metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(2,6-di­methyl­phenyl­imino)-1,2-di­phenyl­propan-2-ol-κ2N,O]palladium(II) methanol monosolvate

aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People's Republic of China
*Correspondence e-mail: yaohg518@126.com

(Received 31 July 2011; accepted 16 September 2011; online 30 September 2011)

The title compound, [PdCl2(C23H23NO)]·CH3OH, was obtained by the reaction of 1-(2,6-dimethyl­phenyl­imino)-1,2-diphenyl­propan-2-ol and palladium chloride in methanol. The Pd atom is four-coordinated by the O atom of a tertiary alcohol, the imine N atom of the hy­droxy­limine part of the bidentate ligand and by two chloride ions, forming a nearly square-planar geometry. The complex mol­ecule and the uncoordinated methanol mol­ecule are connected via an O—H⋯O hydrogen bond.

Related literature

For transition metal complexes of (N,O)-bidentate ligands, see: Skrolkhod et al. (2002[Skrolkhod, L. S., Seifullina, I. I. & Dzhambek, S. A. (2002). Russ. J. Coord. Chem. 28, 684-688.]); Macchioni et al. (2002[Macchioni, A., Zuccaccia, C., Binotti, B., Carfagna, C., Foresti, E. & Sabatino, P. (2002). Inorg. Chem. Commun. 5, 319-322.]); Binotti et al. (2004[Binotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647-661.]); Zuccaccia et al. (2006[Zuccaccia, C., Bellachioma, G., Cardaci, G., Macchioni, A., Binotti, B. & Carfagna, C. (2006). Helv. Chim. Acta, 89, 1524-1546.]). Complexes with group IV metals with (N,O)-bidentate ligands, which form six-membered rings, have been widely used in the production of polyethyl­ene with high mol­ecular weight and relative narrow mol­ecular weight distribution, see: Jia & Jin (2009[Jia, A.-Q. & Jin, G.-X. (2009). Dalton Trans. pp. 8838-8845.]); Mu et al. (2009[Mu, J.-S., Liu, J.-Y., Liu, S.-R. & Li, Y.-S. (2009). Polymer, 50, 5059-5064.]). For the use of palladium complexes in Suzuki–Miyaura cross-coupling reactions, see: Lai et al. (2005[Lai, Y.-C., Chen, H.-Y., Hung, W.-C., Lin, C.-C. & Hong, F.-E. (2005). Tetrahedron, 61, 9484-9489.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C23H23NO)]·CH4O

  • Mr = 538.79

  • Monoclinic, P 21 /c

  • a = 10.943 (3) Å

  • b = 19.770 (6) Å

  • c = 14.230 (3) Å

  • β = 129.232 (13)°

  • V = 2384.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.779, Tmax = 0.901

  • 35358 measured reflections

  • 4166 independent reflections

  • 3418 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.082

  • S = 1.01

  • 4166 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—O1 2.019 (3)
Pd1—N1 2.032 (3)
Pd1—Cl1 2.2588 (13)
Pd1—Cl2 2.2859 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H7⋯O2i 0.76 (6) 1.80 (6) 2.535 (5) 164 (7)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the bidentate (N, O) ligand such as salicylaldimine and hydroxylimine have drawn much attention owing to their valuable applications in the fields of catalysis. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various transition metal complexes (Skrolkhod et al. 2002; Macchioni et al. 2002; Binotti et al. 2004; Zuccaccia et al. 2006) have been developed. Especially, complexes with metals of the group IV containing (N, O) ligands have been widely used to produce polyethylene with high molecular weight and relative narrow molecular weight distribution (Mu et al. 2009; Jia et al. 2009). Moreover, the palladium complexes also have been applied for Suzuki-Miyaura cross-coupling reaction (Lai et al. 2005). We report herein on the synthesis and structure of the title compound. The palladium atom is four-coordinated by the oxgen atom o a tertiary alcohol and imine nitrogen atom of the bidentate hydroxylimine ligand, and by the two chloride ions, forming a nearly square-planar geometry (Fig. 1, Table 1). The solid-state structure showes a noncentrosymmetric palladium complex with one uncoordinated methanol solvated molecule. The complex molecule and the uncoordinated methanol molecule are connected via O—H···O hydrogen bond (Table 2).

Related literature top

For transition metal complexes of (N,O)-bidentate ligands, see: Skrolkhod et al. (2002); Macchioni et al. (2002); Binotti et al. (2004); Zuccaccia et al. (2006). Complexes with group IV metals with (N,O)-bidentate ligands have been widely used in the production of polyethylene with high molecular weight and relative narrow molecular weight distribution, see: Jia & Jin (2009); Mu et al. (2009). For the use of paaldium complexes in Suzuki–Miyaura cross-coupling reactions, see: Lai et al. (2005).

Experimental top

A 100 ml round-bottle was charged with palladium chloride (0.177 g, 1 mmol), 1-(2,6-dimethylphenylimino)-1,2-diphenylpropan-2-ol (0.329 g, 1 mmol), and methanol (20 mL). After the mixture was stirred for 24 h at room temperature, the methanol was removed under reduced pressure. The red crystals suitable for X-ray diffraction wwere prepared by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93Å and allowed to ride during subsequent refinement with Uiso(H)=1.2Ueq(C)

Structure description top

Recently, the bidentate (N, O) ligand such as salicylaldimine and hydroxylimine have drawn much attention owing to their valuable applications in the fields of catalysis. These bidentate ligands can be modified by tuning the substituents. Therefore, different steric and electronic properties are achieved easily. Various transition metal complexes (Skrolkhod et al. 2002; Macchioni et al. 2002; Binotti et al. 2004; Zuccaccia et al. 2006) have been developed. Especially, complexes with metals of the group IV containing (N, O) ligands have been widely used to produce polyethylene with high molecular weight and relative narrow molecular weight distribution (Mu et al. 2009; Jia et al. 2009). Moreover, the palladium complexes also have been applied for Suzuki-Miyaura cross-coupling reaction (Lai et al. 2005). We report herein on the synthesis and structure of the title compound. The palladium atom is four-coordinated by the oxgen atom o a tertiary alcohol and imine nitrogen atom of the bidentate hydroxylimine ligand, and by the two chloride ions, forming a nearly square-planar geometry (Fig. 1, Table 1). The solid-state structure showes a noncentrosymmetric palladium complex with one uncoordinated methanol solvated molecule. The complex molecule and the uncoordinated methanol molecule are connected via O—H···O hydrogen bond (Table 2).

For transition metal complexes of (N,O)-bidentate ligands, see: Skrolkhod et al. (2002); Macchioni et al. (2002); Binotti et al. (2004); Zuccaccia et al. (2006). Complexes with group IV metals with (N,O)-bidentate ligands have been widely used in the production of polyethylene with high molecular weight and relative narrow molecular weight distribution, see: Jia & Jin (2009); Mu et al. (2009). For the use of paaldium complexes in Suzuki–Miyaura cross-coupling reactions, see: Lai et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing displacement ellipsoids drawn atthe 30% probability level. Hydrogen bond is drawn as dashed line. H atoms not related to the hydrogen bonding are omitted. Symmetry code:(i) x + 1, y, z
Dichlorido[1-(2,6-dimethylphenylimino)-1,2-diphenylpropan-2-ol- κ2N,O]palladium(II) methanol monosolvate top
Crystal data top
[PdCl2(C23H23NO)]·CH4OF(000) = 1096
Mr = 538.79Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4166 reflections
a = 10.943 (3) Åθ = 2.3–25.5°
b = 19.770 (6) ŵ = 1.02 mm1
c = 14.230 (3) ÅT = 296 K
β = 129.232 (13)°Block, yellow
V = 2384.6 (11) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4166 independent reflections
Radiation source: fine-focus sealed tube3418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1311
Tmin = 0.779, Tmax = 0.901k = 2318
35358 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P]
where P = (Fo2 + 2Fc2)/3
4166 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[PdCl2(C23H23NO)]·CH4OV = 2384.6 (11) Å3
Mr = 538.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.943 (3) ŵ = 1.02 mm1
b = 19.770 (6) ÅT = 296 K
c = 14.230 (3) Å0.25 × 0.20 × 0.10 mm
β = 129.232 (13)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4166 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3418 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.901Rint = 0.036
35358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P]
where P = (Fo2 + 2Fc2)/3
4166 reflectionsΔρmax = 0.50 e Å3
280 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.81208 (4)0.748377 (17)0.18909 (3)0.03477 (10)
C10.9955 (7)0.5030 (3)0.2701 (5)0.0589 (14)
H11.04760.49000.35010.071*
C20.9958 (8)0.4603 (3)0.1929 (7)0.0767 (19)
H21.04950.41930.22180.092*
C30.9173 (8)0.4781 (3)0.0743 (7)0.0777 (19)
H30.91600.44890.02240.093*
C40.8410 (7)0.5390 (3)0.0322 (6)0.0703 (16)
H40.78960.55150.04780.084*
C50.8402 (6)0.5813 (3)0.1079 (5)0.0567 (13)
H50.78620.62220.07780.068*
C60.9187 (5)0.5646 (2)0.2297 (4)0.0424 (11)
C70.9203 (5)0.6152 (2)0.3113 (4)0.0402 (10)
C81.0248 (5)0.5949 (3)0.4447 (4)0.0539 (13)
H8A1.13290.59320.47710.081*
H8B0.99340.55120.45200.081*
H8C1.01400.62750.48900.081*
C90.6657 (6)0.5821 (2)0.3767 (4)0.0463 (11)
H90.69720.62240.41990.056*
C100.6062 (6)0.5303 (3)0.4025 (5)0.0566 (13)
H100.59810.53600.46320.068*
C110.5590 (6)0.4705 (3)0.3393 (5)0.0589 (14)
H110.51860.43590.35670.071*
C120.5720 (6)0.4623 (3)0.2502 (5)0.0584 (14)
H120.53970.42190.20690.070*
C130.6327 (6)0.5134 (2)0.2244 (5)0.0496 (12)
H130.64280.50710.16480.060*
C140.6786 (5)0.5741 (2)0.2870 (4)0.0350 (10)
C150.7533 (5)0.6285 (2)0.2647 (4)0.0347 (9)
C160.3992 (5)0.6785 (2)0.0569 (4)0.0368 (10)
C170.2518 (5)0.6979 (2)0.0172 (4)0.0478 (12)
H170.16210.68290.05770.057*
C180.2358 (6)0.7390 (3)0.0864 (5)0.0562 (13)
H180.13560.75060.05890.067*
C190.3665 (6)0.7630 (2)0.1960 (5)0.0530 (13)
H190.35400.79110.24190.064*
C200.5179 (5)0.7460 (2)0.2396 (4)0.0417 (10)
C210.5297 (5)0.7016 (2)0.1693 (4)0.0320 (9)
C220.4129 (6)0.6358 (3)0.0233 (4)0.0538 (13)
H22A0.48880.65550.02820.081*
H22B0.31220.63340.10300.081*
H22C0.44630.59100.01000.081*
C230.6612 (6)0.7760 (3)0.3556 (4)0.0566 (14)
H23A0.73350.74050.40700.085*
H23B0.63000.79970.39630.085*
H23C0.71150.80690.33750.085*
C240.2604 (8)0.6212 (4)0.2878 (7)0.100 (2)
H24A0.34660.63870.29350.150*
H24B0.16490.62400.20530.150*
H24C0.28090.57480.31360.150*
Cl10.61727 (15)0.82479 (7)0.07282 (12)0.0586 (3)
Cl20.97468 (14)0.80417 (7)0.16612 (11)0.0527 (3)
N10.6871 (4)0.68523 (17)0.2129 (3)0.0337 (8)
O10.9775 (4)0.67959 (17)0.3055 (3)0.0463 (8)
O20.2444 (5)0.6582 (3)0.3605 (5)0.1014 (17)
H2A0.32890.67590.41480.152*
H71.049 (8)0.676 (3)0.310 (6)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03196 (17)0.03511 (18)0.03475 (17)0.00029 (15)0.01993 (14)0.00178 (15)
C10.071 (4)0.041 (3)0.079 (4)0.006 (3)0.054 (3)0.009 (3)
C20.103 (5)0.036 (3)0.124 (6)0.008 (3)0.088 (5)0.002 (3)
C30.098 (5)0.062 (4)0.108 (6)0.020 (4)0.082 (5)0.030 (4)
C40.072 (4)0.085 (5)0.064 (4)0.000 (3)0.048 (3)0.014 (3)
C50.050 (3)0.061 (3)0.062 (3)0.010 (3)0.036 (3)0.001 (3)
C60.033 (2)0.038 (2)0.055 (3)0.0008 (19)0.026 (2)0.003 (2)
C70.034 (2)0.035 (2)0.046 (3)0.0024 (19)0.023 (2)0.003 (2)
C80.040 (3)0.060 (3)0.042 (3)0.011 (2)0.016 (2)0.010 (2)
C90.054 (3)0.039 (3)0.051 (3)0.002 (2)0.035 (3)0.001 (2)
C100.067 (3)0.058 (3)0.065 (3)0.006 (3)0.051 (3)0.011 (3)
C110.058 (3)0.045 (3)0.077 (4)0.000 (3)0.044 (3)0.013 (3)
C120.058 (3)0.040 (3)0.074 (4)0.011 (2)0.041 (3)0.009 (3)
C130.051 (3)0.043 (3)0.054 (3)0.004 (2)0.034 (3)0.005 (2)
C140.031 (2)0.032 (2)0.040 (2)0.0052 (18)0.022 (2)0.0047 (18)
C150.036 (2)0.036 (2)0.030 (2)0.0024 (19)0.0199 (19)0.0007 (18)
C160.035 (2)0.040 (2)0.033 (2)0.0008 (19)0.020 (2)0.0044 (19)
C170.035 (2)0.053 (3)0.046 (3)0.001 (2)0.021 (2)0.000 (2)
C180.039 (3)0.059 (3)0.069 (3)0.013 (2)0.034 (3)0.009 (3)
C190.060 (3)0.050 (3)0.067 (3)0.012 (2)0.049 (3)0.001 (3)
C200.048 (3)0.039 (2)0.039 (2)0.002 (2)0.028 (2)0.003 (2)
C210.034 (2)0.031 (2)0.034 (2)0.0033 (17)0.023 (2)0.0036 (18)
C220.050 (3)0.067 (3)0.042 (3)0.004 (3)0.028 (3)0.009 (2)
C230.073 (4)0.050 (3)0.050 (3)0.003 (3)0.040 (3)0.009 (2)
C240.071 (5)0.107 (6)0.135 (7)0.018 (4)0.071 (5)0.005 (5)
Cl10.0481 (7)0.0585 (8)0.0675 (8)0.0156 (6)0.0358 (7)0.0293 (7)
Cl20.0471 (7)0.0593 (8)0.0554 (7)0.0096 (6)0.0341 (6)0.0001 (6)
N10.0306 (18)0.037 (2)0.0303 (18)0.0008 (15)0.0176 (16)0.0013 (15)
O10.0330 (18)0.0400 (19)0.057 (2)0.0015 (14)0.0243 (17)0.0060 (15)
O20.041 (2)0.118 (4)0.123 (4)0.004 (2)0.041 (3)0.033 (3)
Geometric parameters (Å, º) top
Pd1—O12.019 (3)C12—H120.9300
Pd1—N12.032 (3)C13—C141.386 (6)
Pd1—Cl12.2588 (13)C13—H130.9300
Pd1—Cl22.2859 (13)C14—C151.500 (6)
C1—C61.382 (6)C15—N11.285 (5)
C1—C21.388 (8)C16—C171.385 (6)
C1—H10.9300C16—C211.386 (6)
C2—C31.370 (9)C16—C221.501 (6)
C2—H20.9300C17—C181.370 (7)
C3—C41.368 (8)C17—H170.9300
C3—H30.9300C18—C191.373 (7)
C4—C51.369 (7)C18—H180.9300
C4—H40.9300C19—C201.395 (6)
C5—C61.402 (7)C19—H190.9300
C5—H50.9300C20—C211.395 (6)
C6—C71.524 (6)C20—C231.504 (6)
C7—O11.444 (5)C21—N11.451 (5)
C7—C151.521 (6)C22—H22A0.9600
C7—C81.525 (6)C22—H22B0.9600
C8—H8A0.9600C22—H22C0.9600
C8—H8B0.9600C23—H23A0.9600
C8—H8C0.9600C23—H23B0.9600
C9—C141.380 (6)C23—H23C0.9600
C9—C101.382 (6)C24—O21.366 (8)
C9—H90.9300C24—H24A0.9600
C10—C111.372 (7)C24—H24B0.9600
C10—H100.9300C24—H24C0.9600
C11—C121.371 (7)O1—H70.76 (6)
C11—H110.9300O2—H2A0.8200
C12—C131.381 (7)
O1—Pd1—N178.37 (14)C14—C13—H13119.9
O1—Pd1—Cl1172.93 (11)C9—C14—C13119.0 (4)
N1—Pd1—Cl196.32 (10)C9—C14—C15120.1 (4)
O1—Pd1—Cl293.85 (11)C13—C14—C15120.7 (4)
N1—Pd1—Cl2170.77 (10)N1—C15—C14124.2 (4)
Cl1—Pd1—Cl291.83 (5)N1—C15—C7119.1 (4)
C6—C1—C2120.8 (5)C14—C15—C7116.7 (4)
C6—C1—H1119.6C17—C16—C21117.6 (4)
C2—C1—H1119.6C17—C16—C22119.8 (4)
C3—C2—C1120.4 (6)C21—C16—C22122.6 (4)
C3—C2—H2119.8C18—C17—C16121.2 (4)
C1—C2—H2119.8C18—C17—H17119.4
C4—C3—C2119.9 (6)C16—C17—H17119.4
C4—C3—H3120.0C17—C18—C19120.5 (4)
C2—C3—H3120.0C17—C18—H18119.8
C3—C4—C5120.0 (6)C19—C18—H18119.8
C3—C4—H4120.0C18—C19—C20120.8 (4)
C5—C4—H4120.0C18—C19—H19119.6
C4—C5—C6121.7 (5)C20—C19—H19119.6
C4—C5—H5119.2C19—C20—C21117.1 (4)
C6—C5—H5119.2C19—C20—C23120.8 (4)
C1—C6—C5117.2 (5)C21—C20—C23122.0 (4)
C1—C6—C7123.4 (4)C16—C21—C20122.7 (4)
C5—C6—C7119.4 (4)C16—C21—N1119.8 (4)
O1—C7—C15105.6 (3)C20—C21—N1117.2 (4)
O1—C7—C6109.3 (4)C16—C22—H22A109.5
C15—C7—C6110.4 (4)C16—C22—H22B109.5
O1—C7—C8107.0 (4)H22A—C22—H22B109.5
C15—C7—C8109.7 (4)C16—C22—H22C109.5
C6—C7—C8114.4 (4)H22A—C22—H22C109.5
C7—C8—H8A109.5H22B—C22—H22C109.5
C7—C8—H8B109.5C20—C23—H23A109.5
H8A—C8—H8B109.5C20—C23—H23B109.5
C7—C8—H8C109.5H23A—C23—H23B109.5
H8A—C8—H8C109.5C20—C23—H23C109.5
H8B—C8—H8C109.5H23A—C23—H23C109.5
C14—C9—C10120.2 (5)H23B—C23—H23C109.5
C14—C9—H9119.9O2—C24—H24A109.5
C10—C9—H9119.9O2—C24—H24B109.5
C11—C10—C9120.6 (5)H24A—C24—H24B109.5
C11—C10—H10119.7O2—C24—H24C109.5
C9—C10—H10119.7H24A—C24—H24C109.5
C12—C11—C10119.5 (5)H24B—C24—H24C109.5
C12—C11—H11120.3C15—N1—C21121.8 (4)
C10—C11—H11120.3C15—N1—Pd1115.9 (3)
C11—C12—C13120.5 (5)C21—N1—Pd1122.3 (3)
C11—C12—H12119.8C7—O1—Pd1116.4 (3)
C13—C12—H12119.8C7—O1—H7112 (5)
C12—C13—C14120.2 (5)Pd1—O1—H7119 (5)
C12—C13—H13119.9C24—O2—H2A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O2i0.76 (6)1.80 (6)2.535 (5)164 (7)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C23H23NO)]·CH4O
Mr538.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.943 (3), 19.770 (6), 14.230 (3)
β (°) 129.232 (13)
V3)2384.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.779, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
35358, 4166, 3418
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.082, 1.01
No. of reflections4166
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.P)2 + 10.0286P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.50, 0.42

Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pd1—O12.019 (3)Pd1—Cl12.2588 (13)
Pd1—N12.032 (3)Pd1—Cl22.2859 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H7···O2i0.76 (6)1.80 (6)2.535 (5)164 (7)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 21004014) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong (No. LYM10091) for financial support.

References

First citationBinotti, B., Carfagna, C., Foresti, E., Macchioni, A., Sabatino, P., Zuccaccia, C. & Zuccaccia, D. (2004). J. Organomet. Chem. 689, 647–661.  CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, A.-Q. & Jin, G.-X. (2009). Dalton Trans. pp. 8838–8845.  Web of Science CSD CrossRef Google Scholar
First citationLai, Y.-C., Chen, H.-Y., Hung, W.-C., Lin, C.-C. & Hong, F.-E. (2005). Tetrahedron, 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacchioni, A., Zuccaccia, C., Binotti, B., Carfagna, C., Foresti, E. & Sabatino, P. (2002). Inorg. Chem. Commun. 5, 319–322.  Web of Science CSD CrossRef CAS Google Scholar
First citationMu, J.-S., Liu, J.-Y., Liu, S.-R. & Li, Y.-S. (2009). Polymer, 50, 5059–5064.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkrolkhod, L. S., Seifullina, I. I. & Dzhambek, S. A. (2002). Russ. J. Coord. Chem. 28, 684–688.  Google Scholar
First citationZuccaccia, C., Bellachioma, G., Cardaci, G., Macchioni, A., Binotti, B. & Carfagna, C. (2006). Helv. Chim. Acta, 89, 1524–1546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds