Download citation
Download citation
link to html
Two novel cocrystals of the N(7)—H tautomeric form of N6-benzoyl­adenine (BA), namely N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6-benzoyl­adenine–DL-tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6-ben­­zoyl­adenine mol­ecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intra­molecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) inter­acts with the carboxyl­ate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring-motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) inter­acts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615018094/ku3164sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018094/ku3164Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018094/ku3164IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615018094/ku3164Isup4.cml
Supplementary material

CCDC references: 1427880; 1427879

Introduction top

For the past several decades, supra­molecular inter­actions and hydrogen-bonding patterns have received considerable attention with respect to materials science and the pharmaceutical industry (Desiraju, 1989; Perumalla & Sun, 2014; Stanley et al., 2005).These inter­actions, such as hydrogen-bonding, stacking, electrostatic, hydro­phobic and charge-transfer inter­actions, play an important role in molecular recognition and drug-delivery systems (Bond, 2012; Kawakami, 2012). Nucleobases [guanine (G), adenine (A), cytosine (C) and thymine (T) or uracil (U)] occur in nature as components of nucleic acids and cofactors. Adenine and its derivatives are biologically important compounds offering a variety of hydrogen-bonding donor and acceptor sites (McHugh & Erxleben, 2011; Imaz et al., 2011). Researchers are currently focusing their studies on N6-substituted adenines because of their role as plant-growth hormones and other biological applications. The cytokinin families of N6-benzyl­adenine, N6-furfuryladenine, trans-zeatin and 6-histamino­purine have been studied extensively due to their potential applications, such as mutation, anti­oxidant, proliferation, enzyme-inhibition, neurological, anti­tumour and parasitic treatments (Francis & Sorrell, 2001; Bressi et al., 2000; Huang et al., 2007). The N6-substituted adenine compounds exhibit an extensive variety of hydrogen-bonding patterns and supra­molecular architectures (McHugh & Erxleben, 2011). 3-Hy­droxy­picolinic acid is a pyridine derivative having a carb­oxy­lic acid group. It is widely used for biological applications and photo-switching materials (Schlumbohm & Keller, 1990; Rode & Sobolewski, 2014). The crystal structures of various salts and complexes of 3-hy­droxy­picolinic acids have also been reported (Karthikeyan et al., 2014; Nirmalram et al., 2011; Betz & Gerber, 2011; Koleša-Dobravc et al., 2014). Tartaric acid has been widely used in food additives, for souring, making wine or as a leavening agent, for making silver mirrors, and in the pharmaceutical industry and in catalysis (Luner et al., 2002; Gratzer et al., 2013). Various salts and compounds of tartaric acid have been reported to date (Farrell et al., 2002; Thanigaimani et al., 2007; Smith et al., 2007; Mohandas et al., 2013). Recently, our group reported several N6-benzyl­adenine and N6-furfuryladenine compounds with different halides, carb­oxy­lic acids and metal complexes, with special emphasis on their hydrogen-bonding inter­actions and supra­molecular architectures (Jennifer et al., 2014; Nirmalram et al., 2011; Tamilselvi & Mu­thiah, 2011; Stanley et al., 2003; Umadevi et al., 2001, 2002). Based on these inter­esting studies, we decided to extend our work on N6-benzoyl­adenine. In the present work, the hydrogen-bonding patterns of two cocrystals of N6-benzoyl­adenine, namely N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (3HPA) (1/1), (I), and N6-benzoyl­adenine–DL-tartaric acid (TA) (1/1), (II), are reported.

Experimental top

Compounds (I) and (II) were prepared by mixing a hot methano­lic solution of N6-benzoyl­adenine (60 mg) with 3-hy­droxy­pyridine-2-carb­oxy­lic acid (37 mg) or DL-tartaric acid (38 mg) in a 1:1 molar ratio and warming in a water bath for 30 min. Colourless needle-shaped crystals of both compounds were obtained by slow evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 1. H atoms were located readily in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with Uiso(H) = kUeq(O,N,C), where k = 1.5 for hydroxyl and 1.2 for all other H atoms.

Results and discussion top

The asymmetric unit of (I) consists of one molecule of N6-benzoyl­adenine (BA) and the zwitterion 3-hy­droxy­pyridinium-2-carboxyl­ate (3HPA). In this cocrystal, the N6-benzoyl­adenine exists in the N(7)–H tautomeric form with nonprotonated atoms N1, N3 and N9. The inter­nal C8—N7—C5 angle [106.80 (14)°] is larger than the C8—N9—C4 angle [104.20 (14)°] and the N7—C8 bond [1.335 (2) Å] is longer than the C8—N9 bond [1.315 (2) Å]. These values are in the agreement with neutral benzoyl­adenine (Raghunathan & Pattabhi, 1981). The benzoyl CO group of adenine is oriented syn with respect to the N6—C6 bond and anti with respect to the phenyl C11—C12 bond. An intra­molecular N—H···O hydrogen bond between the N7—H7 group on the Hoogsteen face of the purine ring and the C10O1 benzoyl group forms an S(7) graph-set motif (Etter, 1990). 3-Hy­droxy­picolinic acid exists in the zwitterionic form, i.e. 3-hy­droxy­pyridinium-2-carboxyl­ate. The protonation at the N atom of the pyridine ring is evident from the inter­nal angle at N10 [C18—N10—C22 = 123.84 (15)°].

The 3HPA zwitterion of (I) is involved in intra­molecular O—H···O and N—H···O hydrogen bonds, forming S(6) and S(5) ring motifs (Betz & Gerber, 2011). The carboxyl­ate and phenolic groups of 3HPA (O3 and O4—H4) inter­act with the hydrogen-bonding sites (N6—H6 and N1; Watson–Crick sites) of the BA molecule through N—H···O and O—H···N hydrogen bonds, generating a ring-motif heterosynthon [graph-set R22(6); Etter, 1990] (Fig. 1). This motif is further linked by inter­molecular N—H···N and C—H···O hydrogen bonds involving imidazole atoms N9 and C8 of the BA and atoms N10 and O2 of 3HPA, forming an R22(5) motif and thus generating a supra­molecular chain. This supra­molecular chain is further inter­linked with a neighbouring chain through N7—H7···O2 hydrogen-bonded R42(10) and R46(16) ring motifs, leading to a supra­molecular chain (Fig. 2a). These supra­molecular chains are further extended on both sides by C21—H21···O1 hydrogen bonds to form supra­molecular sheets with graph-set notation R76(28). Inversion-related 3HPA molecules and BA molecules form a graph-set R64(16) motif (Fig. 2b).

The crystal structure of (I) is further stabilized by ππ homo- and hetero-stacking inter­actions involving BA–BA, 3HPA–3HPA and BA–3HPA molecules. The corresponding centroid–centroid distances are Cg1–Cg1 = 3.6077 (10) Å, Cg1–Cg2 = 3.6389 (10) Å, Cg1–Cg3 = 3.6869 (12) Å, Cg2–Cg3 = 3.6390 (11) Å, Cg3–Cg5 = 3.6558 (11) Å and Cg5–Cg5 = 3.4970 (10) Å; Cg1 is the centroid of the imidazole ring, Cg2 that of the pyrimidine ring, Cg3 that of the phenyl ring and Cg5 that of the pyridine ring. These types of stacking inter­action are similar to some known examples (Raghunathan & Pattabhi, 1981; Betz & Gerber, 2011; Tamilselvi & Mu­thiah, 2011) (Fig. 3).

The asymmetric unit of (II) contains one molecule of N6-benzoyl­adenine and one molecule of tartaric acid (TA). As in (I), N6-benzoyl­adenine exists as the N(7)—H tautomer. The bond lengths and angles of TA are in good agreement with the values found in the literature (Nie et al., 2001). The angle between the planes of the half molecules (O2/O3/C17/C18/O4 and O6/O7/C20/C19/O5) is 66.29 (10)°, which is close to the value of 54.6° observed in the TA structure. The carbon skeleton of the TA molecule is nearly planar, as evident from the C17—C18—C19—C20 torsion angle of 171.90 (15)° (Okaya et al., 1966; Mohandas et al., 2013).

The Hoogsteen face of the N6-benzoyl­adenine (N7 and benzoyl atom O1) of (II) inter­acts with the carboxyl­ate group (O2) and the hydroxyl group (O4) of TA through N—H···O and O—H···O hydrogen bonds [graph-set R22(4)] (Fig. 1). This motif is further connected with symmetry-related adenine and TA molecules via O6—H6···N3 and O3—H3···N9 hydrogen bonds, generating an R44(20) ring motif. Moreover, O3—H3···N9 and N7—H7···O2 hydrogen bonds form another ring R22(16) motif. These motifs are further connected on either side via N6—H6···O5 and O4—H4···O1 hydrogen bonds, generating an R22(18) motif. The typical ADADAD (A is an acceptor and D is a donor) array of six hydrogen bonds (N—H···O, C—H···O and O—H···O) generates fused ring motifs R22(6), R22(5), R22(4), R22(5) and R22(6). These motifs connect on either side to BA and TA via O—H···N and C—H···O hydrogen bonds, leading to R22(7) motifs. Typical intra­molecular N—H···O and O—H···O hydrogen bonds with S(7) and two S(5) ring motifs are also observed in the BA and TA molecules of (II).

The overall supra­molecular three-dimensional network of hydrogen-bonding inter­actions in (II) is illustrated in Fig. 4. This supra­molecular architecture is further stabilized by ππ hetero-stacking inter­actions (head-to-tail manner) between the five-membered ring of adenine and the benzene ring, with a centroid-to-centroid distance of 3.7459 (12) Å, and between the six-membered ring of adenine and the benzene ring, with a centroid-to-centroid distance of 3.6097 (12) Å (Raghunathan & Pattabhi, 1981) (Fig. 5).

In both title cocrystals, the N6-benzoyl­adenine molecules have an almost similar conformation, as revealed by the various torsion/dihedral angles (see above). The N6-benzoyl­adenine molecule maintains a near planar structure due to intra­molecular hydrogen bonds. In cocrystal (I), the Watson–Crick face of BA inter­acts with 3HPA via O4—H4···N1 and N6—H6···O3 hydrogen bonds, whereas in (II) the Hoogsteen face of BA inter­acts with TA through N7—H7···O2 and O4—H4···O1 hydrogen bonds. Furthermore, the two crystal structures are stabilized by different types of stacking inter­action, such as homo- and hetero-stacking inter­actions. Columns are formed in (I) through various homo-stacking imidazole–imidazole and pyridine–pyridine inter­actions, and hetero-stacking imidazole–pyrimidine, imidazole–phenyl, primidine–phenyl and phenyl–pyrimidine inter­actions involving the BA and 3HPA molecules. However, in (II) only hetero-stacking imidazole–phenyl and phenyl–pyrimidine inter­actions involving BA molecules are present.

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (top) compound (I) and (bottom) compound (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. (a) A view of the supramolecular chains interlinked by N—H···O hydrogen bonds and (b) a view of the layer-like supramolecular hydrogen-bonded sheets of (I). [Purple dashed lines indicate hydrogen bonds.] The phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity. The symmetry codes are as given in Table 2.
[Figure 3] Fig. 3. A view of the stacking involving the BA and 3HPA molecules in (I). Cg1 is the centroid of the imidazole ring, Cg2 that of the pyrimidine ring, Cg3 that of the phenyl ring and Cg5 that of the pyridine ring. [Dashed lines indicate hydrogen bonds.]
[Figure 4] Fig. 4. A view of the three-dimensional supramolecular architecture of (II), formed by N—H···O, O—H···O, O—H···N and C—H···O hydrogen-bond interactions. [Dotted lines indicate hydrogen bonds.] Yellow indicates the phenyl groups and H atoms not involved in hydrogen bonding have been omitted for clarity. The symmetry codes are as given in Table 3.
[Figure 5] Fig. 5. A view of the ππ interactions (head-to-tail manner; dashed lines) between the adenine and phenyl groups in (II). Generic ring-centroid labelling (Cg) is used.
(I) N6-Benzoyladenine–3-hydroxypyridinium-2-carboxylate (1/1) top
Crystal data top
C12H9N5O·C6H5NO3Z = 2
Mr = 378.35F(000) = 392
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3961 (4) ÅCell parameters from 3143 reflections
b = 9.8673 (5) Åθ = 3.1–29.3°
c = 11.0680 (7) ŵ = 0.11 mm1
α = 66.137 (5)°T = 293 K
β = 83.459 (4)°Prism, colourless
γ = 79.546 (4)°0.25 × 0.2 × 0.08 mm
V = 823.81 (8) Å3
Data collection top
Agilent SuperNova Dual Source
diffractometer with Atlas detector
3753 independent reflections
Mirror monochromator2756 reflections with I > 2σ(I)
Detector resolution: 10.4933 pixels mm-1Rint = 0.026
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1010
Tmin = 0.822, Tmax = 1k = 1212
7594 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1401P],
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3753 reflectionsΔρmax = 0.24 e Å3
253 parametersΔρmin = 0.22 e Å3
Crystal data top
C12H9N5O·C6H5NO3γ = 79.546 (4)°
Mr = 378.35V = 823.81 (8) Å3
Triclinic, P1Z = 2
a = 8.3961 (4) ÅMo Kα radiation
b = 9.8673 (5) ŵ = 0.11 mm1
c = 11.0680 (7) ÅT = 293 K
α = 66.137 (5)°0.25 × 0.2 × 0.08 mm
β = 83.459 (4)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with Atlas detector
3753 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2756 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 1Rint = 0.026
7594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3753 reflectionsΔρmin = 0.22 e Å3
253 parameters
Special details top

Experimental. 372 frames in 4 runs of ω scans. Crystal-to-detector distance = 55.0 mm.

Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20565 (17)0.33549 (16)0.31307 (14)0.0387 (4)
N30.05049 (18)0.58065 (16)0.21959 (14)0.0397 (4)
N60.13666 (17)0.13598 (15)0.49501 (13)0.0367 (4)
H60.20470.08170.46270.044*
N70.18146 (16)0.38062 (15)0.49745 (14)0.0367 (3)
H70.2070.30560.56640.044*
N90.20321 (17)0.61016 (15)0.33884 (14)0.0380 (4)
O10.02249 (16)0.13018 (14)0.67529 (12)0.0484 (4)
C20.1762 (2)0.4766 (2)0.22403 (18)0.0411 (4)
H20.25480.50540.1560.049*
C40.0571 (2)0.52989 (18)0.32051 (16)0.0325 (4)
C50.04000 (19)0.38494 (17)0.41993 (15)0.0307 (4)
C60.0981 (2)0.28576 (18)0.41276 (16)0.0319 (4)
C80.2710 (2)0.5154 (2)0.44483 (18)0.0397 (4)
H80.37260.54010.48010.048*
C100.0788 (2)0.06522 (18)0.62129 (16)0.0331 (4)
C110.1477 (2)0.09553 (18)0.69194 (16)0.0337 (4)
C120.2962 (2)0.1624 (2)0.65767 (18)0.0417 (4)
H120.35720.10730.58440.05*
C130.3534 (3)0.3107 (2)0.7323 (2)0.0512 (5)
H130.45280.3550.70890.061*
C140.2640 (3)0.3931 (2)0.8413 (2)0.0548 (6)
H140.30320.49260.89160.066*
C150.1169 (3)0.3276 (2)0.87503 (19)0.0513 (5)
H150.05590.38350.94790.062*
C160.0589 (2)0.1800 (2)0.80184 (17)0.0414 (4)
H160.04050.13650.82610.05*
O20.44752 (17)0.21633 (15)0.35809 (15)0.0612 (4)
O30.33716 (16)0.01920 (15)0.32401 (14)0.0557 (4)
O40.39918 (15)0.22854 (13)0.09991 (13)0.0472 (3)
H40.34730.18950.16930.071*
N100.68302 (16)0.10964 (15)0.16657 (13)0.0327 (3)
H100.69980.19920.2260.039*
C170.4369 (2)0.0793 (2)0.30058 (17)0.0392 (4)
C180.55111 (19)0.01742 (18)0.18269 (16)0.0310 (4)
C190.5247 (2)0.12930 (18)0.08782 (16)0.0338 (4)
C200.6305 (2)0.1706 (2)0.02260 (17)0.0401 (4)
H200.61170.26620.08890.048*
C210.7627 (2)0.0712 (2)0.03463 (18)0.0415 (4)
H210.83360.09910.10850.05*
C220.7889 (2)0.0705 (2)0.06418 (18)0.0395 (4)
H220.87980.13790.05910.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0387 (8)0.0330 (8)0.0347 (8)0.0029 (6)0.0084 (7)0.0071 (6)
N30.0452 (9)0.0309 (8)0.0334 (8)0.0047 (7)0.0079 (7)0.0059 (6)
N60.0408 (8)0.0276 (7)0.0320 (8)0.0032 (6)0.0078 (6)0.0076 (6)
N70.0344 (8)0.0317 (8)0.0346 (8)0.0014 (6)0.0076 (6)0.0072 (6)
N90.0359 (8)0.0319 (8)0.0379 (8)0.0002 (6)0.0030 (7)0.0084 (7)
O10.0576 (8)0.0373 (7)0.0348 (7)0.0059 (6)0.0121 (6)0.0072 (6)
C20.0433 (10)0.0346 (9)0.0356 (10)0.0070 (8)0.0123 (8)0.0071 (8)
C40.0336 (9)0.0276 (8)0.0324 (9)0.0019 (7)0.0006 (7)0.0095 (7)
C50.0334 (9)0.0290 (8)0.0266 (8)0.0050 (7)0.0026 (7)0.0085 (7)
C60.0359 (9)0.0275 (8)0.0280 (8)0.0031 (7)0.0022 (7)0.0081 (7)
C80.0324 (9)0.0379 (10)0.0431 (10)0.0003 (7)0.0041 (8)0.0137 (8)
C100.0349 (9)0.0314 (9)0.0288 (8)0.0031 (7)0.0015 (7)0.0090 (7)
C110.0399 (9)0.0299 (9)0.0289 (8)0.0029 (7)0.0041 (7)0.0093 (7)
C120.0428 (10)0.0382 (10)0.0393 (10)0.0013 (8)0.0028 (8)0.0120 (8)
C130.0531 (12)0.0428 (11)0.0537 (12)0.0115 (9)0.0140 (10)0.0196 (10)
C140.0789 (15)0.0306 (10)0.0482 (12)0.0048 (10)0.0236 (11)0.0087 (9)
C150.0732 (15)0.0376 (11)0.0345 (10)0.0147 (10)0.0048 (10)0.0020 (8)
C160.0486 (11)0.0377 (10)0.0324 (9)0.0072 (8)0.0005 (8)0.0081 (8)
O20.0586 (9)0.0368 (8)0.0591 (9)0.0006 (6)0.0254 (7)0.0003 (7)
O30.0581 (9)0.0435 (8)0.0535 (9)0.0026 (6)0.0238 (7)0.0178 (7)
O40.0484 (8)0.0324 (7)0.0470 (8)0.0070 (6)0.0048 (6)0.0086 (6)
N100.0336 (8)0.0276 (7)0.0299 (7)0.0015 (6)0.0031 (6)0.0066 (6)
C170.0387 (10)0.0355 (10)0.0361 (10)0.0008 (8)0.0054 (8)0.0105 (8)
C180.0315 (9)0.0293 (8)0.0297 (8)0.0030 (7)0.0035 (7)0.0111 (7)
C190.0342 (9)0.0303 (9)0.0350 (9)0.0035 (7)0.0007 (7)0.0115 (7)
C200.0495 (11)0.0323 (9)0.0321 (9)0.0092 (8)0.0003 (8)0.0054 (8)
C210.0403 (10)0.0469 (11)0.0338 (10)0.0133 (8)0.0102 (8)0.0125 (8)
C220.0322 (9)0.0462 (11)0.0392 (10)0.0044 (8)0.0067 (8)0.0186 (9)
Geometric parameters (Å, º) top
N1—C61.330 (2)C13—C141.379 (3)
N1—C21.339 (2)C13—H130.93
N3—C21.322 (2)C14—C151.372 (3)
N3—C41.340 (2)C14—H140.93
N6—C101.362 (2)C15—C161.376 (3)
N6—C61.387 (2)C15—H150.93
N6—H60.86C16—H160.93
N7—C81.335 (2)O2—C171.231 (2)
N7—C51.380 (2)O3—C171.254 (2)
N7—H70.86O4—C191.3368 (19)
N9—C81.315 (2)O4—H40.82
N9—C41.376 (2)N10—C221.328 (2)
O1—C101.2198 (19)N10—C181.344 (2)
C2—H20.93N10—H100.86
C4—C51.402 (2)C17—C181.509 (2)
C5—C61.392 (2)C18—C191.398 (2)
C8—H80.93C19—C201.389 (2)
C10—C111.493 (2)C20—C211.374 (3)
C11—C161.389 (2)C20—H200.93
C11—C121.389 (2)C21—C221.380 (3)
C12—C131.383 (3)C21—H210.93
C12—H120.93C22—H220.93
C6—N1—C2119.09 (15)C14—C13—H13119.8
C2—N3—C4111.76 (15)C12—C13—H13119.8
C10—N6—C6127.30 (14)C15—C14—C13119.71 (19)
C10—N6—H6116.4C15—C14—H14120.1
C6—N6—H6116.4C13—C14—H14120.1
C8—N7—C5106.80 (14)C14—C15—C16120.48 (19)
C8—N7—H7126.6C14—C15—H15119.8
C5—N7—H7126.6C16—C15—H15119.8
C8—N9—C4104.20 (14)C15—C16—C11120.46 (18)
N3—C2—N1128.83 (16)C15—C16—H16119.8
N3—C2—H2115.6C11—C16—H16119.8
N1—C2—H2115.6C19—O4—H4109.5
N3—C4—N9125.07 (15)C22—N10—C18123.84 (15)
N3—C4—C5124.81 (15)C22—N10—H10118.1
N9—C4—C5110.08 (14)C18—N10—H10118.1
N7—C5—C6137.45 (15)O2—C17—O3128.11 (16)
N7—C5—C4104.70 (14)O2—C17—C18117.88 (15)
C6—C5—C4117.69 (14)O3—C17—C18113.94 (15)
N1—C6—N6114.24 (14)N10—C18—C19118.40 (15)
N1—C6—C5117.83 (15)N10—C18—C17118.11 (15)
N6—C6—C5127.88 (15)C19—C18—C17123.47 (15)
N9—C8—N7114.21 (15)O4—C19—C20119.79 (16)
N9—C8—H8122.9O4—C19—C18121.61 (15)
N7—C8—H8122.9C20—C19—C18118.58 (16)
O1—C10—N6121.87 (15)C21—C20—C19120.46 (17)
O1—C10—C11121.32 (15)C21—C20—H20119.8
N6—C10—C11116.81 (14)C19—C20—H20119.8
C16—C11—C12118.89 (17)C20—C21—C22119.20 (16)
C16—C11—C10116.93 (15)C20—C21—H21120.4
C12—C11—C10124.13 (15)C22—C21—H21120.4
C13—C12—C11120.11 (18)N10—C22—C21119.39 (16)
C13—C12—H12119.9N10—C22—H22120.3
C11—C12—H12119.9C21—C22—H22120.3
C14—C13—C12120.35 (19)
C4—N3—C2—N10.3 (3)O1—C10—C11—C12157.30 (18)
C6—N1—C2—N30.5 (3)N6—C10—C11—C1221.6 (2)
C2—N3—C4—N9176.90 (16)C16—C11—C12—C130.0 (3)
C2—N3—C4—C50.4 (2)C10—C11—C12—C13177.27 (16)
C8—N9—C4—N3177.03 (17)C11—C12—C13—C140.1 (3)
C8—N9—C4—C50.59 (19)C12—C13—C14—C150.4 (3)
C8—N7—C5—C6175.60 (19)C13—C14—C15—C160.7 (3)
C8—N7—C5—C40.47 (18)C14—C15—C16—C110.6 (3)
N3—C4—C5—N7176.96 (15)C12—C11—C16—C150.3 (3)
N9—C4—C5—N70.67 (18)C10—C11—C16—C15177.72 (16)
N3—C4—C5—C60.7 (3)C22—N10—C18—C191.3 (2)
N9—C4—C5—C6176.95 (14)C22—N10—C18—C17177.12 (15)
C2—N1—C6—N6176.79 (15)O2—C17—C18—N1016.7 (3)
C2—N1—C6—C50.7 (2)O3—C17—C18—N10165.94 (15)
C10—N6—C6—N1160.14 (16)O2—C17—C18—C19161.64 (17)
C10—N6—C6—C522.7 (3)O3—C17—C18—C1915.8 (3)
N7—C5—C6—N1175.49 (18)N10—C18—C19—O4177.66 (14)
C4—C5—C6—N10.8 (2)C17—C18—C19—O44.0 (3)
N7—C5—C6—N61.6 (3)N10—C18—C19—C203.7 (2)
C4—C5—C6—N6176.30 (15)C17—C18—C19—C20174.59 (15)
C4—N9—C8—N70.3 (2)O4—C19—C20—C21178.14 (15)
C5—N7—C8—N90.1 (2)C18—C19—C20—C213.2 (3)
C6—N6—C10—O12.6 (3)C19—C20—C21—C220.2 (3)
C6—N6—C10—C11176.25 (15)C18—N10—C22—C211.8 (3)
O1—C10—C11—C1620.0 (2)C20—C21—C22—N102.3 (3)
N6—C10—C11—C16161.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.862.577 (2)146
O4—H4···N10.822.613.137 (2)123
N6—H6···O30.862.032.842 (2)158
N7—H7···O10.862.152.689 (2)121
N7—H7···O2i0.862.282.929 (2)132
N10—H10···O20.862.422.740 (2)102
N10—H10···N9ii0.861.882.717 (2)164
C8—H8···O2iii0.932.533.115 (2)121
C21—H21···O1iv0.932.483.384 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x+1, y, z1.
(II) N6-benzoyladenine–DL-tartaric acid (1/1), top
Crystal data top
C12H9N5O·C4H6O6Z = 2
Mr = 389.33F(000) = 404
Triclinic, P1Dx = 1.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5844 (7) ÅCell parameters from 2252 reflections
b = 10.0175 (9) Åθ = 3.4–29.9°
c = 11.9658 (10) ŵ = 0.13 mm1
α = 111.669 (8)°T = 293 K
β = 93.488 (7)°Prism, colourless
γ = 98.845 (7)°0.3 × 0.15 × 0.08 mm
V = 827.95 (14) Å3
Data collection top
Agilent SuperNova Dual Source
diffractometer with Atlas detector
3785 independent reflections
Mirror monochromator2760 reflections with I > 2σ(I)
Detector resolution: 10.4933 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 89
Tmin = 0.791, Tmax = 1k = 1210
6799 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.1756P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3785 reflectionsΔρmax = 0.20 e Å3
257 parametersΔρmin = 0.23 e Å3
Crystal data top
C12H9N5O·C4H6O6γ = 98.845 (7)°
Mr = 389.33V = 827.95 (14) Å3
Triclinic, P1Z = 2
a = 7.5844 (7) ÅMo Kα radiation
b = 10.0175 (9) ŵ = 0.13 mm1
c = 11.9658 (10) ÅT = 293 K
α = 111.669 (8)°0.3 × 0.15 × 0.08 mm
β = 93.488 (7)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with Atlas detector
3785 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2760 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 1Rint = 0.023
6799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3785 reflectionsΔρmin = 0.23 e Å3
257 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8599 (2)0.18858 (18)0.06552 (14)0.0376 (4)
N30.8873 (2)0.23864 (18)0.24560 (14)0.0373 (4)
N60.7641 (2)0.00673 (17)0.04347 (13)0.0347 (4)
H6A0.78440.03620.030.042*
N70.7389 (2)0.09567 (18)0.33263 (13)0.0361 (4)
H70.7080.17120.3250.043*
N90.7996 (2)0.05705 (19)0.42010 (14)0.0396 (4)
O10.6637 (2)0.20574 (16)0.16579 (12)0.0477 (4)
C20.8996 (3)0.2681 (2)0.12920 (17)0.0401 (5)
H20.94030.35350.08690.048*
C40.8305 (2)0.1127 (2)0.30113 (16)0.0318 (4)
C50.7908 (2)0.0190 (2)0.24406 (16)0.0311 (4)
C60.8036 (2)0.0628 (2)0.12100 (16)0.0304 (4)
C80.7459 (3)0.0666 (2)0.43300 (17)0.0429 (5)
H80.71560.12820.50580.051*
C100.6980 (2)0.1324 (2)0.06592 (16)0.0320 (4)
C110.6695 (2)0.1731 (2)0.04092 (16)0.0313 (4)
C160.6327 (3)0.3116 (2)0.01922 (18)0.0408 (5)
H160.62750.3750.05970.049*
C150.6037 (3)0.3556 (2)0.1143 (2)0.0466 (5)
H150.57910.44840.09910.056*
C140.6109 (3)0.2632 (2)0.23149 (19)0.0429 (5)
H140.59120.29320.29530.051*
C130.6474 (3)0.1258 (2)0.25368 (17)0.0424 (5)
H130.65220.0630.33280.051*
C120.6769 (3)0.0804 (2)0.15943 (17)0.0379 (4)
H120.70190.01240.17540.045*
O70.0306 (2)0.44846 (15)0.14238 (12)0.0462 (4)
O60.0213 (2)0.57523 (18)0.33864 (13)0.0562 (4)
H60.02850.62740.31320.084*
O50.1405 (2)0.22910 (15)0.18254 (12)0.0507 (4)
H50.13030.24970.12250.076*
O40.4336 (2)0.45284 (18)0.32491 (16)0.0585 (4)
H40.4770.38240.28570.088*
O20.4639 (2)0.24813 (17)0.42002 (14)0.0524 (4)
O30.1816 (2)0.2378 (2)0.46307 (15)0.0580 (5)
H30.20780.17960.49180.087*
C200.0512 (3)0.4625 (2)0.24657 (17)0.0360 (4)
C190.1135 (3)0.3473 (2)0.28529 (17)0.0372 (4)
H190.01790.31060.32410.045*
C180.2861 (3)0.4056 (2)0.37558 (17)0.0396 (5)
H180.2660.49010.44460.047*
C170.3227 (3)0.2892 (2)0.42276 (16)0.0374 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0482 (9)0.0387 (9)0.0374 (8)0.0232 (7)0.0126 (7)0.0208 (7)
N30.0451 (9)0.0412 (10)0.0397 (9)0.0215 (7)0.0100 (7)0.0255 (7)
N60.0481 (9)0.0369 (9)0.0300 (8)0.0209 (7)0.0097 (7)0.0196 (7)
N70.0500 (9)0.0374 (9)0.0313 (8)0.0218 (7)0.0112 (7)0.0186 (7)
N90.0502 (10)0.0471 (10)0.0346 (9)0.0216 (8)0.0095 (7)0.0251 (8)
O10.0756 (10)0.0467 (9)0.0361 (8)0.0319 (7)0.0181 (7)0.0235 (7)
C20.0512 (12)0.0399 (11)0.0414 (11)0.0255 (9)0.0131 (9)0.0216 (9)
C40.0344 (9)0.0376 (10)0.0338 (9)0.0149 (8)0.0066 (7)0.0222 (8)
C50.0329 (9)0.0351 (10)0.0329 (9)0.0121 (7)0.0063 (7)0.0192 (8)
C60.0324 (9)0.0334 (10)0.0344 (9)0.0131 (7)0.0072 (7)0.0199 (8)
C80.0595 (13)0.0481 (13)0.0319 (10)0.0253 (10)0.0113 (9)0.0211 (9)
C100.0360 (9)0.0318 (10)0.0350 (9)0.0115 (7)0.0070 (7)0.0182 (8)
C110.0328 (9)0.0344 (10)0.0350 (9)0.0093 (7)0.0043 (7)0.0218 (8)
C160.0549 (12)0.0374 (11)0.0389 (10)0.0210 (9)0.0101 (9)0.0193 (9)
C150.0600 (13)0.0398 (12)0.0558 (13)0.0228 (10)0.0123 (10)0.0302 (10)
C140.0468 (11)0.0514 (13)0.0464 (12)0.0128 (9)0.0060 (9)0.0357 (10)
C130.0558 (12)0.0453 (12)0.0335 (10)0.0120 (10)0.0060 (9)0.0225 (9)
C120.0498 (11)0.0339 (10)0.0378 (10)0.0143 (8)0.0069 (8)0.0199 (8)
O70.0693 (10)0.0435 (9)0.0361 (8)0.0247 (7)0.0059 (7)0.0215 (6)
O60.0916 (12)0.0536 (10)0.0392 (8)0.0470 (9)0.0132 (8)0.0221 (7)
O50.0854 (11)0.0339 (8)0.0370 (8)0.0264 (7)0.0009 (7)0.0139 (6)
O40.0579 (10)0.0523 (10)0.0791 (12)0.0092 (8)0.0108 (8)0.0411 (9)
O20.0552 (9)0.0562 (10)0.0603 (10)0.0316 (8)0.0134 (7)0.0297 (8)
O30.0625 (10)0.0840 (13)0.0673 (10)0.0433 (9)0.0290 (8)0.0596 (10)
C200.0438 (11)0.0336 (10)0.0368 (10)0.0164 (8)0.0070 (8)0.0167 (8)
C190.0500 (11)0.0324 (10)0.0370 (10)0.0163 (8)0.0070 (8)0.0187 (8)
C180.0507 (11)0.0375 (11)0.0351 (10)0.0183 (9)0.0029 (8)0.0157 (8)
C170.0508 (11)0.0371 (11)0.0293 (9)0.0217 (9)0.0074 (8)0.0130 (8)
Geometric parameters (Å, º) top
N1—C61.339 (2)C15—C141.375 (3)
N1—C21.341 (2)C15—H150.93
N3—C21.325 (2)C14—C131.378 (3)
N3—C41.342 (2)C14—H140.93
N6—C101.367 (2)C13—C121.381 (3)
N6—C61.394 (2)C13—H130.93
N6—H6A0.86C12—H120.93
N7—C81.336 (2)O7—C201.199 (2)
N7—C51.374 (2)O6—C201.316 (2)
N7—H70.86O6—H60.82
N9—C81.321 (3)O5—C191.409 (2)
N9—C41.374 (2)O5—H50.82
O1—C101.218 (2)O4—C181.405 (2)
C2—H20.93O4—H40.82
C4—C51.405 (2)O2—C171.202 (2)
C5—C61.387 (2)O3—C171.311 (2)
C8—H80.93O3—H30.82
C10—C111.492 (2)C20—C191.519 (3)
C11—C121.389 (3)C19—C181.532 (3)
C11—C161.390 (3)C19—H190.98
C16—C151.381 (3)C18—C171.524 (3)
C16—H160.93C18—H180.98
C6—N1—C2119.63 (16)C14—C15—H15119.7
C2—N3—C4112.97 (16)C16—C15—H15119.7
C10—N6—C6130.14 (15)C15—C14—C13119.53 (18)
C10—N6—H6A114.9C15—C14—H14120.2
C6—N6—H6A114.9C13—C14—H14120.2
C8—N7—C5106.45 (16)C14—C13—C12120.57 (18)
C8—N7—H7126.8C14—C13—H13119.7
C5—N7—H7126.8C12—C13—H13119.7
C8—N9—C4104.05 (15)C13—C12—C11120.19 (18)
N3—C2—N1127.38 (18)C13—C12—H12119.9
N3—C2—H2116.3C11—C12—H12119.9
N1—C2—H2116.3C20—O6—H6109.5
N3—C4—N9125.86 (16)C19—O5—H5109.5
N3—C4—C5124.31 (16)C18—O4—H4109.5
N9—C4—C5109.82 (16)C17—O3—H3109.5
N7—C5—C6136.90 (17)O7—C20—O6124.96 (18)
N7—C5—C4105.28 (15)O7—C20—C19122.32 (17)
C6—C5—C4117.74 (16)O6—C20—C19112.71 (16)
N1—C6—C5117.90 (16)O5—C19—C20109.78 (15)
N1—C6—N6113.44 (15)O5—C19—C18109.19 (16)
C5—C6—N6128.66 (16)C20—C19—C18113.47 (16)
N9—C8—N7114.39 (17)O5—C19—H19108.1
N9—C8—H8122.8C20—C19—H19108.1
N7—C8—H8122.8C18—C19—H19108.1
O1—C10—N6122.55 (16)O4—C18—C17111.66 (16)
O1—C10—C11122.19 (17)O4—C18—C19112.00 (16)
N6—C10—C11115.26 (15)C17—C18—C19109.58 (16)
C12—C11—C16118.91 (17)O4—C18—H18107.8
C12—C11—C10123.65 (17)C17—C18—H18107.8
C16—C11—C10117.44 (16)C19—C18—H18107.8
C15—C16—C11120.26 (18)O2—C17—O3124.77 (19)
C15—C16—H16119.9O2—C17—C18123.21 (18)
C11—C16—H16119.9O3—C17—C18111.99 (16)
C14—C15—C16120.53 (19)
C4—N3—C2—N11.0 (3)O1—C10—C11—C12168.35 (18)
C6—N1—C2—N31.2 (3)N6—C10—C11—C1211.2 (3)
C2—N3—C4—N9177.72 (18)O1—C10—C11—C1611.3 (3)
C2—N3—C4—C51.1 (3)N6—C10—C11—C16169.13 (16)
C8—N9—C4—N3179.86 (19)C12—C11—C16—C150.1 (3)
C8—N9—C4—C50.9 (2)C10—C11—C16—C15179.53 (18)
C8—N7—C5—C6175.4 (2)C11—C16—C15—C140.0 (3)
C8—N7—C5—C41.1 (2)C16—C15—C14—C130.0 (3)
N3—C4—C5—N7179.76 (16)C15—C14—C13—C120.1 (3)
N9—C4—C5—N71.2 (2)C14—C13—C12—C110.2 (3)
N3—C4—C5—C62.9 (3)C16—C11—C12—C130.2 (3)
N9—C4—C5—C6176.07 (16)C10—C11—C12—C13179.42 (17)
C2—N1—C6—C50.8 (3)O7—C20—C19—O50.0 (3)
C2—N1—C6—N6178.83 (16)O6—C20—C19—O5179.17 (17)
N7—C5—C6—N1178.80 (19)O7—C20—C19—C18122.5 (2)
C4—C5—C6—N12.6 (3)O6—C20—C19—C1858.4 (2)
N7—C5—C6—N60.7 (4)O5—C19—C18—O459.2 (2)
C4—C5—C6—N6176.92 (17)C20—C19—C18—O463.6 (2)
C10—N6—C6—N1177.40 (17)O5—C19—C18—C1765.30 (19)
C10—N6—C6—C52.2 (3)C20—C19—C18—C17171.90 (15)
C4—N9—C8—N70.2 (2)O4—C18—C17—O22.5 (3)
C5—N7—C8—N90.6 (2)C19—C18—C17—O2127.1 (2)
C6—N6—C10—O10.5 (3)O4—C18—C17—O3175.90 (17)
C6—N6—C10—C11179.10 (16)C19—C18—C17—O351.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N3i0.821.972.780 (3)171
O5—H5···N1ii0.822.112.843 (2)148
O5—H5···O70.822.172.655 (2)118
O4—H4···O20.822.442.718 (3)101
O4—H4···O10.822.523.324 (2)168
O3—H3···N9iii0.821.892.679 (2)162
N6—H6A···O5ii0.862.293.076 (2)152
N7—H7···O10.862.072.685 (2)127
N7—H7···O20.862.322.800 (2)115
C2—H2···O7iv0.932.493.202 (3)134
C2—H2···O7ii0.932.593.205 (2)124
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H9N5O·C6H5NO3C12H9N5O·C4H6O6
Mr378.35389.33
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)8.3961 (4), 9.8673 (5), 11.0680 (7)7.5844 (7), 10.0175 (9), 11.9658 (10)
α, β, γ (°)66.137 (5), 83.459 (4), 79.546 (4)111.669 (8), 93.488 (7), 98.845 (7)
V3)823.81 (8)827.95 (14)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.110.13
Crystal size (mm)0.25 × 0.2 × 0.080.3 × 0.15 × 0.08
Data collection
DiffractometerAgilent SuperNova Dual Source
diffractometer with Atlas detector
Agilent SuperNova Dual Source
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.822, 10.791, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7594, 3753, 2756 6799, 3785, 2760
Rint0.0260.023
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.04 0.047, 0.126, 1.05
No. of reflections37533785
No. of parameters253257
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.220.20, 0.23

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.862.577 (2)146
O4—H4···N10.822.613.137 (2)123
N6—H6···O30.862.032.842 (2)158
N7—H7···O10.862.152.689 (2)121
N7—H7···O2i0.862.282.929 (2)132
N10—H10···O20.862.422.740 (2)102
N10—H10···N9ii0.861.882.717 (2)164
C8—H8···O2iii0.932.533.115 (2)121
C21—H21···O1iv0.932.483.384 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x+1, y, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N3i0.821.972.780 (3)171
O5—H5···N1ii0.822.112.843 (2)148
O5—H5···O70.822.172.655 (2)118
O4—H4···O20.822.442.718 (3)101
O4—H4···O10.822.523.324 (2)168
O3—H3···N9iii0.821.892.679 (2)162
N6—H6A···O5ii0.862.293.076 (2)152
N7—H7···O10.862.072.685 (2)127
N7—H7···O20.862.322.800 (2)115
C2—H2···O7iv0.932.493.202 (3)134
C2—H2···O7ii0.932.593.205 (2)124
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z.
Conformation of the N6-benzoyladenine molecule in cocrystals (I) and (II) top
CocrystalDihedral angle (°)Torsion angle (°)
Pyrimidine ring/imdazole ring of adenine (N1-N3-C2-C4-C5-C6/N7-N9-C4-C5-C8)Purine ring/benzene ring (N1-C2-N3-C4-C5-C6-N7-C8-N9/C11-C12-C13-C14-C15-C16)Purine ring/amide (N1-C2-N3-C4-C5-C6-N7-C8-N9/N6-H6-C10-O1)Benzene ring/amide (C11-C12-C13-C14-C15-C16/N6-H6-C10-O1)(C6-N6-C10-C11)
(I)3.00 (9)0.94 (8)21.20 (17)21.45 (18)-176.24 (16)
(II)2.26 (10)9.77 (8)2.93 (18)11.35 (9)-179.08 (17)

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds