Download citation
Download citation
link to html
This work reports the crystal structure of [(Z)-2-((E)-1-{6-[1-({[amino­(sul­fani­dyl-κS)methyl­idene]amino}­imino-κN)eth­yl]pyridin-2-yl-κN}ethyl­idene)-1-cyano­hydrazinido-κN1]copper(II), [Cu(C11H11N7S)], the first description of a copper(II) complex of 2,6-di­acetyl­pyridine bis­(thio­semicarbazone) showing partial conversion of a thio­amide group to a nitrile group. The asymmetric ligand coordinates to the metal centre in an N,N′,N′′,S-tetra­dentate manner via the pyridine N atom, an imine N atom, the hydrazinide N atom and the sul­fanidyl S atom, displaying a square-planar geometry. Ligand coordination results in two five-membered chelate rings and one six-membered chelate ring, and in crystal packing based on N—H...N hydrogen bonds of the cyano­hydrazinide and hydrazinecarbo­thio­amidate arms of the ligand. The correlation between the partial conversion upon metal complexation, H2S release and possible effects on the activity of bis­(thio­semicarbazone)s as drug prototypes for Alzheimer's disease is also discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961500813X/ku3154sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961500813X/ku3154Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961500813X/ku3154sup3.pdf
Geometric parameters and packing figure

CCDC reference: 1050375

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and Shelxle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008) and POV-RAY (https://www.povray.org); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

[(Z)-2-((E)-1-{6-[1-({[Amino(sulfanidyl-κS)methylidene]amino}imino-κN)ethyl]pyridin-2-yl-κN}ethylidene)-1-cyanohydrazinido-κN1]copper(II) top
Crystal data top
[Cu(C11H11N7S)]F(000) = 684
Mr = 336.87Dx = 1.691 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.2358 (1) ÅCell parameters from 8522 reflections
b = 10.5895 (2) Åθ = 4.2–68.7°
c = 17.2664 (3) ŵ = 3.82 mm1
β = 90.6740 (11)°T = 296 K
V = 1322.92 (4) Å3Plate, orange
Z = 40.16 × 0.16 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 68.7°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.617, Tmax = 0.753k = 1212
16824 measured reflectionsl = 2020
2437 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.8241P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2437 reflectionsΔρmax = 0.76 e Å3
183 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21025 (5)0.42580 (3)0.54573 (2)0.03932 (15)
S10.13271 (10)0.28767 (6)0.63790 (4)0.04741 (19)
C10.2613 (4)0.4392 (3)0.38702 (16)0.0479 (6)
N10.2750 (3)0.5146 (2)0.44956 (13)0.0452 (5)
C60.2065 (4)0.3072 (3)0.40317 (15)0.0497 (6)
C30.3423 (5)0.6089 (4)0.3045 (2)0.0696 (9)
H30.36430.64150.25550.084*
N30.1117 (3)0.1689 (2)0.49791 (12)0.0430 (5)
C80.0899 (3)0.1646 (2)0.57373 (14)0.0398 (5)
N20.1706 (3)0.28604 (19)0.47503 (12)0.0400 (5)
C20.2936 (4)0.4840 (3)0.31314 (19)0.0633 (8)
H20.28260.43110.27030.076*
C70.1982 (7)0.2100 (3)0.34233 (18)0.0844 (13)
H7A0.07220.19800.32590.127*
H7B0.24650.13200.36230.127*
H7C0.27050.23660.29900.127*
N40.0319 (4)0.0556 (2)0.60451 (13)0.0528 (6)
H4A0.01030.00840.57510.063*
H4B0.01630.04960.65370.063*
C40.3582 (4)0.6845 (3)0.3677 (2)0.0681 (10)
H40.39250.76860.36160.082*
N50.3066 (3)0.6940 (2)0.58342 (17)0.0549 (6)
C50.3235 (3)0.6374 (3)0.44223 (18)0.0510 (7)
N70.1961 (5)0.5646 (3)0.74737 (18)0.0823 (10)
N60.2514 (3)0.5739 (2)0.60608 (15)0.0519 (6)
C90.3378 (4)0.7183 (3)0.5114 (2)0.0565 (8)
C100.3968 (5)0.8552 (3)0.4991 (2)0.0756 (11)
H10A0.51430.85710.47390.113*
H10B0.40690.89690.54830.113*
H10C0.30630.89760.46740.113*
C110.2233 (5)0.5723 (3)0.6824 (2)0.0590 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0371 (2)0.0323 (2)0.0486 (2)0.00366 (14)0.00031 (15)0.00392 (14)
S10.0596 (4)0.0426 (4)0.0401 (3)0.0136 (3)0.0031 (3)0.0001 (3)
C10.0430 (13)0.0489 (15)0.0516 (15)0.0044 (12)0.0027 (11)0.0155 (12)
N10.0366 (10)0.0411 (12)0.0577 (13)0.0034 (9)0.0022 (9)0.0167 (10)
C60.0570 (15)0.0478 (15)0.0441 (14)0.0077 (13)0.0019 (12)0.0093 (12)
C30.0644 (19)0.073 (2)0.072 (2)0.0051 (17)0.0085 (16)0.0356 (19)
N30.0521 (12)0.0346 (11)0.0423 (11)0.0084 (10)0.0005 (9)0.0041 (9)
C80.0392 (12)0.0381 (13)0.0421 (13)0.0037 (11)0.0013 (10)0.0035 (10)
N20.0427 (11)0.0347 (11)0.0426 (11)0.0058 (9)0.0011 (8)0.0063 (8)
C20.0628 (18)0.069 (2)0.0576 (17)0.0062 (16)0.0030 (14)0.0222 (16)
C70.146 (4)0.066 (2)0.0409 (16)0.032 (2)0.0092 (19)0.0001 (15)
N40.0752 (16)0.0416 (12)0.0417 (11)0.0169 (12)0.0039 (11)0.0049 (9)
C40.0509 (16)0.0549 (19)0.099 (3)0.0067 (15)0.0026 (16)0.0364 (19)
N50.0491 (13)0.0316 (11)0.0840 (18)0.0051 (10)0.0007 (12)0.0054 (11)
C50.0312 (11)0.0425 (15)0.0794 (19)0.0008 (11)0.0004 (11)0.0223 (14)
N70.122 (3)0.0545 (17)0.071 (2)0.0129 (17)0.0288 (18)0.0202 (14)
N60.0547 (13)0.0339 (12)0.0671 (15)0.0065 (10)0.0057 (11)0.0019 (10)
C90.0376 (13)0.0325 (14)0.099 (2)0.0026 (11)0.0040 (14)0.0109 (14)
C100.0625 (19)0.0381 (17)0.126 (3)0.0101 (15)0.0008 (19)0.0206 (18)
C110.0669 (19)0.0369 (15)0.074 (2)0.0051 (14)0.0090 (16)0.0120 (14)
Geometric parameters (Å, º) top
Cu1—N61.904 (2)C2—H20.9300
Cu1—N21.938 (2)C7—H7A0.9600
Cu1—N11.970 (2)C7—H7B0.9600
Cu1—S12.2379 (7)C7—H7C0.9600
S1—C81.736 (3)N4—H4A0.8600
C1—N11.346 (4)N4—H4B0.8600
C1—C21.383 (4)C4—C51.405 (4)
C1—C61.481 (4)C4—H40.9300
N1—C51.353 (4)N5—C91.293 (4)
C6—N21.290 (3)N5—N61.391 (3)
C6—C71.472 (4)C5—C91.472 (5)
C3—C41.357 (5)N7—C111.144 (4)
C3—C21.378 (5)N6—C111.336 (4)
C3—H30.9300C9—C101.527 (4)
N3—C81.321 (3)C10—H10A0.9600
N3—N21.371 (3)C10—H10B0.9600
C8—N41.341 (3)C10—H10C0.9600
N6—Cu1—N2174.13 (9)C6—C7—H7A109.5
N6—Cu1—N191.77 (10)C6—C7—H7B109.5
N2—Cu1—N182.45 (9)H7A—C7—H7B109.5
N6—Cu1—S1100.83 (8)C6—C7—H7C109.5
N2—Cu1—S184.97 (6)H7A—C7—H7C109.5
N1—Cu1—S1167.36 (8)H7B—C7—H7C109.5
C8—S1—Cu194.65 (8)C8—N4—H4A120.0
N1—C1—C2121.7 (3)C8—N4—H4B120.0
N1—C1—C6115.2 (2)H4A—N4—H4B120.0
C2—C1—C6123.1 (3)C3—C4—C5120.8 (3)
C1—N1—C5120.8 (2)C3—C4—H4119.6
C1—N1—Cu1112.15 (18)C5—C4—H4119.6
C5—N1—Cu1127.0 (2)C9—N5—N6120.4 (3)
N2—C6—C7123.9 (3)N1—C5—C4118.4 (3)
N2—C6—C1113.7 (2)N1—C5—C9119.9 (3)
C7—C6—C1122.3 (3)C4—C5—C9121.6 (3)
C4—C3—C2120.0 (3)C11—N6—N5109.6 (2)
C4—C3—H3120.0C11—N6—Cu1120.34 (19)
C2—C3—H3120.0N5—N6—Cu1130.0 (2)
C8—N3—N2111.0 (2)N5—C9—C5130.8 (3)
N3—C8—N4117.6 (2)N5—C9—C10112.0 (3)
N3—C8—S1125.74 (19)C5—C9—C10117.2 (3)
N4—C8—S1116.61 (19)C9—C10—H10A109.5
C6—N2—N3120.1 (2)C9—C10—H10B109.5
C6—N2—Cu1116.31 (18)H10A—C10—H10B109.5
N3—N2—Cu1123.62 (16)C9—C10—H10C109.5
C3—C2—C1118.3 (3)H10A—C10—H10C109.5
C3—C2—H2120.8H10B—C10—H10C109.5
C1—C2—H2120.8N7—C11—N6176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.862.293.133 (3)168
N4—H4B···N7ii0.862.323.061 (4)145
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z+3/2.
Selected bond lengths (Å) for CuDAPTn taken from X-ray diffraction refinements and for a NiII–selenocarbazone complex top
MXM—N2M—N1M—N6
CuDAPTn2.2379 (7)1.938 (2)1.970 (2)1.904 (2)
NiII complexa2.274 (2)1.866 (8)1.896 (8)1.855 (8)
Note: (a) experimental values (Todorović et al., 2006); M = CuII and X = S or M = NiII and X = Se.
Selected angles (°) for CuDAPTn taken from X-ray diffraction refinements and for a NiII–selenocarbazone complex. top
N6—M—N1N2—M—N1N6—MXN2—MX
CuDAPTn91.77 (10)82.454 (9)100.83 (8)84.97 (6)
NiII complexa92.7 (4)85.3 (3)95.5 (3)86.4 (2)
Note: (a) experimental values (Todorović et al., 2006); M = CuII and X = S or M = NiII and X = Se.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds