Å, º) top
Cu1—O12.066 (2)C5—C61.501 (5)
Cu1—O22.102 (2)C6—H6A0.9600
Cu1—N12.026 (2)C6—H6B0.9600
Cu1—N32.019 (2)C6—H6C0.9600
Cu1—Br12.3870 (5)C7—C81.493 (4)
O1—C71.234 (3)C8—H8A0.9600
O2—C151.227 (3)C8—H8B0.9600
N1—C11.350 (4)C8—H8C0.9600
N1—C51.364 (4)C9—C101.383 (4)
N2—C71.354 (4)C10—C111.368 (5)
N2—C11.396 (4)C10—H100.9300
N2—H20.8600C11—C121.379 (5)
N3—C91.345 (3)C11—H110.9300
N3—C131.367 (4)C12—C131.374 (4)
N4—C151.348 (4)C12—H120.9300
N4—C91.403 (4)C13—C141.497 (4)
N4—H40.8600C14—H14A0.9600
C1—C21.385 (4)C14—H14B0.9600
C2—C31.364 (5)C14—H14C0.9600
C2—H2A0.9300C15—C161.495 (4)
C3—C41.375 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.387 (5)C16—H16C0.9600
C4—H4A0.9300
O1—Cu1—O286.95 (9)C5—C6—H6C109.5
O1—Cu1—N185.88 (9)H6A—C6—H6C109.5
O1—Cu1—N387.94 (9)H6B—C6—H6C109.5
O2—Cu1—N195.63 (9)O1—C7—N2122.3 (3)
O2—Cu1—N388.53 (9)O1—C7—C8120.5 (3)
N1—Cu1—N3172.35 (9)N2—C7—C8117.2 (3)
O1—Cu1—Br1148.28 (7)C7—C8—H8A109.5
O2—Cu1—Br1124.62 (7)C7—C8—H8B109.5
N1—Cu1—Br193.11 (7)H8A—C8—H8B109.5
N3—Cu1—Br189.78 (7)C7—C8—H8C109.5
C7—O1—Cu1119.47 (19)H8A—C8—H8C109.5
C15—O2—Cu1124.57 (19)H8B—C8—H8C109.5
C1—N1—C5117.8 (3)N3—C9—C10122.2 (3)
C1—N1—Cu1119.79 (19)N3—C9—N4121.2 (3)
C5—N1—Cu1121.8 (2)C10—C9—N4116.5 (3)
C7—N2—C1127.9 (2)C11—C10—C9119.8 (3)
C7—N2—H2116.0C11—C10—H10120.1
C1—N2—H2116.0C9—C10—H10120.1
C9—N3—C13117.7 (2)C10—C11—C12118.6 (3)
C9—N3—Cu1123.50 (19)C10—C11—H11120.7
C13—N3—Cu1118.54 (19)C12—C11—H11120.7
C15—N4—C9131.2 (2)C13—C12—C11119.8 (3)
C15—N4—H4114.4C13—C12—H12120.1
C9—N4—H4114.4C11—C12—H12120.1
N1—C1—C2123.1 (3)N3—C13—C12121.8 (3)
N1—C1—N2120.3 (2)N3—C13—C14119.1 (3)
C2—C1—N2116.6 (3)C12—C13—C14119.0 (3)
C3—C2—C1118.8 (3)C13—C14—H14A109.5
C3—C2—H2A120.6C13—C14—H14B109.5
C1—C2—H2A120.6H14A—C14—H14B109.5
C2—C3—C4119.2 (3)C13—C14—H14C109.5
C2—C3—H3120.4H14A—C14—H14C109.5
C4—C3—H3120.4H14B—C14—H14C109.5
C3—C4—C5120.4 (3)O2—C15—N4123.0 (3)
C3—C4—H4A119.8O2—C15—C16121.6 (3)
C5—C4—H4A119.8N4—C15—C16115.4 (3)
N1—C5—C4120.7 (3)C15—C16—H16A109.5
N1—C5—C6119.1 (3)C15—C16—H16B109.5
C4—C5—C6120.1 (3)H16A—C16—H16B109.5
C5—C6—H6A109.5C15—C16—H16C109.5
C5—C6—H6B109.5H16A—C16—H16C109.5
H6A—C6—H6B109.5H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br20.862.543.334 (2)153
N4—H4···Br2i0.862.543.373 (2)162
Symmetry code: (i) x+1, y1, z.
Aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) dinitrate (2) top
Crystal data top
[Cu(C8H10N2O)(H2O)](NO3)2F(000) = 1044
Mr = 505.94Dx = 1.612 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 8020 reflections
a = 13.3089 (2) Åθ = 2.7–27.4°
b = 8.4494 (1) ŵ = 1.11 mm1
c = 18.5350 (3) ÅT = 296 K
V = 2084.30 (5) Å3Block, blue
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
2388 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 25 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 106
Tmin = 0.732, Tmax = 0.851l = 2324
14975 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0591P)2 + 1.478P]
where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.69 e Å3
14 restraintsΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.48557 (4)0.25000.02844 (14)
O10.06427 (12)0.3343 (2)0.32072 (8)0.0426 (4)
N10.12902 (13)0.4770 (2)0.31011 (9)0.0296 (4)
C10.13291 (16)0.4172 (2)0.37760 (11)0.0324 (4)
O20.05962 (16)0.9038 (2)0.13733 (9)0.0544 (5)
N20.04725 (14)0.3606 (2)0.41237 (9)0.0359 (4)
H20.05360.34680.45810.043*
C20.22143 (18)0.4104 (3)0.41722 (13)0.0473 (6)
H2A0.22120.37030.46400.057*
O30.0421 (2)0.6855 (2)0.07703 (11)0.0677 (6)
N30.07487 (16)0.8226 (3)0.08211 (10)0.0435 (5)
C30.3092 (2)0.4632 (4)0.38677 (16)0.0544 (7)
H30.36940.45870.41230.065*
O40.1245 (2)0.8752 (3)0.03201 (13)0.0934 (9)
C40.30655 (18)0.5228 (3)0.31794 (15)0.0460 (6)
H40.36540.55820.29620.055*
C50.21673 (17)0.5304 (3)0.28094 (12)0.0348 (5)
C60.21686 (19)0.5998 (3)0.20645 (13)0.0482 (6)
H6A0.15800.56530.18100.072*
H6B0.27580.56530.18110.072*
H6C0.21690.71320.20960.072*
C70.04313 (17)0.3246 (2)0.38578 (11)0.0330 (4)
C80.1201 (2)0.2691 (3)0.43859 (12)0.0469 (6)
H8A0.18390.31600.42720.070*
H8B0.10050.29980.48640.070*
H8C0.12560.15600.43610.070*
O1W0.00000.7201 (3)0.25000.0426 (6)
H1W0.015 (3)0.779 (3)0.2186 (8)0.076 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0264 (2)0.0360 (2)0.0229 (2)0.0000.00321 (12)0.000
O10.0444 (9)0.0588 (10)0.0247 (7)0.0160 (8)0.0059 (6)0.0096 (7)
N10.0292 (8)0.0358 (9)0.0238 (8)0.0005 (6)0.0016 (7)0.0004 (6)
C10.0335 (10)0.0355 (10)0.0282 (9)0.0019 (8)0.0048 (8)0.0008 (8)
O20.0754 (13)0.0533 (11)0.0344 (9)0.0085 (9)0.0091 (9)0.0042 (7)
N20.0393 (10)0.0468 (10)0.0216 (8)0.0009 (8)0.0052 (7)0.0071 (7)
C20.0411 (13)0.0649 (16)0.0360 (12)0.0025 (11)0.0131 (10)0.0040 (11)
O30.0954 (17)0.0526 (11)0.0552 (12)0.0178 (12)0.0198 (12)0.0037 (9)
N30.0515 (12)0.0494 (11)0.0297 (9)0.0022 (9)0.0040 (8)0.0011 (8)
C30.0348 (13)0.0780 (19)0.0502 (15)0.0019 (12)0.0154 (11)0.0045 (14)
O40.144 (2)0.0793 (16)0.0571 (13)0.0192 (16)0.0470 (16)0.0052 (12)
C40.0277 (11)0.0615 (15)0.0487 (14)0.0038 (10)0.0003 (10)0.0059 (11)
C50.0308 (10)0.0410 (11)0.0327 (11)0.0018 (8)0.0007 (9)0.0035 (9)
C60.0375 (12)0.0661 (16)0.0409 (13)0.0073 (11)0.0072 (10)0.0108 (11)
C70.0378 (11)0.0346 (10)0.0267 (9)0.0007 (8)0.0004 (8)0.0046 (8)
C80.0508 (14)0.0586 (14)0.0314 (11)0.0096 (11)0.0060 (10)0.0073 (10)
O1W0.0629 (16)0.0357 (12)0.0293 (12)0.0000.0088 (10)0.000
Geometric parameters (Å, º) top
Cu1—O1i2.0205 (15)O3—N31.241 (3)
Cu1—O12.0206 (15)N3—O41.223 (3)
Cu1—O1W1.982 (3)C3—C41.372 (4)
Cu1—N12.0482 (17)C3—H30.9300
Cu1—N1i2.0482 (17)C4—C51.380 (3)
O1—C71.241 (2)C4—H40.9300
N1—C11.350 (3)C5—C61.500 (3)
N1—C51.363 (3)C6—H6A0.9600
C1—C21.389 (3)C6—H6B0.9600
C1—N21.394 (3)C6—H6C0.9600
O2—N31.249 (3)C7—C81.493 (3)
N2—C71.335 (3)C8—H8A0.9600
N2—H20.8600C8—H8B0.9600
C2—C31.372 (4)C8—H8C0.9600
C2—H2A0.9300O1W—H1W0.790 (16)
O1—Cu1—O1i101.54 (11)C4—C3—C2118.7 (2)
O1—Cu1—O1Wi129.23 (5)C4—C3—H3120.7
O1—Cu1—O1W129.23 (5)C2—C3—H3120.7
O1—Cu1—N188.84 (7)C3—C4—C5120.1 (2)
O1—Cu1—N1i88.61 (6)C3—C4—H4119.9
N1—Cu1—O1W92.02 (5)C5—C4—H4119.9
N1i—Cu1—O1W92.02 (5)N1—C5—C4122.0 (2)
O1i—Cu1—N1i88.84 (7)N1—C5—C6119.69 (19)
O1—Cu1—N1i88.61 (6)C4—C5—C6118.3 (2)
N1—Cu1—N1i175.96 (10)C5—C6—H6A109.5
C7—O1—Cu1125.19 (15)C5—C6—H6B109.5
C1—N1—C5117.29 (18)H6A—C6—H6B109.5
C1—N1—Cu1123.32 (14)C5—C6—H6C109.5
C5—N1—Cu1119.37 (14)H6A—C6—H6C109.5
N1—C1—C2122.5 (2)H6B—C6—H6C109.5
N1—C1—N2121.69 (18)O1—C7—N2123.2 (2)
C2—C1—N2115.78 (19)O1—C7—C8120.1 (2)
C7—N2—C1130.12 (17)N2—C7—C8116.63 (19)
C7—N2—H2114.9C7—C8—H8A109.5
C1—N2—H2114.9C7—C8—H8B109.5
C3—C2—C1119.4 (2)H8A—C8—H8B109.5
C3—C2—H2A120.3C7—C8—H8C109.5
C1—C2—H2A120.3H8A—C8—H8C109.5
O4—N3—O3118.1 (2)H8B—C8—H8C109.5
O4—N3—O2120.7 (2)Cu1—O1W—H1W129.0 (17)
O3—N3—O2121.2 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.79 (2)1.93 (2)2.720 (2)174 (3)
N2—H2···O3ii0.862.233.078 (3)170
Symmetry code: (ii) x, y+1, z+1/2.
Aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bis(perchlorate) (3) top
Crystal data top
[Cu(C8H10N2O)(H2O)](ClO4)2F(000) = 1188
Mr = 580.82Dx = 1.677 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6860 reflections
a = 18.7332 (4) Åθ = 2.3–27.4°
b = 8.2315 (2) ŵ = 1.25 mm1
c = 15.7876 (3) ÅT = 296 K
β = 109.100 (1)°Plate, green
V = 2300.46 (9) Å30.35 × 0.33 × 0.02 mm
Z = 4
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
2647 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 25 pixels mm-1θmax = 27.5°, θmin = 2.3°
φ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1010
Tmin = 0.669, Tmax = 0.976l = 2015
12928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.078P)2 + 3.0728P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.69 e Å3
43 restraintsΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.40227 (6)0.25000.03092 (17)
Cl10.16549 (4)0.97240 (10)0.38576 (6)0.0505 (2)
O10.10379 (11)0.4374 (3)0.25674 (13)0.0367 (4)
N10.03439 (12)0.3477 (3)0.38138 (13)0.0300 (4)
C10.09602 (16)0.4188 (3)0.43816 (18)0.0342 (6)
N20.14813 (13)0.4959 (3)0.40559 (16)0.0382 (5)
H20.17990.55900.44280.046*
C20.1134 (2)0.4130 (4)0.5306 (2)0.0509 (8)
H2A0.15550.46700.56820.061*
C30.0673 (2)0.3264 (5)0.5652 (2)0.0570 (9)
H30.07650.32420.62670.068*
O40.1903 (2)1.1255 (4)0.3679 (3)0.0871 (11)
C40.0070 (2)0.2423 (4)0.5083 (2)0.0510 (8)
H40.02330.17870.53150.061*
C50.00827 (16)0.2527 (4)0.41665 (19)0.0389 (6)
C60.0702 (2)0.1537 (5)0.3546 (3)0.0599 (10)
H6A0.11560.21730.33450.090*
H6B0.07880.05910.38550.090*
H6C0.05610.12090.30390.090*
C70.15514 (15)0.4845 (3)0.32373 (19)0.0361 (6)
C80.22995 (19)0.5304 (5)0.3165 (3)0.0571 (9)
H8A0.25810.43380.31450.086*
H8B0.25740.59450.36760.086*
H8C0.22250.59230.26280.086*
O1A0.1225 (6)0.9858 (14)0.4420 (7)0.091 (2)0.382 (4)
O2A0.1277 (7)0.8814 (19)0.3054 (7)0.080 (2)0.382 (4)
O3A0.2352 (5)0.8779 (13)0.4281 (7)0.065 (2)0.382 (4)
O1B0.0893 (4)0.9825 (14)0.3852 (7)0.091 (2)0.434 (5)
O2B0.1535 (6)0.8770 (15)0.3029 (5)0.080 (2)0.434 (5)
O3B0.2152 (4)0.8806 (10)0.4531 (5)0.065 (2)0.434 (5)
O1W0.00000.6956 (4)0.25000.0539 (8)
H1W0.0335 (11)0.756 (4)0.278 (2)0.067 (13)*
O3C0.1899 (10)0.9364 (17)0.4787 (6)0.065 (2)0.183 (5)
O2C0.2013 (9)0.870 (2)0.3418 (12)0.080 (2)0.183 (5)
O1C0.0863 (5)0.955 (3)0.3509 (16)0.091 (2)0.183 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0231 (2)0.0445 (3)0.0228 (2)0.0000.00420 (17)0.000
Cl10.0383 (4)0.0443 (4)0.0626 (5)0.0008 (3)0.0081 (3)0.0122 (3)
O10.0270 (9)0.0497 (11)0.0334 (10)0.0012 (8)0.0098 (8)0.0023 (8)
N10.0272 (10)0.0345 (10)0.0255 (10)0.0021 (8)0.0049 (8)0.0022 (8)
C10.0330 (13)0.0370 (13)0.0286 (12)0.0047 (10)0.0049 (10)0.0017 (10)
N20.0314 (11)0.0414 (12)0.0354 (12)0.0071 (10)0.0021 (9)0.0070 (10)
C20.0513 (19)0.065 (2)0.0281 (14)0.0027 (15)0.0019 (13)0.0079 (13)
C30.069 (2)0.074 (2)0.0288 (14)0.0125 (19)0.0180 (14)0.0038 (15)
O40.080 (2)0.0534 (15)0.114 (3)0.0116 (15)0.0142 (19)0.0178 (16)
C40.0557 (19)0.0606 (19)0.0445 (16)0.0104 (16)0.0269 (15)0.0158 (15)
C50.0357 (14)0.0430 (14)0.0380 (14)0.0043 (11)0.0122 (11)0.0086 (11)
C60.0489 (19)0.062 (2)0.061 (2)0.0198 (17)0.0078 (16)0.0179 (18)
C70.0277 (13)0.0354 (13)0.0430 (14)0.0011 (10)0.0087 (11)0.0006 (11)
C80.0333 (16)0.068 (2)0.072 (2)0.0098 (15)0.0187 (16)0.0068 (19)
O1A0.070 (3)0.113 (4)0.103 (5)0.004 (3)0.044 (3)0.015 (4)
O2A0.071 (5)0.084 (3)0.074 (3)0.011 (4)0.010 (3)0.004 (2)
O3A0.064 (4)0.052 (2)0.058 (4)0.009 (2)0.007 (3)0.003 (3)
O1B0.070 (3)0.113 (4)0.103 (5)0.004 (3)0.044 (3)0.015 (4)
O2B0.071 (5)0.084 (3)0.074 (3)0.011 (4)0.010 (3)0.004 (2)
O3B0.064 (4)0.052 (2)0.058 (4)0.009 (2)0.007 (3)0.003 (3)
O1W0.0431 (18)0.0414 (17)0.069 (2)0.0000.0069 (16)0.000
O3C0.064 (4)0.052 (2)0.058 (4)0.009 (2)0.007 (3)0.003 (3)
O2C0.071 (5)0.084 (3)0.074 (3)0.011 (4)0.010 (3)0.004 (2)
O1C0.070 (3)0.113 (4)0.103 (5)0.004 (3)0.044 (3)0.015 (4)
Geometric parameters (Å, º) top
Cu1—O1i1.934 (2)C1—N21.396 (4)
Cu1—O11.934 (2)N2—C71.345 (4)
Cu1—O1W2.414 (3)N2—H20.8600
Cu1—N12.011 (2)C2—C31.363 (5)
Cu1—N1i2.011 (2)C2—H2A0.9300
Cl1—O1A1.386 (7)C3—C41.377 (5)
Cl1—O3B1.386 (6)C3—H30.9300
Cl1—O2C1.396 (10)C4—C51.383 (4)
Cl1—O41.403 (3)C4—H40.9300
Cl1—O1C1.411 (10)C5—C61.492 (5)
Cl1—O3C1.418 (8)C6—H6A0.9600
Cl1—O1B1.428 (6)C6—H6B0.9600
Cl1—O2A1.444 (7)C6—H6C0.9600
Cl1—O2B1.479 (5)C7—C81.492 (4)
Cl1—O3A1.479 (7)C8—H8A0.9600
O1—C71.236 (3)C8—H8B0.9600
N1—C11.342 (3)C8—H8C0.9600
N1—C51.360 (4)O1W—H1W0.81 (2)
C1—C21.389 (4)
O1—Cu1—O1i162.78 (13)N1—C1—N2120.3 (2)
O1i—Cu1—O1W81.39 (6)C2—C1—N2116.8 (3)
O1—Cu1—O1W81.39 (6)C7—N2—C1128.5 (2)
O1i—Cu1—N193.85 (8)C7—N2—H2115.8
O1—Cu1—N189.98 (8)C1—N2—H2115.8
O1i—Cu1—N1i89.98 (8)C3—C2—C1118.5 (3)
O1—Cu1—N1i93.85 (8)C3—C2—H2A120.8
N1—Cu1—O1W102.91 (7)C1—C2—H2A120.8
N1i—Cu1—O1W102.91 (7)C2—C3—C4119.6 (3)
N1—Cu1—N1i154.18 (13)C2—C3—H3120.2
O1A—Cl1—O2A112.6 (6)C4—C3—H3120.2
O1A—Cl1—O3A111.4 (6)C3—C4—C5119.7 (3)
O1A—Cl1—O4110.9 (5)C3—C4—H4120.1
O1B—Cl1—O2B99.4 (5)C5—C4—H4120.1
O1B—Cl1—O3B117.1 (5)N1—C5—C4121.1 (3)
O1B—Cl1—O4110.0 (5)N1—C5—C6118.7 (3)
O1C—Cl1—O2C111.0 (9)C4—C5—C6120.2 (3)
O1C—Cl1—O3C108.9 (12)C5—C6—H6A109.5
O1C—Cl1—O4112.9 (12)C5—C6—H6B109.5
O2A—Cl1—O3A103.4 (7)H6A—C6—H6B109.5
O2A—Cl1—O4112.9 (7)C5—C6—H6C109.5
O3A—Cl1—O4105.2 (5)H6A—C6—H6C109.5
O2B—Cl1—O3B105.0 (5)H6B—C6—H6C109.5
O2B—Cl1—O4105.3 (6)O1—C7—N2123.4 (3)
O3B—Cl1—O4117.4 (4)O1—C7—C8120.1 (3)
O2C—Cl1—O3C110.0 (11)N2—C7—C8116.5 (3)
O2C—Cl1—O4101.5 (8)C7—C8—H8A109.5
O3C—Cl1—O4112.3 (6)C7—C8—H8B109.5
C7—O1—Cu1125.51 (19)H8A—C8—H8B109.5
C1—N1—C5118.0 (2)C7—C8—H8C109.5
C1—N1—Cu1120.43 (18)H8A—C8—H8C109.5
C5—N1—Cu1121.18 (18)H8B—C8—H8C109.5
N1—C1—C2122.8 (3)Cu1—O1W—H1W128 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2A0.81 (2)1.96 (3)2.731 (12)157 (5)
O1W—H1W···O1C0.81 (2)2.06 (3)2.83 (2)160 (3)
N2—H2···O3Aii0.862.202.998 (10)155
N2—H2···O3Bii0.862.172.971 (8)155
N2—H2···O3Cii0.862.353.037 (15)138
Symmetry code: (ii) x+1/2, y+3/2, z+1.
Selected geometrical parameters (Å, °) for (1)-(3) top
Bond/Angle(1)(2)(3)
Cu1—O12.066 (2)2.0206 (15)1.934 (2)
Cu1—O22.102 (2)
Cu1—O1W1.982 (3)2.414 (3)
Cu1—N12.026 (2)2.0482 (17)2.011 (2)
Cu1—N32.019 (2)
Cu1—Br12.3870 (5)
O1—Cu1—O1i101.54 (11)162.78 (13)
O1—Cu1—O286.95 (9)
O1—Cu1—O1W129.23 (5)81.39 (6)
O1—Cu1—N185.88 (9)88.84 (7)89.98 (8)
O1—Cu1—N1i88.61 (6)93.85 (8)
O1—Cu1—N387.94 (9)
O2—Cu1—N195.63 (9)
O2—Cu1—N388.53 (9)
N1—Cu1—N1i175.96 (10)154.18 (13)
N1—Cu1—N3172.35 (9)
N1—Cu1—O1W92.02 (5)102.91 (7)
O1—Cu1—Br1148.28 (7)
O2—Cu1—Br1124.62 (7)
N1—Cu1—Br193.11 (7)
N3—Cu1—Br189.78 (7)
Symmetry code: (i) -x, y, -z+1/2
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds