Download citation
Download citation
link to html
The title compound, betaine 0.77-perhydrate 0.23-hydrate, (CH3)3N+CH2COO-·0.77H2O2·0.23H2O, crystallizes in the ortho­rhom­bic noncentrosymmetric space group Pca21. Chiral mol­ecules of hydrogen peroxide are positionally disordered with water mol­ecules in a ratio of 0.77:0.23. Betaine, 2-(tri­methyl­azaniumyl)­acetate, preserves its zwitterionic state, with a positively charged ammonium group and a negatively charged carboxyl­ate group. The mol­ecular conformation of betaine here differs from the conformations of both anhydrous betaine and its hydrate, mainly in the orientation of the carboxyl­ate group with respect to the C-C-N skeleton. Hydrogen peroxide is linked via two hydrogen bonds to carboxyl­ate groups, forming infinite chains along the crystallographic a axis, which are very similar to those in the crystal structure of betaine hydrate. The present work contributes to the understanding of the structure-forming factors for amino acid perhydrates, which are presently attracting much attention. A correlation is suggested between the ratio of amino acid zwitterions and hydrogen peroxide in the unit cell and the structural motifs present in the crystal structures of all currently known amino acids perhydrates. This can help to classify the crystal structures of amino acid perhydrates and to design new crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113005386/ku3089sup1.cif
Contains datablocks I_295K, I_100K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113005386/ku3089I_295Ksup2.hkl
Contains datablock I_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113005386/ku3089I_100Ksup3.hkl
Contains datablock I_100K

CCDC references: 934616; 934617

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 2012) for I_295K; Mercury (Macrae et al., 2008) for I_100K. For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

(I_295K) 2-(Trimethylazaniumyl)acetate 0.77-perhydrate 0.23-hydrate top
Crystal data top
C5H11NO2·0.77H2O2·0.23H2ODx = 1.286 Mg m3
Mr = 147.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 4289 reflections
a = 9.5819 (2) Åθ = 2.1–31.9°
b = 6.78424 (14) ŵ = 0.11 mm1
c = 11.7152 (3) ÅT = 295 K
V = 761.56 (3) Å3Prism, colourless
Z = 40.28 × 0.28 × 0.12 mm
F(000) = 320.5
Data collection top
Oxford Gemini Ultra R
diffractometer
2325 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.3457 pixels mm-1θmax = 30.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 99
Tmin = 0.880, Tmax = 0.986l = 1616
13549 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.036P]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.10 e Å3
3 restraintsΔρmin = 0.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.30082 (11)0.08321 (17)0.36281 (10)0.0401 (2)
H2A0.30270.03070.31280.048*
H2B0.22230.06630.41420.048*
N10.27298 (9)0.26294 (12)0.29039 (9)0.03495 (19)
O30.45924 (9)0.08223 (15)0.47921 (10)0.0580 (3)
C10.43472 (12)0.08077 (17)0.43460 (10)0.0413 (2)
C50.14088 (15)0.2281 (2)0.22555 (13)0.0516 (3)
H5A0.12230.33910.17700.077*
H5B0.06500.21130.27820.077*
H5C0.15040.11150.17980.077*
C30.38854 (14)0.2933 (2)0.20713 (11)0.0489 (3)
H3A0.39840.17780.16050.073*
H3B0.47400.31680.24760.073*
H3C0.36770.40480.15960.073*
C40.25324 (19)0.44314 (19)0.36201 (12)0.0575 (3)
H4A0.33680.46840.40480.086*
H4B0.17680.42290.41370.086*
H4C0.23340.55380.31360.086*
O40.50714 (10)0.23128 (14)0.44387 (11)0.0605 (3)
O10.7958 (2)0.3214 (3)0.5961 (2)0.0504 (5)0.767 (8)
H1O0.841 (3)0.236 (4)0.558 (2)0.060*0.767 (8)
O20.6792 (3)0.1900 (5)0.6214 (3)0.0552 (6)0.767 (8)
H2O0.629 (3)0.199 (3)0.563 (2)0.053 (7)*0.767 (8)
O50.7313 (13)0.2456 (19)0.6121 (9)0.088 (5)0.233 (8)
H3O0.753 (17)0.245 (15)0.545 (4)0.105*0.233 (8)
H4O0.649 (6)0.26 (2)0.594 (16)0.105*0.233 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0373 (5)0.0406 (6)0.0423 (6)0.0025 (4)0.0012 (5)0.0078 (4)
N10.0356 (4)0.0355 (4)0.0338 (4)0.0036 (4)0.0010 (4)0.0001 (4)
O30.0480 (5)0.0624 (6)0.0635 (6)0.0054 (4)0.0029 (5)0.0251 (5)
C10.0354 (5)0.0516 (6)0.0368 (5)0.0032 (4)0.0017 (4)0.0070 (5)
C50.0444 (7)0.0560 (7)0.0545 (8)0.0001 (6)0.0154 (6)0.0043 (6)
C30.0484 (7)0.0540 (7)0.0444 (6)0.0020 (6)0.0093 (5)0.0108 (5)
C40.0686 (8)0.0499 (7)0.0541 (7)0.0179 (7)0.0069 (7)0.0157 (6)
O40.0513 (5)0.0593 (6)0.0707 (6)0.0108 (5)0.0219 (5)0.0115 (5)
O10.0465 (10)0.0416 (8)0.0629 (10)0.0006 (6)0.0011 (8)0.0128 (6)
O20.0474 (11)0.0701 (11)0.0482 (9)0.0052 (9)0.0068 (9)0.0169 (8)
O50.087 (11)0.111 (13)0.066 (6)0.034 (9)0.017 (8)0.032 (8)
Geometric parameters (Å, º) top
C2—N11.5093 (14)C3—H3A0.9600
C2—C11.5341 (15)C3—H3B0.9600
C2—H2A0.9700C3—H3C0.9600
C2—H2B0.9700C4—H4A0.9600
N1—C31.4899 (15)C4—H4B0.9600
N1—C41.4947 (15)C4—H4C0.9600
N1—C51.4950 (16)O1—O21.460 (3)
O3—C11.2455 (14)O1—H1O0.85 (3)
C1—O41.2394 (14)O2—H2O0.84 (3)
C5—H5A0.9600O5—H3O0.81 (2)
C5—H5B0.9600O5—H4O0.82 (2)
C5—H5C0.9600
N1—C2—C1117.69 (9)N1—C5—H5C109.5
N1—C2—H2A107.9H5A—C5—H5C109.5
C1—C2—H2A107.9H5B—C5—H5C109.5
N1—C2—H2B107.9N1—C3—H3A109.5
C1—C2—H2B107.9N1—C3—H3B109.5
H2A—C2—H2B107.2H3A—C3—H3B109.5
C3—N1—C4110.40 (11)N1—C3—H3C109.5
C3—N1—C5108.57 (10)H3A—C3—H3C109.5
C4—N1—C5107.90 (10)H3B—C3—H3C109.5
C3—N1—C2110.38 (9)N1—C4—H4A109.5
C4—N1—C2111.57 (10)N1—C4—H4B109.5
C5—N1—C2107.91 (9)H4A—C4—H4B109.5
O4—C1—O3126.09 (11)N1—C4—H4C109.5
O4—C1—C2120.50 (10)H4A—C4—H4C109.5
O3—C1—C2113.42 (10)H4B—C4—H4C109.5
N1—C5—H5A109.5O2—O1—H1O94.8 (17)
N1—C5—H5B109.5O1—O2—H2O103.1 (18)
H5A—C5—H5B109.5H3O—O5—H4O90 (10)
C1—C2—N1—C359.36 (13)N1—C2—C1—O49.20 (17)
C1—C2—N1—C463.78 (14)N1—C2—C1—O3170.72 (10)
C1—C2—N1—C5177.86 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.84 (3)1.83 (3)2.668 (3)175 (2)
O1—H1O···O3i0.85 (3)1.79 (3)2.638 (2)171 (3)
Symmetry code: (i) x+1/2, y, z.
(I_100K) 2-(Trimethylazaniumyl)acetate 0.77-perhydrate 0.23-hydrate top
Crystal data top
C5H11NO2·0.76H2O2·0.24H2ODx = 1.326 Mg m3
Mr = 147.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 8522 reflections
a = 9.49160 (15) Åθ = 2.1–32.6°
b = 6.70620 (11) ŵ = 0.11 mm1
c = 11.5975 (2) ÅT = 100 K
V = 738.21 (2) Å3Prism, colourless
Z = 40.28 × 0.21 × 0.11 mm
F(000) = 320.4
Data collection top
Oxford Gemini Ultra R
diffractometer
2264 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.3457 pixels mm-1θmax = 30.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 99
Tmin = 0.904, Tmax = 0.987l = 1616
14434 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0572P]
where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.29813 (8)0.08280 (11)0.36339 (7)0.01352 (14)
H2A0.29930.03560.31240.016*
H2B0.21800.06630.41720.016*
N10.26953 (7)0.26385 (9)0.28966 (6)0.01165 (13)
O30.46219 (6)0.08424 (9)0.47878 (6)0.01963 (14)
C10.43466 (8)0.08217 (12)0.43454 (7)0.01431 (14)
C50.13541 (9)0.22658 (13)0.22434 (8)0.01790 (16)
H5A0.11730.33840.17200.027*
H5B0.05700.21380.27880.027*
H5C0.14440.10320.17960.027*
C30.38620 (9)0.29483 (13)0.20455 (8)0.01707 (15)
H3A0.39580.17590.15610.026*
H3B0.47470.31850.24590.026*
H3C0.36450.41040.15590.026*
C40.24943 (10)0.44776 (12)0.36163 (8)0.01905 (16)
H4A0.33620.47600.40440.029*
H4B0.17190.42640.41610.029*
H4C0.22700.56090.31140.029*
O40.50649 (7)0.23681 (9)0.44478 (7)0.02055 (14)
O10.79816 (11)0.32321 (15)0.59821 (8)0.0162 (3)0.762 (6)
H1O0.8429 (19)0.244 (3)0.5573 (17)0.019*0.762 (6)
O20.68070 (15)0.1860 (2)0.62277 (12)0.0186 (3)0.762 (6)
H2O0.6256 (19)0.207 (2)0.5661 (16)0.015 (3)*0.762 (6)
O50.7267 (7)0.2408 (8)0.6128 (4)0.030 (2)0.238 (6)
H3O0.762 (9)0.332 (9)0.575 (7)0.036*0.238 (6)
H4O0.714 (8)0.146 (7)0.570 (5)0.036*0.238 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0116 (3)0.0142 (3)0.0148 (3)0.0010 (2)0.0012 (3)0.0038 (3)
N10.0109 (3)0.0127 (3)0.0114 (3)0.0015 (2)0.0003 (2)0.0001 (2)
O30.0166 (3)0.0213 (3)0.0210 (3)0.0023 (2)0.0010 (2)0.0074 (2)
C10.0112 (3)0.0199 (4)0.0118 (3)0.0014 (2)0.0012 (3)0.0018 (3)
C50.0134 (3)0.0213 (4)0.0190 (4)0.0003 (3)0.0060 (3)0.0012 (3)
C30.0161 (3)0.0195 (3)0.0156 (3)0.0015 (3)0.0046 (3)0.0037 (3)
C40.0219 (4)0.0168 (3)0.0184 (4)0.0062 (3)0.0019 (3)0.0055 (3)
O40.0162 (3)0.0214 (3)0.0240 (3)0.0037 (2)0.0066 (2)0.0045 (2)
O10.0123 (5)0.0150 (5)0.0212 (5)0.0018 (4)0.0006 (3)0.0045 (3)
O20.0139 (5)0.0243 (6)0.0176 (5)0.0032 (4)0.0014 (4)0.0056 (4)
O50.033 (4)0.037 (4)0.0184 (18)0.017 (3)0.009 (2)0.008 (2)
Geometric parameters (Å, º) top
C2—N11.5097 (10)C3—H3A0.9800
C2—C11.5364 (10)C3—H3B0.9800
C2—H2A0.9900C3—H3C0.9800
C2—H2B0.9900C4—H4A0.9800
N1—C31.4980 (10)C4—H4B0.9800
N1—C41.5014 (10)C4—H4C0.9800
N1—C51.5023 (10)O1—O21.473 (2)
O3—C11.2557 (9)O1—H1O0.83 (2)
C1—O41.2467 (10)O2—H2O0.851 (19)
C5—H5A0.9800O5—H3O0.83 (2)
C5—H5B0.9800O5—H4O0.81 (2)
C5—H5C0.9800
N1—C2—C1117.26 (6)N1—C5—H5C109.5
N1—C2—H2A108.0H5A—C5—H5C109.5
C1—C2—H2A108.0H5B—C5—H5C109.5
N1—C2—H2B108.0N1—C3—H3A109.5
C1—C2—H2B108.0N1—C3—H3B109.5
H2A—C2—H2B107.2H3A—C3—H3B109.5
C3—N1—C4110.27 (6)N1—C3—H3C109.5
C3—N1—C5108.49 (6)H3A—C3—H3C109.5
C4—N1—C5108.02 (6)H3B—C3—H3C109.5
C3—N1—C2110.60 (6)N1—C4—H4A109.5
C4—N1—C2111.63 (6)N1—C4—H4B109.5
C5—N1—C2107.71 (6)H4A—C4—H4B109.5
O4—C1—O3125.91 (8)N1—C4—H4C109.5
O4—C1—C2120.67 (7)H4A—C4—H4C109.5
O3—C1—C2113.41 (7)H4B—C4—H4C109.5
N1—C5—H5A109.5O2—O1—H1O95.7 (12)
N1—C5—H5B109.5O1—O2—H2O102.3 (11)
H5A—C5—H5B109.5H3O—O5—H4O108 (9)
C1—C2—N1—C358.85 (8)N1—C2—C1—O411.02 (11)
C1—C2—N1—C464.32 (9)N1—C2—C1—O3169.31 (7)
C1—C2—N1—C5177.26 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O40.851 (19)1.816 (19)2.6667 (16)177.0 (15)
O1—H1O···O3i0.83 (2)1.81 (2)2.6288 (11)171.9 (18)
Symmetry code: (i) x+1/2, y, z.
Selected geometric parameters (Å, °) for (I) at 295 and 100 K. top
(I) at 295 K(I) at 100 K
O3—C11.2455 (14)1.2557 (9)
C1—O41.2394 (14)1.2467 (10)
O1—O21.460 (3)1.473 (2)
O1—H1O0.85 (3)0.83 (2)
O2—H2O0.84 (3)0.851 (19)
O4—C1—O3126.09 (11)125.91 (8)
O4—C1—C2120.50 (10)120.67 (7)
O3—C1—C2113.42 (10)113.41 (7)
O2—O1—H1O94.8 (17)95.7 (12)
O1—O2—H2O103.1 (18)102.3 (11)
H1O—O1—O2—H2O-84 (2)-88 (2)
Hydrogen-bond geometry (Å, °) for (I) at 295 and 100 K. top
D—H···AD—HH···AD···AD—H···A
(I) at 295 K
O2—H2O···O40.84 (3)1.83 (3)2.668 (3)175 (2)
O1—H1O···O30.85 (3)1.79 (3)2.638 (2)171 (3)
(I) at 100 K
O2—H2O···O4i0.851 (19)1.816 (19)2.6667 (16)177.0 (15)
O1—H1O···O3i0.83 (2)1.81 (2)2.6288 (11)171.9 (18)
Symmetry code: (i) x+1/2, -y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds