Download citation
Download citation
link to html
The energy-dispersive neutron transmission of mosaic crystals presents a series of dips in intensity as a result of reflection in the crystal planes. The positions of these dips can be exploited for the definition of the crystal orientation with a resolution of 1 min of arc. The widths of these dips depend on crystal orientation, on the reflection index, on the mosaicity, and on the incident-beam divergence. The capability of the technique to define the orientation and mosaicity of a Cu crystal has been assessed through time-of-flight experiments. A Cu monochromator has been plastically deformed by uniaxial tension in situ, and the evolution of crystal orientation and mosaicity was tracked using the technique. Several crystal reflections at different locations of the sample were simultaneously studied during the experiment. A linear increase of mosaicity on deformation at an average rate of ∼5 min per percentage of shear strain was observed. The reorientation of the crystal as a result of the applied load showed variations across the specimen.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds