Download citation
Download citation
link to html
The title compound, {[Li(C7H8N4)(H2O)2]Cl}n, has a polymeric structure with Li+ tetra­hedrally coordinated by two N atoms of bis­(imidazol-1-yl)methane and two water mol­ecules, connected by O—H...Cl hydrogen bonds. The compound was prepared by a one-step reaction of LiCl and bis­(imidazol-1-yl)­methane in acetonitrile.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038706/kp2121sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038706/kp2121Isup2.hkl
Contains datablock I

CCDC reference: 660076

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.042
  • wR factor = 0.126
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The design and synthesis of superfunctional coordination polymers have been increased due to their intriguing architectures and flexible bridging ligands in supramolecular chemistry (Kitagawa et al., 2004). The metal coordination architectures with the various heterocyclic aromatic compounds containing S–, N–, and O–donors are of diverse structural types. Significant progress has been achieved by Duncan et al. (1996), Cui et al. (2005) and others in this area. The formation of lithium coordination frameworks constructed from flexible N,N'–(1,1'–methyl)bis(imidazole) ligands and the exploitation of new synthetic methods are still less investigated. The selected N,N'–(1,1'–methyl)bis(imidazole) organic ligand with the N–hetero aromatic ring system could be a metal atom linker forming polymeric structure. The title compound (I) (Fig. 1) reveals tetrahedrally coordinated Li + cations interlinked by (imidazol–1–yl)methane into polymer structure connected by O—H···Cl- hydrogen bonds (Fig. 2, Table 1).

Related literature top

For related literature, see: Diez-Barra et al. (1992); Cui et al. (2005); Duncan et al. (1996); Kitagawa et al. (2004).

Experimental top

N,N'-(1,1-methyl)bis(imidazole) was synthesized using a reported procedure (Diez-Barra et al., 1992) and sublimated for purification at 453 K under high vacuum. A mixture of LiCl (15 mg, 0.357 mmol) and N,N'–(1,1'–methyl)bis(imidazole) (50 mg, 0.338 mmol) was placed in a 10 ml glass flask in CH3CN/H2O solution. The reaction mixture was heated at 333 K and then cooled to room temperature at a rate of 3 K/h. Colourless cubic single crystals were obtained in excellent yield.

Refinement top

H atoms on N,N'–(1,1'–methyl)bis(imidazole) were positioned geometrically, with C—H = 0.93 Å and 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms on water molecules were localized from Fourier difference maps, but their atomic coordinates were not refined.

Structure description top

The design and synthesis of superfunctional coordination polymers have been increased due to their intriguing architectures and flexible bridging ligands in supramolecular chemistry (Kitagawa et al., 2004). The metal coordination architectures with the various heterocyclic aromatic compounds containing S–, N–, and O–donors are of diverse structural types. Significant progress has been achieved by Duncan et al. (1996), Cui et al. (2005) and others in this area. The formation of lithium coordination frameworks constructed from flexible N,N'–(1,1'–methyl)bis(imidazole) ligands and the exploitation of new synthetic methods are still less investigated. The selected N,N'–(1,1'–methyl)bis(imidazole) organic ligand with the N–hetero aromatic ring system could be a metal atom linker forming polymeric structure. The title compound (I) (Fig. 1) reveals tetrahedrally coordinated Li + cations interlinked by (imidazol–1–yl)methane into polymer structure connected by O—H···Cl- hydrogen bonds (Fig. 2, Table 1).

For related literature, see: Diez-Barra et al. (1992); Cui et al. (2005); Duncan et al. (1996); Kitagawa et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) shows the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: a=-1/2 + x,3/2 - y,1/2 + z].
[Figure 2] Fig. 2. View of the structure of (I) along the direction [010].
catena-Poly[[[diaqualithium(I)]-µ-bis(1H-imidazol-1-yl)methane- κ2N3:N3'] chloride] top
Crystal data top
[Li(C7H8N4)(H2O)2]ClF(000) = 944
Mr = 226.60Dx = 1.338 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3763 reflections
a = 15.3208 (13) Åθ = 2.4–26.4°
b = 10.6729 (9) ŵ = 0.32 mm1
c = 14.8266 (12) ÅT = 295 K
β = 111.887 (2)°Cubic, colourless
V = 2249.7 (3) Å30.35 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2310 independent reflections
Radiation source: fine-focus sealed tube2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1917
Tmin = 0.837, Tmax = 0.922k = 1313
6383 measured reflectionsl = 1816
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.5534P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2310 reflectionsΔρmax = 0.30 e Å3
153 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0112 (12)
Crystal data top
[Li(C7H8N4)(H2O)2]ClV = 2249.7 (3) Å3
Mr = 226.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.3208 (13) ŵ = 0.32 mm1
b = 10.6729 (9) ÅT = 295 K
c = 14.8266 (12) Å0.35 × 0.25 × 0.25 mm
β = 111.887 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2310 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2005 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.922Rint = 0.037
6383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
2310 reflectionsΔρmin = 0.28 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22713 (11)0.84155 (15)0.38908 (11)0.0445 (4)
H10.26210.91410.41180.053*
C20.17854 (13)0.66703 (16)0.31882 (14)0.0564 (4)
H20.17410.59460.28250.068*
C30.11830 (12)0.69897 (16)0.36197 (13)0.0557 (4)
H30.06620.65390.36150.067*
C40.02217 (10)1.07972 (15)0.38388 (11)0.0460 (4)
H40.07341.13360.40740.055*
C50.06186 (12)0.90934 (17)0.35524 (15)0.0627 (5)
H50.08130.82660.35400.075*
C60.11482 (11)1.00761 (17)0.31130 (14)0.0643 (5)
H60.17871.00330.27360.077*
C70.10813 (13)0.88548 (17)0.46271 (11)0.0570 (5)
H7A0.08990.83010.50460.068*
H7B0.15500.94320.50390.068*
Cl10.13680 (3)0.63139 (4)0.03017 (3)0.0632 (2)
Li10.36216 (18)0.7809 (3)0.29113 (18)0.0501 (6)
N10.24754 (9)0.75656 (13)0.33611 (9)0.0487 (3)
N20.14968 (9)0.81128 (12)0.40654 (9)0.0448 (3)
N30.02675 (8)0.95582 (12)0.40227 (8)0.0420 (3)
N40.06257 (10)1.11534 (13)0.32919 (10)0.0507 (4)
O10.30302 (11)0.81249 (16)0.15348 (10)0.0683 (4)
H1W0.3229 (18)0.834 (2)0.119 (2)0.080 (8)*
H2W0.254 (2)0.768 (2)0.119 (2)0.093 (8)*
O20.43632 (11)0.91675 (16)0.36717 (12)0.0790 (5)
H3W0.418 (2)0.983 (3)0.396 (2)0.124 (10)*
H4W0.490 (2)0.899 (3)0.409 (2)0.097 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (8)0.0459 (8)0.0414 (8)0.0082 (6)0.0126 (6)0.0043 (6)
C20.0577 (10)0.0487 (9)0.0617 (10)0.0109 (8)0.0210 (8)0.0091 (7)
C30.0520 (9)0.0495 (9)0.0683 (11)0.0041 (7)0.0255 (8)0.0008 (8)
C40.0440 (8)0.0460 (8)0.0539 (8)0.0018 (6)0.0249 (7)0.0027 (7)
C50.0501 (9)0.0487 (9)0.0934 (13)0.0034 (8)0.0316 (9)0.0213 (9)
C60.0417 (9)0.0680 (11)0.0723 (12)0.0084 (8)0.0086 (8)0.0321 (9)
C70.0646 (11)0.0690 (11)0.0401 (8)0.0271 (9)0.0227 (7)0.0052 (7)
Cl10.0673 (3)0.0568 (3)0.0587 (3)0.00934 (19)0.0158 (2)0.00771 (18)
Li10.0513 (14)0.0538 (15)0.0450 (13)0.0108 (12)0.0177 (11)0.0014 (11)
N10.0470 (7)0.0540 (8)0.0466 (7)0.0138 (6)0.0190 (6)0.0028 (6)
N20.0473 (7)0.0481 (7)0.0406 (6)0.0133 (5)0.0181 (5)0.0036 (5)
N30.0435 (7)0.0448 (7)0.0417 (6)0.0063 (5)0.0206 (5)0.0036 (5)
N40.0522 (8)0.0560 (8)0.0476 (7)0.0148 (6)0.0229 (6)0.0000 (6)
O10.0636 (9)0.0930 (11)0.0448 (7)0.0140 (8)0.0163 (7)0.0036 (7)
O20.0591 (8)0.0836 (10)0.0792 (10)0.0102 (7)0.0084 (7)0.0280 (8)
Geometric parameters (Å, º) top
C1—N11.312 (2)C6—H60.9300
C1—N21.345 (2)C7—N31.4450 (19)
C1—H10.9300C7—N21.4564 (19)
C2—C31.348 (2)C7—H7A0.9700
C2—N11.376 (2)C7—H7B0.9700
C2—H20.9300Li1—O21.926 (3)
C3—N21.367 (2)Li1—O11.929 (3)
C3—H30.9300Li1—N4i2.070 (3)
C4—N41.305 (2)Li1—N12.114 (3)
C4—N31.347 (2)N4—Li1ii2.070 (3)
C4—H40.9300O1—H1W0.72 (3)
C5—C61.337 (3)O1—H2W0.87 (3)
C5—N31.367 (2)O2—H3W0.93 (3)
C5—H50.9300O2—H4W0.85 (3)
C6—N41.369 (2)
N1—C1—N2111.94 (14)O2—Li1—O1115.43 (15)
N1—C1—H1124.0O2—Li1—N4i109.63 (14)
N2—C1—H1124.0O1—Li1—N4i115.59 (14)
C3—C2—N1110.51 (15)O2—Li1—N1106.61 (13)
C3—C2—H2124.7O1—Li1—N1103.73 (13)
N1—C2—H2124.7N4i—Li1—N1104.66 (13)
C2—C3—N2105.76 (15)C1—N1—C2104.69 (13)
C2—C3—H3127.1C1—N1—Li1121.03 (14)
N2—C3—H3127.1C2—N1—Li1134.20 (13)
N4—C4—N3112.12 (14)C1—N2—C3107.11 (13)
N4—C4—H4123.9C1—N2—C7125.78 (14)
N3—C4—H4123.9C3—N2—C7127.11 (15)
C6—C5—N3105.70 (15)C4—N3—C5106.63 (13)
C6—C5—H5127.2C4—N3—C7127.12 (14)
N3—C5—H5127.2C5—N3—C7126.22 (14)
C5—C6—N4111.07 (14)C4—N4—C6104.48 (14)
C5—C6—H6124.5C4—N4—Li1ii137.92 (14)
N4—C6—H6124.5C6—N4—Li1ii115.97 (13)
N3—C7—N2112.83 (12)Li1—O1—H1W130 (2)
N3—C7—H7A109.0Li1—O1—H2W118.7 (17)
N2—C7—H7A109.0H1W—O1—H2W105 (3)
N3—C7—H7B109.0Li1—O2—H3W129.5 (18)
N2—C7—H7B109.0Li1—O2—H4W117.5 (19)
H7A—C7—H7B107.8H3W—O2—H4W102 (2)
N1—C2—C3—N20.5 (2)C2—C3—N2—C10.41 (18)
N3—C5—C6—N40.2 (2)C2—C3—N2—C7179.65 (15)
N2—C1—N1—C20.13 (17)N3—C7—N2—C1101.44 (18)
N2—C1—N1—Li1177.35 (12)N3—C7—N2—C378.6 (2)
C3—C2—N1—C10.39 (19)N4—C4—N3—C50.27 (17)
C3—C2—N1—Li1177.07 (15)N4—C4—N3—C7177.63 (12)
O2—Li1—N1—C113.56 (19)C6—C5—N3—C40.06 (19)
O1—Li1—N1—C1108.73 (15)C6—C5—N3—C7177.86 (14)
N4i—Li1—N1—C1129.70 (14)N2—C7—N3—C4104.58 (18)
O2—Li1—N1—C2170.19 (16)N2—C7—N3—C577.9 (2)
O1—Li1—N1—C267.5 (2)N3—C4—N4—C60.35 (17)
N4i—Li1—N1—C254.1 (2)N3—C4—N4—Li1ii163.57 (15)
N1—C1—N2—C30.18 (17)C5—C6—N4—C40.3 (2)
N1—C1—N2—C7179.88 (13)C5—C6—N4—Li1ii167.78 (15)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1iii0.72 (3)2.54 (3)3.2394 (17)165 (3)
O1—H2W···Cl10.87 (3)2.31 (3)3.1769 (17)173 (2)
O2—H3W···Cl1iv0.93 (3)2.25 (3)3.1766 (16)174 (3)
O2—H4W···Cl1v0.85 (3)2.31 (3)3.1631 (17)174 (3)
C1—H1···Cl1iv0.932.743.6726 (17)177
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C7H8N4)(H2O)2]Cl
Mr226.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.3208 (13), 10.6729 (9), 14.8266 (12)
β (°) 111.887 (2)
V3)2249.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.837, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
6383, 2310, 2005
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.07
No. of reflections2310
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
C1—N11.312 (2)Li1—N4i2.070 (3)
C4—N41.305 (2)Li1—N12.114 (3)
Li1—O21.926 (3)N4—Li1ii2.070 (3)
Li1—O11.929 (3)
O2—Li1—O1115.43 (15)O1—Li1—N1103.73 (13)
O2—Li1—N4i109.63 (14)N4i—Li1—N1104.66 (13)
O1—Li1—N4i115.59 (14)C4—N4—Li1ii137.92 (14)
O2—Li1—N1106.61 (13)C6—N4—Li1ii115.97 (13)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1iii0.72 (3)2.54 (3)3.2394 (17)165 (3)
O1—H2W···Cl10.87 (3)2.31 (3)3.1769 (17)173 (2)
O2—H3W···Cl1iv0.93 (3)2.25 (3)3.1766 (16)174 (3)
O2—H4W···Cl1v0.85 (3)2.31 (3)3.1631 (17)174 (3)
C1—H1···Cl1iv0.932.743.6726 (17)177.2
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds