Download citation
Download citation
link to html
Using the recently upgraded Polaris diffractometer at the ISIS Spallation Neutron Source (Rutherford Appleton Laboratory), the crystal structures of the post-perovskite polymorphs of NaCoF3 and NaNiF3 have been determined by time-of-flight neutron powder diffraction from samples, of mass 56 and 16 mg, respectively, recovered after synthesis at ∼20 GPa in a multi-anvil press. The structure of post-perovskite NaNiF3 has also been determined by single-crystal synchrotron X-ray diffraction for comparison. All measurements were made at atmospheric pressure and room temperature. Despite the extremely small sample size in the neutron diffraction study, there is very good agreement between the positional parameters for NaNiF3 obtained from the refinements of the X-ray and neutron data. Relative to the commonly used oxide post-perovskite analogue phases having calcium as the A cation, the axial ratios and derived structural parameters of these fluoride post-perovskites are more consistent with those of Mg0.91Fe0.09SiO3 at high pressure and temperature. The structures of NaCoF3 and NaNiF3 are very similar, but the unit-cell and CoF6 octahedral volumes of NaCoF3 are larger than the corresponding quantities in NaNiF3, which supports the hypothesis that the Co2+ ion has a high-spin state in this compound. The anisotropic atomic displacement parameters of the Na ions in NaNiF3 post-perovskite are of similar magnitude to those of the F ions. The probability ellipsoid of the F1 ion is a prolate spheroid with its largest component parallel to the b axis of the unit cell, corresponding to rotational motion of the NiF6 octahedra about the a axis of the crystal. Although they must be synthesized at pressures above about 18 GPa, these ABF3 compounds are strongly metastable at atmospheric pressure and room temperature and so are highly suitable for use as analogues for (Mg,Fe)SiO3 post-perovskite in the deep Earth, with significant advantages over oxides such as CaIrO3 or CaPtO3.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714021803/ks5440sup1.pdf
Supplementary Information: S1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714021803/ks5440sup2.pdf
Supplementary Information: S2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714021803/ks5440sup3.pdf
Supplementary Information: S3

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714021803/ks5440sup4.cif
Contains datablocks global, 59232_publ, 59232_overall, 59232_phase_1, 59232_phase_3, 59232_p_03, 59232_p_04, 59232_p_05

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714021803/ks5440sup5.cif
Contains datablocks global, 59229_publ, 59229_overall, 59229_phase_1, 59229_phase_2, 59229_p_03, 59229_p_04, 59229_p_05

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714021803/ks5440sup6.cif
Contains datablocks global, nanif3_anisotropic_synchrotron_Diamond

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714021803/ks5440sup7.cif
Contains datablocks global, nanif3_anisotropic_synchrotron_Diamond

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714021803/ks5440Isup8.hkl
Contains datablock I

CCDC reference: 1027425

Computing details top

Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(nanif3_anisotropic_synchrotron_Diamond) top
Crystal data top
F3NaNiZ = 4
Mr = 138.70F(000) = 264
Orthorhombic, CmcmDx = 4.091 Mg m3
a = 3.0294 (4) ÅX-ray radiation, λ = 0.20675 Å
b = 10.0534 (12) ŵ = 4.48 mm1
c = 7.3938 (7) ÅT = 293 K
V = 225.18 (5) Å3 × × mm
Data collection top
Radiation source: ID15 Diamond synchrotronRint = 0.111
Double-bounce silicon (1 1 1) plus mirrors monochromatorθmax = 14.0°, θmin = 1.6°
3527 measured reflectionsh = 56
680 independent reflectionsk = 2121
438 reflections with I > 2σ(I)l = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098 w = 1/[σ2(Fo2) + (0.1879P)2 + 0.8839P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.305(Δ/σ)max = 1.166
S = 1.05Δρmax = 6.69 e Å3
680 reflectionsΔρmin = 8.85 e Å3
10 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00 (14)
Crystal data top
F3NaNiV = 225.18 (5) Å3
Mr = 138.70Z = 4
Orthorhombic, CmcmX-ray radiation, λ = 0.20675 Å
a = 3.0294 (4) ŵ = 4.48 mm1
b = 10.0534 (12) ÅT = 293 K
c = 7.3938 (7) Å × × mm
Data collection top
3527 measured reflections438 reflections with I > 2σ(I)
680 independent reflectionsRint = 0.111
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.305(Δ/σ)max = 1.166
S = 1.05Δρmax = 6.69 e Å3
680 reflectionsΔρmin = 8.85 e Å3
10 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00000.00000.0108 (3)*
Na0.00000.2538 (4)0.25000.0188 (7)*
F10.00000.9275 (6)0.25000.0164 (8)*
F20.00000.6275 (4)0.0569 (5)0.0141 (6)*
Geometric parameters (Å, º) top
Ni—F1i1.987 (2)Na—F2ix2.438 (4)
Ni—F1ii1.987 (2)Na—F2iii2.438 (4)
Ni—F2iii2.029 (3)Na—F2x2.564 (4)
Ni—F2iv2.029 (3)Na—F2ii2.564 (4)
Ni—F2v2.029 (3)Na—Naxi3.0294 (4)
Ni—F2vi2.029 (3)Na—Naxii3.0294 (4)
Ni—Na3.151 (4)Na—Nixiii3.151 (4)
Ni—Navii3.151 (4)F1—Nix1.987 (2)
Ni—Nav3.441 (3)F1—Nixiv1.987 (2)
Ni—Naiii3.441 (3)F1—Naxv2.311 (6)
Ni—Navi3.441 (3)F1—Naxvi2.311 (6)
Ni—Naiv3.441 (3)F2—Nixv2.029 (3)
Na—F1iii2.311 (6)F2—Nixvi2.029 (3)
Na—F1v2.311 (6)F2—Naxvi2.438 (4)
Na—F2v2.438 (4)F2—Naxv2.438 (4)
Na—F2viii2.438 (4)F2—Naii2.564 (4)
F1i—Ni—F1ii180.0F2v—Na—F2ix71.69 (17)
F1i—Ni—F2iii92.24 (15)F2viii—Na—F2ix76.82 (14)
F1ii—Ni—F2iii87.76 (15)F1iii—Na—F2iii89.21 (11)
F1i—Ni—F2iv87.76 (15)F1v—Na—F2iii143.17 (11)
F1ii—Ni—F2iv92.24 (15)F2v—Na—F2iii76.82 (14)
F2iii—Ni—F2iv180.0 (3)F2viii—Na—F2iii71.69 (17)
F1i—Ni—F2v92.24 (15)F2ix—Na—F2iii117.2 (2)
F1ii—Ni—F2v87.76 (15)F1iii—Na—F2x69.42 (11)
F2iii—Ni—F2v96.61 (16)F1v—Na—F2x69.42 (11)
F2iv—Ni—F2v83.39 (16)F2v—Na—F2x139.52 (8)
F1i—Ni—F2vi87.76 (15)F2viii—Na—F2x73.98 (12)
F1ii—Ni—F2vi92.24 (15)F2ix—Na—F2x73.98 (12)
F2iii—Ni—F2vi83.39 (16)F2iii—Na—F2x139.52 (8)
F2iv—Ni—F2vi96.61 (16)F1iii—Na—F2ii69.42 (11)
F2v—Ni—F2vi180.00 (17)F1v—Na—F2ii69.42 (11)
F1i—Ni—Na75.61 (17)F2v—Na—F2ii73.98 (12)
F1ii—Ni—Na104.39 (17)F2viii—Na—F2ii139.52 (8)
F2iii—Ni—Na50.69 (8)F2ix—Na—F2ii139.52 (8)
F2iv—Ni—Na129.31 (8)F2iii—Na—F2ii73.98 (12)
F2v—Ni—Na50.69 (8)F2x—Na—F2ii124.5 (2)
F2vi—Ni—Na129.31 (8)F1iii—Na—Naxi130.95 (12)
F1i—Ni—Navii104.39 (17)F1v—Na—Naxi49.05 (12)
F1ii—Ni—Navii75.61 (17)F2v—Na—Naxi51.59 (7)
F2iii—Ni—Navii129.31 (8)F2viii—Na—Naxi128.41 (7)
F2iv—Ni—Navii50.69 (8)F2ix—Na—Naxi51.59 (7)
F2v—Ni—Navii129.31 (8)F2iii—Na—Naxi128.41 (7)
F2vi—Ni—Navii50.69 (8)F2x—Na—Naxi90.0
Na—Ni—Navii180.00 (10)F2ii—Na—Naxi90.0
F1i—Ni—Nav40.20 (12)F1iii—Na—Naxii49.05 (12)
F1ii—Ni—Nav139.80 (12)F1v—Na—Naxii130.95 (12)
F2iii—Ni—Nav132.22 (10)F2v—Na—Naxii128.41 (7)
F2iv—Ni—Nav47.78 (10)F2viii—Na—Naxii51.59 (7)
F2v—Ni—Nav90.83 (11)F2ix—Na—Naxii128.41 (7)
F2vi—Ni—Nav89.17 (11)F2iii—Na—Naxii51.59 (7)
Na—Ni—Nav105.510 (9)F2x—Na—Naxii90.0
Navii—Ni—Nav74.490 (9)F2ii—Na—Naxii90.0
F1i—Ni—Naiii40.20 (12)Naxi—Na—Naxii180.0 (3)
F1ii—Ni—Naiii139.80 (12)F1iii—Na—Ni127.71 (7)
F2iii—Ni—Naiii90.83 (11)F1v—Na—Ni127.71 (7)
F2iv—Ni—Naiii89.17 (11)F2v—Na—Ni40.07 (8)
F2v—Ni—Naiii132.22 (10)F2viii—Na—Ni85.52 (15)
F2vi—Ni—Naiii47.78 (10)F2ix—Na—Ni85.52 (15)
Na—Ni—Naiii105.510 (9)F2iii—Na—Ni40.07 (8)
Navii—Ni—Naiii74.490 (9)F2x—Na—Ni153.66 (16)
Nav—Ni—Naiii52.24 (5)F2ii—Na—Ni81.81 (9)
F1i—Ni—Navi139.80 (12)Naxi—Na—Ni90.0
F1ii—Ni—Navi40.20 (12)Naxii—Na—Ni90.0
F2iii—Ni—Navi47.78 (10)F1iii—Na—Nixiii127.71 (7)
F2iv—Ni—Navi132.22 (10)F1v—Na—Nixiii127.71 (7)
F2v—Ni—Navi89.17 (11)F2v—Na—Nixiii85.52 (15)
F2vi—Ni—Navi90.83 (11)F2viii—Na—Nixiii40.07 (8)
Na—Ni—Navi74.490 (9)F2ix—Na—Nixiii40.07 (8)
Navii—Ni—Navi105.510 (9)F2iii—Na—Nixiii85.52 (15)
Nav—Ni—Navi180.00 (10)F2x—Na—Nixiii81.81 (9)
Naiii—Ni—Navi127.76 (5)F2ii—Na—Nixiii153.66 (16)
F1i—Ni—Naiv139.80 (12)Naxi—Na—Nixiii90.0
F1ii—Ni—Naiv40.20 (12)Naxii—Na—Nixiii90.0
F2iii—Ni—Naiv89.17 (11)Ni—Na—Nixiii71.84 (10)
F2iv—Ni—Naiv90.83 (11)Nix—F1—Nixiv136.9 (3)
F2v—Ni—Naiv47.78 (10)Nix—F1—Naxv106.10 (10)
F2vi—Ni—Naiv132.22 (10)Nixiv—F1—Naxv106.10 (10)
Na—Ni—Naiv74.490 (9)Nix—F1—Naxvi106.10 (10)
Navii—Ni—Naiv105.510 (9)Nixiv—F1—Naxvi106.10 (10)
Nav—Ni—Naiv127.76 (5)Naxv—F1—Naxvi81.9 (2)
Naiii—Ni—Naiv180.00 (10)Nixv—F2—Nixvi96.61 (16)
Navi—Ni—Naiv52.24 (5)Nixv—F2—Naxvi156.13 (18)
F1iii—Na—F1v81.9 (2)Nixvi—F2—Naxvi89.23 (8)
F1iii—Na—F2v143.17 (11)Nixv—F2—Naxv89.23 (8)
F1v—Na—F2v89.21 (11)Nixvi—F2—Naxv156.13 (18)
F1iii—Na—F2viii89.21 (11)Naxvi—F2—Naxv76.82 (14)
F1v—Na—F2viii143.17 (11)Nixv—F2—Naii96.35 (13)
F2v—Na—F2viii117.2 (2)Nixvi—F2—Naii96.35 (13)
F1iii—Na—F2ix143.17 (11)Naxvi—F2—Naii106.02 (12)
F1v—Na—F2ix89.21 (11)Naxv—F2—Naii106.02 (12)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x1/2, y1/2, z; (vi) x+1/2, y+1/2, z; (vii) x, y, z; (viii) x+1/2, y1/2, z+1/2; (ix) x1/2, y1/2, z+1/2; (x) x, y+1, z+1/2; (xi) x1, y, z; (xii) x+1, y, z; (xiii) x, y, z+1/2; (xiv) x, y+1, z; (xv) x1/2, y+1/2, z; (xvi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaF3NaNi
Mr138.70
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)293
a, b, c (Å)3.0294 (4), 10.0534 (12), 7.3938 (7)
V3)225.18 (5)
Z4
Radiation typeX-ray, λ = 0.20675 Å
µ (mm1)4.48
Crystal size (mm) × ×
Data collection
Diffractometer?
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3527, 680, 438
Rint0.111
(sin θ/λ)max1)1.166
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.305, 1.05
No. of reflections680
No. of parameters10
(Δ/σ)max1.166
Δρmax, Δρmin (e Å3)6.69, 8.85

Computer programs: SHELXL97 (Sheldrick, 1997).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds