Download citation
Download citation
link to html
Exposure of a superalloy to an external load results in anisotropic coarsening of the γ′ precipitates, so-called rafting. It was reported in the past that γ′ rafting can also occur as a result of purely thermal treatment, without the simultaneous presence of an external load, if the specimen has been pre-deformed at relatively low temperature. The evolution of γ′ morphology in pre-deformed specimens of SCA425 Ni-base superalloy was examined in the present study. Unlike in the previous experiments, the compressive stress was used for pre-straining. In situ small-angle neutron scattering (SANS) was employed, which enabled the determination of the morphology directly at high temperature. Both for strong and for weak pre-straining, rounding of the originally cuboidal precipitates towards an ellipsoidal shape on heating was observed. Weak pre-straining (0.1, 0.5%) does not cause rafting on subsequent heating. On the other hand, the detailed evaluation of SANS data provides some indication of rafting during the subsequent heating after severe compressive pre-straining (2%). The experiment indicates the role of dislocation rearrangement at the matrix/precipitate interface during pre-straining.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889811028147/ks5279sup1.pdf
Supplementary figures


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds