Download citation
Download citation
link to html
Three new complexes with 3,6-di­chloro­benzene-1,2-di­thiol (bdtCl2), namely methyl­tri­phenyl­phospho­nium bis­(3,6-di­chloro­benzene-1,2-di­thiol­ato-κ2S,S′)cobaltate(1−), (C19H18P)[Co(C6H2Cl2S2)2], (I), bis­(methyl­tri­phenyl­phospho­nium) bis­(3,6-di­chloro­benzene-1,2-di­thiol­ato-κ2S,S′)cuprate(2−) di­methyl sulfoxide disolvate, (C19H18P)2[Cu(C6H2Cl2S2)2]·2C2H6OS, (II), and methyl­tri­phenyl­phospho­nium bis­(3,6-di­chloro­benzene-1,2-di­thiol­ato-κ2S,S′)cuprate(1−), (C19H18P)[Cu(C6H2Cl2S2)2], (III), have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray structure analyses of all three complexes confirm that the four donor S atoms form a slightly distorted square-planar coordination arrangement around the central metal atom. An inter­esting finding for both the CuII and CuIII complexes, i.e. (II) and (III), respectively, is that the coordination polyhedra are principally the same and differ only slightly with respect to the inter­atomic distances.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615001436/ku3148sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615001436/ku3148Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615001436/ku3148IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615001436/ku3148IIIsup4.hkl
Contains datablock III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615001436/ku3148sup5.pdf
Packing diagram for (III)

CCDC references: 1044912; 1044911; 1044910

Introduction top

In recent years, di­thiol­ate complexes have attracted considerable inter­est because of their technical applications as superconductors (Zou et al., 1997; Cassoux et al., 1991), pesticides (Szolnai, 1975; Geiger & Minest, 1975; Khajuria et al., 2013), resins and Q-switching dyes for IR spectroscopy (Bigoli et al., 1997; Drexhage & Mueller-Westerhoff, 1972; Yang et al., 2013), compounds with unusual magnetic properties (Coomber et al., 1996; Boudreaux & Mulay, 1976; Cerdeira et al., 2008; Cerdeira et al., 2012) and biocatalysts (Lancaster, 1988; Sellmann et al., 1996). The wide range of technical and biological applications can be attributed to the oxidation–reduction properties of di­thiol­ate ligands. Such ligands are known as non-innocent ligands (Jörgensen, 1966; Stiefel & Karlin, 2004) and are ligands which undergo π-bonding with the metal (e.g. CO, olefins and carbenes). Some of them even have an extended π-delocalized system [e.g. cyclo­penta­dienyl (Cp) derivatives, multi-enes and multi-enyls] and are thus capable of undergoing easy charge and spin delocalization upon oxidation or reduction of the complex. Therefore, they are by definition suspect, as they can be easily oxidized or reduced instead of the metal to which they coordinate (Jörgensen, 1966). Among the consequences of this concept in the field of coordination chemistry is the occurrence of situations in which the assignment of the oxidation state of the central metal atom is difficult, because the ligands can also undergo electron transfer and thus the `ligand oxidation state' changes. Such ligands may occur in several redox forms, e.g. O2/O2.-/O22- or NO+/NO./NO- or di­thiol­ate and other (e.g. Kaim & Schwederski, 2010).

Recently (Walla et al., 1998; Kameníček et al., 2001, 2002; Kameníček & Mrkvová, 2003; Mrkvová et al., 2004), similar complexes of the general formula R[M(di­thiole)2], where di­thiole is 1-toluene-3,4-di­thiole (tdt), benzene-1,2-di­thiole (bdt), ethane-1,2-di­thiole (ed) and maleo­nitrile-1,2-di­thiole (mnt), M is Ni, Co and Cu, and R is Me4N, Et4N, Pr4N, Me3PhN, MePh3P and Ph4P, have been studied.

The aim of the present work was to prepare analogous complexes with different transition metals as the central atom. A comparison of the geometrical parameters of two compounds with the same formal oxidation state, i.e. (MePh3P)[CoIII(bdt)2], (I), and (MePh3P)[CuIII(bdt)2], (III), and of two compounds with the central Cu atom in different formal oxidation states, i.e. (MePh3P)2[CuII(bdt)2].2Me2SO, (II), and (III), are discussed. The redox properties of these complexes have been discussed recently (Machata et al., 2014) and it was shown that electrochemical reduction takes place predominantly on the central atom and electrochemical oxidation takes place both on the central atom and on the ligand also.

Experimental top

Materials top

The following reagents (Sigma–Aldrich) were used for the syntheses of complexes (I)–(III): CoCl2·6H2O 98%; CuCl2·2H2O 98%; 3,6-di­chloro­benzene-1,2-di­thiole (bdtCl2) 95%; methyl­tri­phenyl­phospho­nium bromide (Me3PhP+.Br-) 98%. All solvents were obtained from mikroCHEM and were of p.a. grade.

Synthesis and crystallization top

For the preparation of (MePh3P)[CoIII(bdt)2], (I), a solution of Na (0.08 g, 3.3 mmol) in MeOH (10 ml) was added to 3,6-di­chloro­benzene-1,2-di­thiole (bdtCl2; 0.34 g, 1.6 mmol). To this mixture, a solution of CoCl2·6H2O (0.18 g, 0.76 mmol) in MeOH (10 ml) was added. Finally, a solution of methyl­tri­phenyl­phospho­nium bromide (MePh3P+.Br-; 0.57 g, 1.6 mmol) in MeOH (10 ml) was added. The resulting solution was stirred for 20 min. The complex was precipitated by the slow addition of water accompanied by vigorous stirring. The blue crystalline powder which formed (as crude product) was filtered off, washed with di­ethyl ether and recrystallized from acetone (yield 75%). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a blue solution in an acetone–methanol–toluene solvent mixture (10:1:2 ratio).

The same procedure was used for the preparation of (MePh3P)2[CuII(bdt)2].2Me2SO, (II), and (MePh3P)[CuIII(bdt)2], (III), using CuCl2·2H2O (0.13 g, 0.76 mmol) in place of CoCl2·6H2O (crude yield is 99%)[what does this relate to?]. The sample of (III) was separated from the crude product with acetone (yield 45%) and crystals suitable for X-ray diffraction were grown by slow evaporation of a green solution in an acetone–methanol–toluene solvent mixture (10:2:1 ratio). The sample of (II) (yellow crystalline powder) was insoluble in acetone (yield 44%) and crystals suitable for X-ray diffraction were grown by slow diffusion between two layers [a yellow di­methyl sulfoxide solution of a sample of (II) and H2O in a 1:3 ratio]. After crystallization, a single crystal suitable for X-ray analysis was selected.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The positions of all H atoms were optimized geometrically and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic) or 0.98 Å (methyl) and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

In each of the studied crystal structures, i.e. (I), (II) and (III), the central metal atom is on an inversion centre and is coordinated in a square-planar manner by four di­thiol­ate donor S atoms.

CoIII complex (I) and CuIII complex (III) are isostructural and crystallize in the centrosymmetric P21/c space group (No. 14). Both structures consist of two complex anions (in special positions; the asymmetric part of the unit cell contains two halves of these anions) and one MePh3P+ cation (Figs. 1 and 2). The central metal atom is coordinated by four donor S atoms from two 3,6-di­chloro­benzene-1,2-di­thiol­ate ligands. The X-ray structure analysis of (I) and (III) confirmed a square-planar geometry of the MS4 chromophore (Table 2). The ratio of complex anion to counter-cation (1:1) results from the found stoichiometry. The expected formal oxidation state of the central metal atom of complexes (I) and (III) is +3.

For CoIII complex (I), the angle between the S2/S1/Co1 and S4/S3/Co2 planes is 83.05 (2)° and the distance between atoms Co1 and Co2 is 10.373 (6) Å. For CuIII complex (III), the corresponding angle is 83.49 (3)° and the distance between atoms Cu1 and Cu2 is 10.386 (6) Å. The M—S bond lengths for (I) are in the range 2.1570 (6)–2.1641 (6) Å and for (III) are in the range 2.1721 (6)–2.1765 (6) Å.

The values for (I) and (III) are significantly shorter than the usual reported distances for metal complexes in a +2 oxidation state. The range for CoII is from 2.19 [Cerdeira et al., 2012; Cambridge Structural Database (CSD; Groom & Allen, 2014) refcode LAYMEF] to 2.28 Å (Rao et al., 1986) and the range for CuII is from 2.26 (Cerdeira et al., 2012; CSD refcode LAYMAB) to 2.27 Å (Best et al., 1993); this fact also supports the assumption of a +3 oxidation state in these compounds (Table 2).

For comparison, in the CSD, 16 crystal structures with a square-planar arrangement around a central CoIII atom, where the M—S bond lengths range from 2.14 (Ray et al., 2005; CSD refcode MAJYUS) to 2.18 Å (Mrkvová et al., 2004; CSD refcode AWIHIX)), and for CuIII, where the M—S bond lengths range from 2.16 (Bolligarla & Das, 2011; CSD refcode OYIRUK) to 2.18 Å (Alves et al., 2004; CSD refcode EWAMOE) were found. The structures of complexes (I)/(III) and (II) are stabilized by a system of five and six inter­molecular hydrogen-bond inter­actions, respectively (Table 3, and Figs. 4 and 5; see also Fig. 6 is in Supporting information.

CuII complex (II) crystallized in the centrosymmetric P21/n space group (No. 14). The asymmetric part of the unit cell consists of half of the centrosymmetric complex anion, one MePh3P+ cation and a di­methyl sulfoxide solvent molecule (Fig. 3). The central metal atom is coordinated in the same way as in complexes (I) and (III) (Table 2), but unlike complexes (I) and (III), the ratio of complex anion to counter-cation is 1:2 for (II). The expected formal oxidation state of the central metal atom of (II) is +2, i.e. CuII. This is supported also by the values of the inter­atomic distances Cu1—S1 and Cu1—S2, which are 2.2641 (2) and 2.2671 (2) Å, respectively.

For (II) and (III), the inter­atomic CuIII—S distance is shorter than the CuII—S distance. The `non-innocent' ligands act as a reservoir of electron density and stabilize the oxidation state of the central atom. In the case of compounds (I) and (III), depopulated d-orbitals form stronger coordination bonds with the donor S atoms.

Conclusions top

The basic driving force behind this work was to obtain suitable MIII coordination compounds in order to study the electronic structure by charge-density analysis. A chloro-substituted ligand was used to eliminate large anisotropic displacement parameters (ADPs) (Fronc et al., 2009), and also disorder. All the aims of the study, the elimination of disorder and decreasing the thermal motions were successful. Complexes were prepared with Cu in two oxidation states having the formulae (MePh3P+)n[M(bdtCl2)2]n-, where n = 1 or 2, which could be separated.

Cobalt complexes are very sensitive to oxidation under normal conditions; therefore we were not able to prepare the CoII analogue. The preparation of complexes with copper in two oxidation states shows the non-innocent character of the di­thiol­ate ligand. The oxidation state of the central metal atom is only the formal number. It is not possible to determine the exact charge of the central atom, but only of the complex anion as a whole. The non-innocet di­thiol­ate ligand is able to stabilize both 2+ and 3+ oxidation states.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2012); cell refinement: CrysAlis CCD (Oxford Diffraction, 2012); data reduction: CrysAlis RED (Oxford Diffraction, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus, 2013), OLEX2 (Dolomanov et al., 2009) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1998; Brandenburg & Berndt, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (*) -x+1, -y+1, -z+2; (**) -x, -y+1, -z+1.]
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (*) -x, -y+1, -z+1.]
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: -x+1, -y+1, -z+2; (**) -x, -y+1, -z+1.]
[Figure 4] Fig. 4. The crystal packing of compound (I), viewed along the b axis. Red dashed lines indicate hydrogen interactions. [Symmetry codes: (*) -x+1, -y+1, -z+2; (**) -x, -y+1, -z+1.]
[Figure 5] Fig. 5. The crystal packing of compound (II), viewed along the b axis. Red dashed lines indicate hydrogen interactions. [Symmetry code: (*) -x, -y+1, -z+1.]
(I) Methyltriphenylphosphonium bis(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S')cobaltate(1-) top
Crystal data top
(C19H18P)[Co(C6H2Cl2S2)2]F(000) = 1528
Mr = 754.42Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.46050 (18) ÅCell parameters from 17287 reflections
b = 14.6661 (2) Åθ = 2.1–28.3°
c = 16.24190 (19) ŵ = 1.20 mm1
β = 91.9170 (11)°T = 100 K
V = 3204.57 (7) Å3Plate, black
Z = 40.50 × 0.21 × 0.11 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
8220 independent reflections
Radiation source: Enhance (Mo) X-ray Source5470 reflections with I > 2σ(I)
Detector resolution: 10.4340 pixels mm-1Rint = 0.034
ω scansθmax = 29.6°, θmin = 2.1°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
h = 1818
Tmin = 0.746, Tmax = 0.876k = 2020
55679 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.2776P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8220 reflectionsΔρmax = 0.34 e Å3
373 parametersΔρmin = 0.54 e Å3
Crystal data top
(C19H18P)[Co(C6H2Cl2S2)2]V = 3204.57 (7) Å3
Mr = 754.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.46050 (18) ŵ = 1.20 mm1
b = 14.6661 (2) ÅT = 100 K
c = 16.24190 (19) Å0.50 × 0.21 × 0.11 mm
β = 91.9170 (11)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
8220 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
5470 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.876Rint = 0.034
55679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
8220 reflectionsΔρmin = 0.54 e Å3
373 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37579 (19)0.32542 (17)1.02686 (13)0.0555 (6)
C20.3446 (2)0.23853 (18)1.04915 (14)0.0655 (7)
C30.2448 (3)0.2156 (2)1.04774 (18)0.0834 (10)
H3A0.22490.15601.06320.100*
C40.1752 (3)0.2787 (3)1.02415 (19)0.0842 (10)
H4A0.10680.26251.02180.101*
C50.2035 (2)0.3656 (2)1.00366 (16)0.0686 (7)
C60.30333 (18)0.39155 (18)1.00744 (14)0.0558 (6)
C70.00292 (16)0.61303 (17)0.66224 (14)0.0504 (5)
C80.00714 (18)0.64114 (19)0.74378 (15)0.0603 (6)
C90.0203 (2)0.7274 (2)0.76871 (18)0.0729 (8)
H9A0.01110.74590.82400.087*
C100.0609 (2)0.7868 (2)0.71356 (19)0.0729 (8)
H10A0.07930.84660.73060.088*
C110.07501 (18)0.75932 (18)0.63342 (17)0.0609 (6)
C120.04567 (16)0.67253 (16)0.60650 (14)0.0496 (5)
C130.6628 (2)0.1266 (2)0.92192 (15)0.0716 (8)
H13C0.64110.07470.95490.086*
H13B0.63550.18310.94410.086*
H13A0.73560.12980.92410.086*
C140.66099 (16)0.20659 (16)0.75797 (14)0.0512 (6)
C150.70247 (18)0.19204 (18)0.68216 (15)0.0583 (6)
H15A0.70900.13180.66140.070*
C160.7344 (2)0.2658 (2)0.63676 (18)0.0733 (8)
H16A0.76270.25630.58460.088*
C170.7253 (2)0.3514 (2)0.6668 (2)0.0858 (10)
H17A0.74830.40150.63570.103*
C180.6834 (2)0.3668 (2)0.7410 (2)0.0891 (10)
H18A0.67660.42750.76060.107*
C190.6510 (2)0.29452 (18)0.78785 (19)0.0710 (7)
H19A0.62240.30500.83970.085*
C200.66827 (18)0.00973 (15)0.77625 (15)0.0521 (6)
C210.7693 (2)0.00720 (19)0.7868 (2)0.0739 (8)
H21A0.81030.03410.81760.089*
C220.8100 (2)0.0833 (2)0.7528 (2)0.0865 (10)
H22A0.87920.09470.75990.104*
C230.7512 (3)0.1430 (2)0.70863 (19)0.0777 (8)
H23A0.78010.19540.68470.093*
C240.6512 (2)0.12801 (19)0.69858 (17)0.0695 (7)
H24A0.61070.17060.66890.083*
C250.6092 (2)0.05115 (17)0.73158 (15)0.0586 (6)
H25A0.54010.04000.72370.070*
C260.48643 (16)0.10983 (15)0.81463 (13)0.0457 (5)
C270.43546 (18)0.08208 (18)0.88244 (14)0.0576 (6)
H27A0.47090.06280.93090.069*
C280.3331 (2)0.08229 (18)0.87979 (16)0.0630 (7)
H28A0.29810.06440.92700.076*
C290.28175 (18)0.10808 (17)0.80985 (16)0.0598 (6)
H29A0.21110.10840.80860.072*
C300.33155 (19)0.13356 (19)0.74149 (17)0.0665 (7)
H30A0.29550.14980.69240.080*
C310.43395 (18)0.13566 (18)0.74363 (15)0.0590 (6)
H31A0.46840.15480.69660.071*
P10.61940 (4)0.11228 (4)0.81735 (4)0.04795 (15)
S10.50157 (5)0.35481 (4)1.02323 (4)0.05812 (16)
S20.33982 (5)0.50367 (4)0.99068 (4)0.06089 (17)
S30.03600 (5)0.50483 (4)0.62858 (4)0.05421 (15)
S40.06212 (4)0.63607 (4)0.50499 (4)0.05287 (15)
Cl10.43369 (8)0.15912 (5)1.08247 (4)0.0888 (3)
Cl20.11398 (6)0.44362 (7)0.97283 (5)0.0941 (3)
Cl30.05403 (6)0.56667 (6)0.81562 (4)0.0842 (2)
Cl40.13127 (6)0.83333 (5)0.56651 (5)0.0821 (2)
Co10.50000.50001.00000.04919 (12)
Co20.00000.50000.50000.04427 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0670 (16)0.0583 (15)0.0415 (12)0.0132 (12)0.0072 (11)0.0026 (10)
C20.092 (2)0.0578 (16)0.0474 (13)0.0162 (14)0.0145 (13)0.0061 (11)
C30.110 (3)0.072 (2)0.0702 (18)0.042 (2)0.0329 (18)0.0152 (15)
C40.078 (2)0.099 (3)0.0778 (19)0.036 (2)0.0262 (16)0.0266 (18)
C50.0584 (16)0.088 (2)0.0604 (15)0.0169 (15)0.0147 (12)0.0183 (14)
C60.0521 (14)0.0687 (16)0.0471 (13)0.0130 (12)0.0087 (10)0.0058 (11)
C70.0353 (12)0.0625 (15)0.0532 (13)0.0106 (10)0.0003 (10)0.0049 (11)
C80.0483 (14)0.0758 (18)0.0565 (14)0.0121 (12)0.0001 (11)0.0081 (12)
C90.0622 (17)0.090 (2)0.0664 (17)0.0132 (16)0.0016 (14)0.0241 (16)
C100.0599 (17)0.0695 (19)0.089 (2)0.0104 (14)0.0081 (15)0.0289 (16)
C110.0458 (14)0.0577 (16)0.0791 (17)0.0072 (11)0.0026 (12)0.0054 (13)
C120.0367 (12)0.0540 (14)0.0581 (13)0.0094 (10)0.0008 (10)0.0042 (11)
C130.0620 (17)0.093 (2)0.0590 (15)0.0088 (15)0.0107 (13)0.0029 (14)
C140.0418 (12)0.0469 (14)0.0649 (15)0.0072 (10)0.0003 (11)0.0056 (11)
C150.0559 (15)0.0585 (15)0.0605 (15)0.0105 (12)0.0023 (12)0.0070 (12)
C160.0653 (18)0.076 (2)0.0791 (18)0.0064 (15)0.0074 (14)0.0236 (15)
C170.0625 (19)0.069 (2)0.127 (3)0.0043 (15)0.0117 (18)0.0366 (19)
C180.078 (2)0.0458 (17)0.144 (3)0.0008 (14)0.014 (2)0.0090 (18)
C190.0641 (17)0.0555 (17)0.094 (2)0.0005 (13)0.0141 (15)0.0024 (14)
C200.0483 (14)0.0480 (14)0.0602 (14)0.0043 (10)0.0049 (11)0.0110 (10)
C210.0489 (15)0.0605 (18)0.112 (2)0.0012 (13)0.0011 (15)0.0042 (15)
C220.0587 (18)0.068 (2)0.133 (3)0.0075 (15)0.0109 (18)0.0000 (19)
C230.091 (2)0.0570 (17)0.087 (2)0.0100 (16)0.0260 (17)0.0069 (15)
C240.085 (2)0.0588 (17)0.0651 (16)0.0088 (15)0.0050 (14)0.0014 (13)
C250.0584 (15)0.0595 (16)0.0577 (14)0.0059 (12)0.0009 (12)0.0067 (12)
C260.0435 (12)0.0478 (13)0.0461 (12)0.0038 (10)0.0028 (9)0.0008 (9)
C270.0539 (15)0.0738 (17)0.0453 (13)0.0073 (12)0.0027 (11)0.0037 (11)
C280.0593 (16)0.0719 (17)0.0589 (15)0.0136 (13)0.0165 (12)0.0053 (12)
C290.0422 (13)0.0592 (15)0.0785 (18)0.0017 (11)0.0081 (12)0.0031 (13)
C300.0502 (15)0.0766 (18)0.0720 (17)0.0012 (13)0.0064 (13)0.0176 (14)
C310.0492 (14)0.0724 (17)0.0554 (14)0.0017 (12)0.0035 (11)0.0176 (12)
P10.0422 (3)0.0521 (4)0.0495 (3)0.0062 (3)0.0001 (2)0.0046 (3)
S10.0581 (4)0.0553 (4)0.0608 (4)0.0020 (3)0.0008 (3)0.0084 (3)
S20.0474 (3)0.0617 (4)0.0736 (4)0.0023 (3)0.0016 (3)0.0043 (3)
S30.0531 (4)0.0604 (4)0.0497 (3)0.0021 (3)0.0095 (3)0.0008 (3)
S40.0505 (3)0.0519 (3)0.0566 (3)0.0002 (3)0.0074 (3)0.0028 (3)
Cl10.1438 (8)0.0578 (4)0.0650 (4)0.0074 (4)0.0079 (4)0.0090 (3)
Cl20.0500 (4)0.1302 (8)0.1024 (6)0.0046 (4)0.0057 (4)0.0192 (5)
Cl30.0893 (5)0.1119 (6)0.0520 (4)0.0095 (5)0.0117 (4)0.0019 (4)
Cl40.0833 (5)0.0558 (4)0.1072 (6)0.0054 (4)0.0027 (4)0.0015 (4)
Co10.0456 (3)0.0521 (3)0.0498 (2)0.00371 (19)0.00065 (19)0.00547 (19)
Co20.0369 (2)0.0493 (3)0.0468 (2)0.00353 (18)0.00480 (17)0.00160 (18)
Geometric parameters (Å, º) top
C1—C21.393 (3)C17—H17A0.9500
C1—C61.404 (4)C18—C191.384 (4)
C1—S11.750 (3)C18—H18A0.9500
C2—C31.385 (4)C19—H19A0.9500
C2—Cl11.744 (3)C20—C251.384 (3)
C3—C41.362 (5)C20—C211.388 (4)
C3—H3A0.9500C20—P11.780 (3)
C4—C51.375 (4)C21—C221.367 (4)
C4—H4A0.9500C21—H21A0.9500
C5—C61.396 (3)C22—C231.367 (4)
C5—Cl21.724 (3)C22—H22A0.9500
C6—S21.740 (3)C23—C241.369 (4)
C7—C121.395 (3)C23—H23A0.9500
C7—C81.398 (3)C24—C251.377 (4)
C7—S31.753 (2)C24—H24A0.9500
C8—C91.374 (4)C25—H25A0.9500
C8—Cl31.733 (3)C26—C271.378 (3)
C9—C101.376 (4)C26—C311.385 (3)
C9—H9A0.9500C26—P11.789 (2)
C10—C111.381 (4)C27—C281.376 (4)
C10—H10A0.9500C27—H27A0.9500
C11—C121.398 (3)C28—C291.364 (4)
C11—Cl41.729 (3)C28—H28A0.9500
C12—S41.754 (2)C29—C301.368 (4)
C13—P11.790 (2)C29—H29A0.9500
C13—H13C0.9800C30—C311.378 (3)
C13—H13B0.9800C30—H30A0.9500
C13—H13A0.9800C31—H31A0.9500
C14—C151.385 (3)S1—Co12.1625 (6)
C14—C191.386 (4)S2—Co12.1570 (6)
C14—P11.787 (2)S3—Co22.1607 (6)
C15—C161.385 (3)S4—Co22.1642 (6)
C15—H15A0.9500Co1—S2i2.1570 (7)
C16—C171.354 (4)Co1—S1i2.1625 (6)
C16—H16A0.9500Co2—S3ii2.1607 (6)
C17—C181.367 (5)Co2—S4ii2.1642 (6)
C2—C1—C6118.5 (2)C14—C19—H19A120.5
C2—C1—S1122.3 (2)C25—C20—C21119.5 (2)
C6—C1—S1119.21 (18)C25—C20—P1121.91 (19)
C3—C2—C1121.2 (3)C21—C20—P1118.5 (2)
C3—C2—Cl1120.0 (2)C22—C21—C20120.0 (3)
C1—C2—Cl1118.8 (2)C22—C21—H21A120.0
C4—C3—C2119.9 (3)C20—C21—H21A120.0
C4—C3—H3A120.1C23—C22—C21120.1 (3)
C2—C3—H3A120.1C23—C22—H22A119.9
C3—C4—C5120.3 (3)C21—C22—H22A119.9
C3—C4—H4A119.9C22—C23—C24120.6 (3)
C5—C4—H4A119.9C22—C23—H23A119.7
C4—C5—C6121.1 (3)C24—C23—H23A119.7
C4—C5—Cl2119.3 (2)C23—C24—C25120.0 (3)
C6—C5—Cl2119.6 (2)C23—C24—H24A120.0
C5—C6—C1118.8 (2)C25—C24—H24A120.0
C5—C6—S2121.8 (2)C24—C25—C20119.7 (3)
C1—C6—S2119.36 (18)C24—C25—H25A120.1
C12—C7—C8119.0 (2)C20—C25—H25A120.1
C12—C7—S3119.30 (17)C27—C26—C31119.5 (2)
C8—C7—S3121.7 (2)C27—C26—P1120.69 (17)
C9—C8—C7121.1 (3)C31—C26—P1119.80 (17)
C9—C8—Cl3118.8 (2)C28—C27—C26119.9 (2)
C7—C8—Cl3120.1 (2)C28—C27—H27A120.0
C8—C9—C10120.0 (3)C26—C27—H27A120.0
C8—C9—H9A120.0C29—C28—C27120.4 (2)
C10—C9—H9A120.0C29—C28—H28A119.8
C9—C10—C11119.9 (3)C27—C28—H28A119.8
C9—C10—H10A120.0C28—C29—C30120.2 (2)
C11—C10—H10A120.0C28—C29—H29A119.9
C10—C11—C12120.9 (3)C30—C29—H29A119.9
C10—C11—Cl4119.1 (2)C29—C30—C31120.2 (2)
C12—C11—Cl4120.0 (2)C29—C30—H30A119.9
C7—C12—C11119.0 (2)C31—C30—H30A119.9
C7—C12—S4119.13 (18)C30—C31—C26119.8 (2)
C11—C12—S4121.9 (2)C30—C31—H31A120.1
P1—C13—H13C109.5C26—C31—H31A120.1
P1—C13—H13B109.5C20—P1—C14108.98 (11)
H13C—C13—H13B109.5C20—P1—C26110.83 (11)
P1—C13—H13A109.5C14—P1—C26109.48 (10)
H13C—C13—H13A109.5C20—P1—C13109.98 (13)
H13B—C13—H13A109.5C14—P1—C13108.86 (13)
C15—C14—C19120.1 (2)C26—P1—C13108.69 (12)
C15—C14—P1120.22 (19)C1—S1—Co1104.15 (9)
C19—C14—P1119.7 (2)C6—S2—Co1104.60 (9)
C14—C15—C16119.6 (3)C7—S3—Co2104.88 (8)
C14—C15—H15A120.2C12—S4—Co2104.80 (8)
C16—C15—H15A120.2S2—Co1—S2i180.0
C17—C16—C15119.9 (3)S2—Co1—S1i87.66 (2)
C17—C16—H16A120.0S2i—Co1—S1i92.34 (2)
C15—C16—H16A120.0S2—Co1—S192.34 (2)
C16—C17—C18121.1 (3)S2i—Co1—S187.66 (2)
C16—C17—H17A119.4S1i—Co1—S1180.0
C18—C17—H17A119.4S3—Co2—S3ii180.0
C17—C18—C19120.3 (3)S3—Co2—S4ii88.14 (2)
C17—C18—H18A119.9S3ii—Co2—S4ii91.86 (2)
C19—C18—H18A119.9S3—Co2—S491.86 (2)
C18—C19—C14119.0 (3)S3ii—Co2—S488.14 (2)
C18—C19—H19A120.5S4ii—Co2—S4180.0
C6—C1—C2—C33.7 (4)C25—C20—C21—C220.3 (4)
S1—C1—C2—C3176.85 (19)P1—C20—C21—C22177.1 (2)
C6—C1—C2—Cl1174.19 (17)C20—C21—C22—C230.2 (5)
S1—C1—C2—Cl15.2 (3)C21—C22—C23—C240.7 (5)
C1—C2—C3—C40.1 (4)C22—C23—C24—C251.4 (4)
Cl1—C2—C3—C4178.0 (2)C23—C24—C25—C201.3 (4)
C2—C3—C4—C51.6 (4)C21—C20—C25—C240.4 (4)
C3—C4—C5—C60.8 (4)P1—C20—C25—C24177.73 (19)
C3—C4—C5—Cl2179.2 (2)C31—C26—C27—C281.5 (4)
C4—C5—C6—C14.6 (4)P1—C26—C27—C28178.76 (19)
Cl2—C5—C6—C1175.42 (18)C26—C27—C28—C291.3 (4)
C4—C5—C6—S2174.2 (2)C27—C28—C29—C300.3 (4)
Cl2—C5—C6—S25.8 (3)C28—C29—C30—C311.8 (4)
C2—C1—C6—C55.9 (3)C29—C30—C31—C261.5 (4)
S1—C1—C6—C5174.63 (18)C27—C26—C31—C300.1 (4)
C2—C1—C6—S2172.86 (17)P1—C26—C31—C30179.8 (2)
S1—C1—C6—S26.6 (3)C25—C20—P1—C14106.6 (2)
C12—C7—C8—C92.9 (4)C21—C20—P1—C1470.7 (2)
S3—C7—C8—C9177.6 (2)C25—C20—P1—C2613.9 (2)
C12—C7—C8—Cl3176.68 (17)C21—C20—P1—C26168.7 (2)
S3—C7—C8—Cl32.9 (3)C25—C20—P1—C13134.1 (2)
C7—C8—C9—C101.8 (4)C21—C20—P1—C1348.5 (2)
Cl3—C8—C9—C10177.7 (2)C15—C14—P1—C2014.3 (2)
C8—C9—C10—C110.6 (4)C19—C14—P1—C20166.2 (2)
C9—C10—C11—C122.0 (4)C15—C14—P1—C26107.1 (2)
C9—C10—C11—Cl4177.2 (2)C19—C14—P1—C2672.5 (2)
C8—C7—C12—C111.5 (3)C15—C14—P1—C13134.2 (2)
S3—C7—C12—C11178.93 (17)C19—C14—P1—C1346.2 (2)
C8—C7—C12—S4177.92 (17)C27—C26—P1—C2094.9 (2)
S3—C7—C12—S41.6 (2)C31—C26—P1—C2084.8 (2)
C10—C11—C12—C70.9 (3)C27—C26—P1—C14144.9 (2)
Cl4—C11—C12—C7178.24 (17)C31—C26—P1—C1435.4 (2)
C10—C11—C12—S4179.71 (19)C27—C26—P1—C1326.1 (2)
Cl4—C11—C12—S41.2 (3)C31—C26—P1—C13154.2 (2)
C19—C14—C15—C160.4 (4)C2—C1—S1—Co1173.25 (18)
P1—C14—C15—C16179.99 (19)C6—C1—S1—Co16.2 (2)
C14—C15—C16—C170.2 (4)C5—C6—S2—Co1177.93 (18)
C15—C16—C17—C181.0 (5)C1—C6—S2—Co13.3 (2)
C16—C17—C18—C191.1 (5)C12—C7—S3—Co20.39 (19)
C17—C18—C19—C140.5 (5)C8—C7—S3—Co2179.15 (17)
C15—C14—C19—C180.3 (4)C7—C12—S4—Co21.98 (19)
P1—C14—C19—C18179.9 (2)C11—C12—S4—Co2178.60 (17)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···Cl10.952.903.441 (2)118
C4—H4A···S4iii0.952.953.834 (3)154
C13—H13A···S4iv0.982.923.853 (3)159
C31—H31A···S1v0.952.873.726 (3)151
C29—H29A···Cl3iii0.952.943.674 (3)135
Symmetry codes: (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(II) Bis(methyltriphenylphosphonium) bis(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S')cuprate(2-) dimethyl sulfoxide disolvate top
Crystal data top
(C19H18P)2[Cu(C6H2Cl2S2)2]·2C2H6OSF(000) = 1230
Mr = 1192.59Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.94737 (14) ÅCell parameters from 70625 reflections
b = 11.53304 (11) Åθ = 3.0–44.9°
c = 16.47990 (17) ŵ = 0.95 mm1
β = 90.6983 (9)°T = 100 K
V = 2650.69 (5) Å3Plate, orange
Z = 20.53 × 0.27 × 0.02 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
28120 independent reflections
Radiation source: Enhance (Mo) X-ray Source15927 reflections with I > 2σ(I)
Detector resolution: 5.2170 pixels mm-1Rint = 0.089
ω scansθmax = 50.9°, θmin = 2.6°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
h = 2930
Tmin = 0.742, Tmax = 0.981k = 2425
369672 measured reflectionsl = 3535
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1295P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
28120 reflectionsΔρmax = 1.14 e Å3
313 parametersΔρmin = 0.39 e Å3
Crystal data top
(C19H18P)2[Cu(C6H2Cl2S2)2]·2C2H6OSV = 2650.69 (5) Å3
Mr = 1192.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.94737 (14) ŵ = 0.95 mm1
b = 11.53304 (11) ÅT = 100 K
c = 16.47990 (17) Å0.53 × 0.27 × 0.02 mm
β = 90.6983 (9)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
28120 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
15927 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.981Rint = 0.089
369672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 1.14 e Å3
28120 reflectionsΔρmin = 0.39 e Å3
313 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.27b (release 13-12-2013 CrysAlis171 .NET) (compiled Dec 13 2013,18:28:10) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20229 (6)0.61969 (8)0.52257 (5)0.01411 (13)
C20.29896 (6)0.64066 (8)0.54208 (5)0.01583 (14)
C30.33412 (7)0.74906 (9)0.56292 (6)0.01856 (15)
H30.40010.75930.57580.022*
C40.27154 (7)0.84246 (9)0.56470 (6)0.01890 (16)
H40.29420.91770.57840.023*
C50.17525 (7)0.82436 (8)0.54620 (6)0.01676 (14)
C60.13753 (6)0.71535 (8)0.52434 (5)0.01444 (13)
C70.34105 (8)1.09430 (8)0.20956 (6)0.01920 (16)
H7C0.29871.16210.21050.023*
H7A0.33691.05720.15610.023*
H7B0.40731.11880.22030.023*
C140.31195 (6)1.06566 (8)0.38187 (5)0.01469 (13)
C190.23386 (7)1.12765 (9)0.41189 (6)0.01937 (16)
H190.17421.12690.38350.023*
C180.24419 (8)1.19042 (9)0.48363 (7)0.02245 (18)
H180.19111.23170.50480.027*
C170.33186 (8)1.19275 (9)0.52417 (6)0.02125 (17)
H170.33861.23590.57300.025*
C160.40986 (7)1.13242 (9)0.49387 (6)0.01938 (16)
H160.46971.13470.52200.023*
C150.40055 (7)1.06879 (8)0.42263 (6)0.01624 (14)
H150.45391.02770.40170.019*
C200.18635 (6)0.94138 (8)0.26401 (5)0.01459 (13)
C210.12351 (7)0.91080 (8)0.32564 (6)0.01723 (15)
H210.14100.92330.38080.021*
C220.03520 (7)0.86191 (9)0.30581 (6)0.01876 (16)
H220.00840.84240.34750.023*
C230.01069 (7)0.84151 (8)0.22516 (6)0.01856 (15)
H230.04990.80850.21180.022*
C240.07449 (7)0.86918 (9)0.16378 (6)0.01836 (15)
H240.05780.85350.10880.022*
C250.16228 (7)0.91950 (8)0.18264 (6)0.01664 (14)
H250.20570.93890.14080.020*
C80.38173 (6)0.86877 (7)0.28620 (5)0.01370 (13)
C90.38465 (7)0.79763 (8)0.35489 (6)0.01706 (15)
H90.34930.81790.40170.020*
C100.43958 (8)0.69716 (8)0.35434 (6)0.01997 (16)
H100.44250.64910.40110.024*
C110.49039 (8)0.66671 (9)0.28536 (6)0.02083 (17)
H110.52850.59850.28530.025*
C120.48535 (8)0.73606 (9)0.21662 (6)0.02147 (17)
H120.51900.71420.16930.026*
C130.43120 (7)0.83745 (8)0.21668 (6)0.01810 (15)
H130.42800.88490.16960.022*
C260.20169 (9)0.36221 (11)0.69835 (8)0.0297 (2)
H26A0.23870.34420.74770.036*
H26B0.24520.38860.65590.036*
H26C0.16770.29260.67980.036*
C270.20139 (10)0.58249 (12)0.74969 (8)0.0332 (3)
H27A0.24150.55280.79430.040*
H27B0.16720.65200.76770.040*
H27C0.24200.60220.70360.040*
O10.06658 (6)0.43738 (8)0.79518 (5)0.02556 (15)
P10.30510 (2)0.99367 (2)0.28561 (2)0.01329 (4)
S10.16153 (2)0.48078 (2)0.49861 (2)0.01542 (4)
S20.01625 (2)0.69557 (2)0.50212 (2)0.01693 (4)
S30.11665 (2)0.47421 (2)0.71961 (2)0.02120 (5)
Cl10.37970 (2)0.52434 (2)0.54206 (2)0.02084 (4)
Cl20.09886 (2)0.94374 (2)0.55149 (2)0.02264 (5)
Cu10.00000.50000.50000.01322 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0149 (3)0.0167 (3)0.0107 (3)0.0008 (3)0.0004 (2)0.0003 (2)
C20.0139 (3)0.0197 (4)0.0139 (3)0.0009 (3)0.0009 (3)0.0015 (3)
C30.0166 (3)0.0239 (4)0.0152 (3)0.0052 (3)0.0005 (3)0.0002 (3)
C40.0212 (4)0.0198 (4)0.0157 (3)0.0059 (3)0.0014 (3)0.0016 (3)
C50.0196 (4)0.0156 (3)0.0151 (3)0.0016 (3)0.0036 (3)0.0009 (3)
C60.0151 (3)0.0152 (3)0.0130 (3)0.0003 (3)0.0019 (3)0.0003 (2)
C70.0229 (4)0.0169 (4)0.0177 (4)0.0030 (3)0.0021 (3)0.0037 (3)
C140.0166 (3)0.0135 (3)0.0140 (3)0.0005 (3)0.0014 (3)0.0010 (3)
C190.0176 (4)0.0165 (4)0.0239 (4)0.0029 (3)0.0021 (3)0.0034 (3)
C180.0235 (4)0.0176 (4)0.0264 (5)0.0025 (3)0.0043 (4)0.0058 (3)
C170.0282 (5)0.0181 (4)0.0175 (4)0.0014 (3)0.0025 (3)0.0054 (3)
C160.0217 (4)0.0204 (4)0.0159 (4)0.0019 (3)0.0029 (3)0.0027 (3)
C150.0165 (3)0.0174 (3)0.0148 (3)0.0005 (3)0.0010 (3)0.0022 (3)
C200.0157 (3)0.0138 (3)0.0141 (3)0.0001 (3)0.0023 (3)0.0001 (3)
C210.0202 (4)0.0177 (4)0.0139 (3)0.0010 (3)0.0008 (3)0.0002 (3)
C220.0189 (4)0.0188 (4)0.0186 (4)0.0018 (3)0.0011 (3)0.0005 (3)
C230.0176 (4)0.0168 (4)0.0212 (4)0.0016 (3)0.0028 (3)0.0002 (3)
C240.0187 (4)0.0198 (4)0.0165 (4)0.0009 (3)0.0034 (3)0.0022 (3)
C250.0172 (3)0.0189 (4)0.0138 (3)0.0002 (3)0.0012 (3)0.0006 (3)
C80.0152 (3)0.0132 (3)0.0127 (3)0.0004 (2)0.0015 (2)0.0007 (2)
C90.0216 (4)0.0160 (3)0.0136 (3)0.0013 (3)0.0005 (3)0.0008 (3)
C100.0259 (4)0.0154 (3)0.0186 (4)0.0018 (3)0.0004 (3)0.0024 (3)
C110.0238 (4)0.0147 (3)0.0241 (4)0.0021 (3)0.0014 (3)0.0018 (3)
C120.0252 (4)0.0189 (4)0.0204 (4)0.0020 (3)0.0053 (3)0.0024 (3)
C130.0221 (4)0.0175 (4)0.0147 (3)0.0005 (3)0.0025 (3)0.0004 (3)
C260.0328 (6)0.0295 (5)0.0271 (5)0.0115 (4)0.0078 (4)0.0027 (4)
C270.0379 (7)0.0312 (6)0.0308 (6)0.0090 (5)0.0077 (5)0.0013 (5)
O10.0233 (3)0.0282 (4)0.0254 (4)0.0012 (3)0.0080 (3)0.0037 (3)
P10.01548 (9)0.01278 (9)0.01158 (8)0.00015 (7)0.00208 (7)0.00014 (7)
S10.01402 (8)0.01510 (9)0.01713 (9)0.00027 (7)0.00005 (7)0.00134 (7)
S20.01420 (9)0.01562 (9)0.02098 (10)0.00077 (7)0.00046 (7)0.00093 (7)
S30.02288 (11)0.02286 (11)0.01794 (10)0.00442 (9)0.00261 (8)0.00203 (8)
Cl10.01402 (8)0.02486 (10)0.02360 (10)0.00159 (7)0.00115 (7)0.00282 (8)
Cl20.02563 (11)0.01524 (9)0.02721 (12)0.00048 (8)0.00724 (9)0.00099 (8)
Cu10.01290 (6)0.01499 (6)0.01177 (6)0.00054 (5)0.00042 (5)0.00054 (5)
Geometric parameters (Å, º) top
C1—C21.4033 (12)C22—C231.3885 (14)
C1—C61.4264 (13)C22—H220.9500
C1—S11.7436 (9)C23—C241.3924 (14)
C2—C31.3847 (14)C23—H230.9500
C2—Cl11.7516 (10)C24—C251.3868 (13)
C3—C41.3869 (15)C24—H240.9500
C3—H30.9500C25—H250.9500
C4—C51.3894 (14)C8—C131.3923 (13)
C4—H40.9500C8—C91.3982 (12)
C5—C61.4081 (13)C8—P11.7936 (9)
C5—Cl21.7437 (10)C9—C101.3891 (13)
C6—S21.7413 (9)C9—H90.9500
C7—P11.7845 (10)C10—C111.3919 (14)
C7—H7C0.9800C10—H100.9500
C7—H7A0.9800C11—C121.3878 (15)
C7—H7B0.9800C11—H110.9500
C14—C191.3983 (13)C12—C131.3921 (14)
C14—C151.3998 (13)C12—H120.9500
C14—P11.7919 (9)C13—H130.9500
C19—C181.3922 (14)C26—S31.7912 (12)
C19—H190.9500C26—H26A0.9800
C18—C171.3865 (16)C26—H26B0.9800
C18—H180.9500C26—H26C0.9800
C17—C161.3893 (15)C27—S31.7855 (14)
C17—H170.9500C27—H27A0.9800
C16—C151.3893 (13)C27—H27B0.9800
C16—H160.9500C27—H27C0.9800
C15—H150.9500O1—S31.4968 (8)
C20—C211.3948 (13)S1—Cu12.2641 (2)
C20—C251.4013 (12)S2—Cu12.2671 (2)
C20—P11.7943 (9)Cu1—S1i2.2642 (2)
C21—C221.3900 (14)Cu1—S2i2.2671 (2)
C21—H210.9500
C2—C1—C6117.96 (8)C25—C24—C23120.23 (9)
C2—C1—S1121.34 (7)C25—C24—H24119.9
C6—C1—S1120.69 (7)C23—C24—H24119.9
C3—C2—C1123.29 (9)C24—C25—C20119.36 (9)
C3—C2—Cl1117.76 (7)C24—C25—H25120.3
C1—C2—Cl1118.94 (7)C20—C25—H25120.3
C2—C3—C4119.04 (9)C13—C8—C9120.28 (8)
C2—C3—H3120.5C13—C8—P1120.33 (7)
C4—C3—H3120.5C9—C8—P1119.15 (7)
C3—C4—C5119.05 (9)C10—C9—C8119.66 (9)
C3—C4—H4120.5C10—C9—H9120.2
C5—C4—H4120.5C8—C9—H9120.2
C4—C5—C6123.19 (9)C9—C10—C11120.14 (9)
C4—C5—Cl2117.39 (7)C9—C10—H10119.9
C6—C5—Cl2119.42 (7)C11—C10—H10119.9
C5—C6—C1117.46 (8)C12—C11—C10120.00 (9)
C5—C6—S2121.98 (7)C12—C11—H11120.0
C1—C6—S2120.54 (7)C10—C11—H11120.0
P1—C7—H7C109.5C11—C12—C13120.37 (9)
P1—C7—H7A109.5C11—C12—H12119.8
H7C—C7—H7A109.5C13—C12—H12119.8
P1—C7—H7B109.5C12—C13—C8119.52 (9)
H7C—C7—H7B109.5C12—C13—H13120.2
H7A—C7—H7B109.5C8—C13—H13120.2
C19—C14—C15120.25 (8)S3—C26—H26A109.5
C19—C14—P1121.12 (7)S3—C26—H26B109.5
C15—C14—P1118.29 (7)H26A—C26—H26B109.5
C18—C19—C14119.57 (9)S3—C26—H26C109.5
C18—C19—H19120.2H26A—C26—H26C109.5
C14—C19—H19120.2H26B—C26—H26C109.5
C17—C18—C19120.04 (9)S3—C27—H27A109.5
C17—C18—H18120.0S3—C27—H27B109.5
C19—C18—H18120.0H27A—C27—H27B109.5
C18—C17—C16120.47 (9)S3—C27—H27C109.5
C18—C17—H17119.8H27A—C27—H27C109.5
C16—C17—H17119.8H27B—C27—H27C109.5
C17—C16—C15120.18 (9)C7—P1—C14107.94 (5)
C17—C16—H16119.9C7—P1—C8110.71 (5)
C15—C16—H16119.9C14—P1—C8110.00 (4)
C16—C15—C14119.48 (9)C7—P1—C20110.24 (5)
C16—C15—H15120.3C14—P1—C20111.74 (4)
C14—C15—H15120.3C8—P1—C20106.24 (4)
C21—C20—C25120.39 (8)C1—S1—Cu1103.27 (3)
C21—C20—P1121.82 (7)C6—S2—Cu1103.31 (3)
C25—C20—P1117.39 (7)O1—S3—C27106.34 (6)
C22—C21—C20119.62 (9)O1—S3—C26105.95 (5)
C22—C21—H21120.2C27—S3—C2696.95 (7)
C20—C21—H21120.2S1—Cu1—S1i179.999 (11)
C23—C22—C21120.06 (9)S1—Cu1—S2i90.100 (8)
C23—C22—H22120.0S1i—Cu1—S2i89.899 (8)
C21—C22—H22120.0S1—Cu1—S289.899 (8)
C22—C23—C24120.30 (9)S1i—Cu1—S290.101 (8)
C22—C23—H23119.9S2i—Cu1—S2180.0
C24—C23—H23119.9
C6—C1—C2—C30.09 (13)P1—C20—C25—C24174.20 (7)
S1—C1—C2—C3178.77 (7)C13—C8—C9—C101.95 (14)
C6—C1—C2—Cl1178.94 (6)P1—C8—C9—C10176.41 (8)
S1—C1—C2—Cl10.08 (10)C8—C9—C10—C110.86 (15)
C1—C2—C3—C40.14 (14)C9—C10—C11—C120.76 (16)
Cl1—C2—C3—C4179.00 (7)C10—C11—C12—C131.30 (16)
C2—C3—C4—C50.55 (14)C11—C12—C13—C80.22 (16)
C3—C4—C5—C60.96 (14)C9—C8—C13—C121.41 (14)
C3—C4—C5—Cl2178.58 (7)P1—C8—C13—C12175.80 (8)
C4—C5—C6—C10.90 (13)C19—C14—P1—C788.84 (9)
Cl2—C5—C6—C1178.63 (6)C15—C14—P1—C784.54 (8)
C4—C5—C6—S2179.60 (7)C19—C14—P1—C8150.27 (8)
Cl2—C5—C6—S20.07 (11)C15—C14—P1—C836.35 (9)
C2—C1—C6—C50.45 (12)C19—C14—P1—C2032.53 (9)
S1—C1—C6—C5178.43 (7)C15—C14—P1—C20154.09 (7)
C2—C1—C6—S2179.16 (6)C13—C8—P1—C724.58 (9)
S1—C1—C6—S20.29 (10)C9—C8—P1—C7160.97 (7)
C15—C14—C19—C181.46 (15)C13—C8—P1—C14143.79 (7)
P1—C14—C19—C18174.71 (8)C9—C8—P1—C1441.76 (9)
C14—C19—C18—C171.04 (16)C13—C8—P1—C2095.11 (8)
C19—C18—C17—C160.22 (16)C9—C8—P1—C2079.34 (8)
C18—C17—C16—C150.19 (16)C21—C20—P1—C7148.23 (8)
C17—C16—C15—C140.23 (15)C25—C20—P1—C738.93 (9)
C19—C14—C15—C161.06 (14)C21—C20—P1—C1428.21 (9)
P1—C14—C15—C16174.50 (8)C25—C20—P1—C14158.96 (7)
C25—C20—C21—C222.16 (14)C21—C20—P1—C891.77 (8)
P1—C20—C21—C22174.79 (7)C25—C20—P1—C881.07 (8)
C20—C21—C22—C231.33 (15)C2—C1—S1—Cu1168.55 (6)
C21—C22—C23—C240.39 (15)C6—C1—S1—Cu110.28 (7)
C22—C23—C24—C251.29 (15)C5—C6—S2—Cu1167.98 (7)
C23—C24—C25—C200.47 (15)C1—C6—S2—Cu110.68 (8)
C21—C20—C25—C241.26 (14)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1ii0.982.703.6717 (10)172
C7—H7B···O1iii0.982.613.4511 (14)144
C15—H15···O1iii0.952.403.1460 (12)135
C21—H21···Cl20.952.893.7613 (10)153
C25—H25···S1ii0.953.013.9546 (10)175
C26—H26B···S10.983.023.6021 (13)119
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula(C19H18P)[Co(C6H2Cl2S2)2](C19H18P)2[Cu(C6H2Cl2S2)2]·2C2H6OS
Mr754.421192.59
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)13.46050 (18), 14.6661 (2), 16.24190 (19)13.94737 (14), 11.53304 (11), 16.47990 (17)
β (°) 91.9170 (11) 90.6983 (9)
V3)3204.57 (7)2650.69 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.200.95
Crystal size (mm)0.50 × 0.21 × 0.110.53 × 0.27 × 0.02
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Agilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.746, 0.8760.742, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
55679, 8220, 5470 369672, 28120, 15927
Rint0.0340.089
(sin θ/λ)max1)0.6961.091
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.01 0.051, 0.119, 1.00
No. of reflections822028120
No. of parameters373313
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.541.14, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2012), CrysAlis RED (Oxford Diffraction, 2012), SUPERFLIP (Palatinus, 2013), OLEX2 (Dolomanov et al., 2009) and SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), DIAMOND (Brandenburg, 1998; Brandenburg & Berndt, 1999), enCIFer (Allen et al., 2004).

Selected bond distances (Å) and angles (°) for compounds (I), (II) and (III) top
(I)(II)(III)
S1—Co12.1625 (6)S1—Cu12.2641 (2)S1—Cu12.1721 (6)
S2—Co12.1570 (6)S2—Cu12.2671 (2)S2—Cu12.1724 (7)
S3—Co22.1607 (6)--S3—Cu22.1740 (6)
S4—Co22.1642 (6)--S4—Cu22.1765 (6)
S2—Co1—S192.34 (2)S2—Cu1—S189.899 (8)S2—Cu1—S192.91 (2)
S2—Co1—S1i87.66 (2)S2—Cu1—S1ii90.101 (8)S2—Cu1—S1i87.09 (2)
S1i—Co1—S1180.0S1ii—Cu1—S1180.0S1i—Cu1—S1180.0
S2—Co1—S2i180.0S2—Cu1—S2ii180.0S2—Cu1—S2i180.0
S3—Co2—S491.86 (2)--S3—Cu2—S492.42 (2)
S3—Co2—S4ii88.14 (2)--S3—Cu2—S4ii87.58 (2)
S3—Co2—S3ii180.0--S3—Cu2—S3ii180.0
S4—Co2—S4ii180.0--S4—Cu2—S4ii180.0
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1.
Hydrogen-bond interaction geometry for compounds (I), (II) and (III). top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C27—H27A···Cl10.952.903.441 (2)117.6
C29—H29A···Cl3iii0.952.943.674 (3)135.3
C31—H31A···S1v0.952.873.726 (3)150.7
C13—H13A···S4iv0.982.923.853 (3)158.8
C4—H4A···S4iii0.952.953.834 (3)154.4
(II)C7—H7A···S1vi'0.982.703.672 (1)172.2
C7—H7B···O1vii0.982.613.4511 (14)143.9
C15—H15···O1vii0.952.403.1460 (12)134.7
C21—H21···Cl20.952.893.7613 (10)153.1
C25—H25···S1vi0.953.013.9546 (10)175.0
C26—H26B···S10.983.023.6021 (13)119.0
(III)C27–H27A···Cl1'0.952.903.456 (3)118.6
C29—H29A···Cl3iii0.952.943.674 (3)134.8
C31–H31A···S1v0.952.883.744 (3)151.7
C13—H13A···S4iv0.982.923.847 (3)158.4
C4—H4A···S4iii0.952.973.854 (3)155.3
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) -x, y-1/2, -z+3/2; (iv) -x+1, y-1/2, -z+3/2; (v) x, -y+1/2, z-1/2; (vi) -x+1/2, y+1/2, -z+1/2; (vii) x+1/2, -y+3/2, z-1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds