Download citation
Download citation
link to html
First-principles calculations have been used to determine the equation of state and structural properties of NiSi up to pressures equivalent to that in the Earth's inner core. At atmospheric pressure, the thermodynamically stable phase is that with the MnP structure (as found experimentally). At high pressures, NiSi shows phase transformations to a number of high-pressure polymorphs. For pressures greater than ∼250 GPa, the thermodynamically stable phase of NiSi is that with the CsCl structure, which persists to the highest pressures simulated (∼500 GPa). At the pressures of the Earth's inner core, therefore, NiSi and FeSi will be isostructural and thus are likely to form a solid solution. The density contrast between NiSi and FeSi at inner-core pressures is ∼6%, with NiSi being the denser phase. Therefore, if a CsCl-structured (Fe,Ni)Si alloy were present in the inner core, its density (for the commonly assumed nickel content) might be expected to be ∼1% greater than that of pure FeSi.

Supporting information

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup1.txt
Cell parameters and atomic coordinates shown in Figs. 2(a) and 5

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup2.txt
Cell parameters and atomic coordinates shown in Figs. 2(a) and 10

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup3.txt
Cell parameters and atomic coordinates shown in Figs. 2(b) and 9


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds