Download citation
Download citation
link to html
The benefits of combining experimental and computational methods have been demonstrated by a study of the dynamics and solid-state structure of α-benzo­phenone. Dispersion-corrected and -uncorrected density functional theory molecular dynamics simulations were used to obtain displacement parameters, with the dispersion-corrected simulations showing good agreement with the experimental neutron and X-ray diffraction values. At 70 K, quantum-nuclear effects resulted in poor values for the hydrogen atoms, but the heavy-atom values still show excellent agreement, suggesting that molecular dynamics simulations can be a useful tool for determining displacement parameters where experimental data are poor or limited.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889813006225/kk5130sup1.cif
Contains datablocks Ph2CO2_300K_neutron, Ph2CO2_70K_neutron, Ph2CO2_Xray_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_Xray_295Ksup4.hkl
Contains datablock Ph2CO2_Xray_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_70K_neutronsup3.hkl
Contains datablock Ph2CO2_70K_neutron

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_300K_neutronsup2.hkl
Contains datablock Ph2CO2_300K_neutron

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_300K_neutronsup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_70K_neutronsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0021889813006225/kk5130Ph2CO2_Xray_295Ksup7.cml
Supplementary material

CCDC references: 943010; 943011; 943012

Computing details top

Data collection: SXD2001 (Gutmann, 2005) for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron. Cell refinement: SXD2001 (Gutmann, 2005) for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron. Data reduction: SXD2001 (Gutmann, 2005) for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron. Software used to prepare material for publication: SHELXTL for Ph2CO2_300K_neutron, Ph2CO2_70K_neutron.

(Ph2CO2_300K_neutron) top
Crystal data top
C13H10OF(000) = 219
Mr = 182.22Dx = 1.220 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.4-8.8 Å
a = 7.979 (3) ÅCell parameters from 330 reflections
b = 10.274 (3) ŵ = 3.78 + 0.0079 * lambda mm1
c = 12.103 (4) ÅT = 300 K
V = 992.2 (5) Å3Block, white transparent
Z = 47 × 6 × 2 mm
Data collection top
SXD
diffractometer
5557 reflections with I > 2σ(I)
Radiation source: ISIS spallation sourceRint = 0.000
time–of–flight LAUE diffraction scansθmax = 85.2°, θmin = 8.4°
Absorption correction: gauss integration
Gauss integration with 32 grid points
h = 2612
Tmin = 3.364, Tmax = 4.891k = 3531
5557 measured reflectionsl = 3832
5557 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.090 w = 1/[σ2(Fo2) + (0.1923P)2 + 1.9468P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.60 e Å3
5557 reflectionsΔρmin = 0.79 e Å3
225 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.204 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 10 (10)
Crystal data top
C13H10OV = 992.2 (5) Å3
Mr = 182.22Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.4-8.8 Å
a = 7.979 (3) ŵ = 3.78 + 0.0079 * lambda mm1
b = 10.274 (3) ÅT = 300 K
c = 12.103 (4) Å7 × 6 × 2 mm
Data collection top
SXD
diffractometer
5557 independent reflections
Absorption correction: gauss integration
Gauss integration with 32 grid points
5557 reflections with I > 2σ(I)
Tmin = 3.364, Tmax = 4.891Rint = 0.000
5557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.224Δρmax = 0.60 e Å3
S = 1.07Δρmin = 0.79 e Å3
5557 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
225 parametersAbsolute structure parameter: 10 (10)
0 restraints
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 30 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 330 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1935 (4)0.4980 (3)0.8995 (2)0.0549 (7)
H10.1206 (11)0.5524 (6)0.9602 (6)0.083 (2)
C20.2196 (5)0.3660 (3)0.9145 (3)0.0687 (9)
H20.1676 (15)0.3178 (7)0.9856 (7)0.107 (3)
C30.3097 (5)0.2958 (3)0.8386 (3)0.0756 (10)
H30.3322 (15)0.1927 (7)0.8506 (10)0.121 (4)
C40.3748 (5)0.3576 (4)0.7456 (3)0.0764 (10)
H40.4452 (14)0.3029 (10)0.6854 (8)0.118 (3)
C50.3470 (5)0.4904 (3)0.7288 (2)0.0641 (8)
H50.3919 (13)0.5385 (9)0.6554 (7)0.102 (3)
C60.2562 (4)0.5611 (3)0.80707 (19)0.0516 (7)
C70.2205 (4)0.6997 (3)0.7817 (2)0.0563 (7)
C80.1980 (4)0.7961 (2)0.8721 (2)0.0492 (6)
C90.0984 (4)0.9063 (3)0.8506 (3)0.0614 (8)
H60.0357 (13)0.9126 (8)0.7719 (7)0.095 (2)
C100.0802 (5)1.0018 (3)0.9299 (3)0.0704 (9)
H70.0023 (14)1.0848 (8)0.9128 (9)0.114 (3)
C110.1639 (5)0.9915 (3)1.0293 (3)0.0719 (10)
H80.1517 (15)1.0664 (8)1.0894 (8)0.113 (3)
C120.2639 (5)0.8832 (3)1.0513 (3)0.0638 (9)
H90.3286 (13)0.8759 (8)1.1296 (7)0.102 (3)
C130.2803 (4)0.7857 (3)0.9732 (2)0.0551 (7)
H100.3566 (10)0.7014 (7)0.9909 (6)0.082 (2)
O10.2110 (8)0.7343 (4)0.6856 (3)0.0875 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (2)0.0501 (12)0.0490 (15)0.0009 (15)0.0064 (13)0.0007 (11)
H10.106 (6)0.072 (3)0.072 (4)0.009 (4)0.034 (4)0.002 (3)
C20.088 (3)0.0574 (14)0.0610 (17)0.0002 (16)0.0003 (18)0.0001 (13)
H20.166 (10)0.069 (4)0.086 (5)0.011 (5)0.034 (5)0.015 (4)
C30.087 (3)0.0573 (16)0.082 (2)0.0130 (18)0.005 (2)0.0120 (16)
H30.165 (10)0.060 (4)0.139 (8)0.025 (5)0.003 (7)0.009 (5)
C40.072 (2)0.0759 (18)0.081 (2)0.0060 (17)0.0045 (19)0.028 (2)
H40.116 (7)0.117 (6)0.119 (7)0.015 (6)0.041 (6)0.042 (6)
C50.067 (2)0.0761 (17)0.0498 (16)0.0060 (16)0.0119 (14)0.0105 (15)
H50.120 (7)0.121 (6)0.064 (4)0.011 (5)0.031 (4)0.004 (4)
C60.0591 (17)0.0546 (14)0.0411 (11)0.0057 (13)0.0009 (11)0.0067 (10)
C70.072 (2)0.0559 (13)0.0410 (12)0.0028 (14)0.0009 (12)0.0035 (10)
C80.0517 (17)0.0510 (11)0.0450 (12)0.0015 (11)0.0041 (10)0.0019 (11)
C90.0611 (19)0.0565 (15)0.066 (2)0.0017 (13)0.0032 (15)0.0144 (14)
H60.105 (6)0.092 (5)0.090 (5)0.011 (5)0.024 (4)0.018 (4)
C100.072 (2)0.0543 (15)0.085 (2)0.0075 (16)0.0057 (18)0.0026 (17)
H70.126 (9)0.070 (4)0.148 (8)0.027 (5)0.004 (6)0.010 (5)
C110.080 (3)0.0538 (15)0.082 (2)0.0067 (15)0.0217 (18)0.0139 (16)
H80.159 (9)0.082 (4)0.100 (5)0.014 (5)0.012 (5)0.040 (4)
C120.071 (2)0.0618 (15)0.0583 (17)0.0040 (15)0.0002 (15)0.0118 (13)
H90.132 (8)0.106 (5)0.069 (4)0.005 (5)0.031 (4)0.026 (4)
C130.0582 (19)0.0589 (14)0.0483 (14)0.0031 (14)0.0088 (12)0.0054 (11)
H100.100 (6)0.071 (3)0.075 (4)0.026 (4)0.031 (4)0.004 (3)
O10.141 (4)0.077 (2)0.0440 (19)0.003 (3)0.004 (2)0.0072 (16)
Geometric parameters (Å, º) top
C1—C21.384 (4)C7—C81.487 (4)
C1—C61.386 (4)C8—C131.393 (4)
C2—C31.372 (5)C8—C91.408 (4)
C3—C41.393 (6)C9—C101.381 (5)
C4—C51.397 (5)C10—C111.380 (6)
C5—C61.396 (4)C11—C121.395 (5)
C6—C71.484 (4)C12—C131.383 (4)
C7—O11.219 (4)
C2—C1—C6120.6 (3)C6—C7—C8120.6 (2)
C3—C2—C1120.5 (3)C13—C8—C9119.3 (3)
C2—C3—C4119.8 (3)C13—C8—C7122.6 (2)
C3—C4—C5120.3 (3)C9—C8—C7117.9 (3)
C6—C5—C4119.4 (3)C10—C9—C8120.2 (3)
C1—C6—C5119.4 (3)C11—C10—C9120.0 (3)
C1—C6—C7123.1 (3)C10—C11—C12120.3 (3)
C5—C6—C7117.3 (3)C13—C12—C11120.1 (3)
O1—C7—C6119.3 (3)C12—C13—C8120.0 (3)
O1—C7—C8120.0 (3)
(Ph2CO2_70K_neutron) top
Crystal data top
C13H10OF(000) = 219
Mr = 182.22Dx = 1.275 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.4-8.8 Å
a = 7.7145 (15) ÅCell parameters from 1100 reflections
b = 10.2301 (15) ŵ = 3.78 + 0.0079 * lambda mm1
c = 12.0269 (18) ÅT = 70 K
V = 949.2 (3) Å3Block, white transparent
Z = 47 × 6 × 2 mm
Data collection top
SXD
diffractometer
13371 reflections with I > 2σ(I)
Radiation source: ISIS spallation sourceRint = 0.000
time–of–flight LAUE diffraction scansθmax = 84.0°, θmin = 8.6°
Absorption correction: gauss integration
Gauss integration with 32 grid points
h = 1613
Tmin = 3.360, Tmax = 4.903k = 2322
13372 measured reflectionsl = 2329
13372 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.091 w = 1/[σ2(Fo2) + (0.1421P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.207(Δ/σ)max = 0.001
S = 1.04Δρmax = 2.67 e Å3
13372 reflectionsΔρmin = 1.59 e Å3
225 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0508 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 10 (10)
Crystal data top
C13H10OV = 949.2 (3) Å3
Mr = 182.22Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.4-8.8 Å
a = 7.7145 (15) ŵ = 3.78 + 0.0079 * lambda mm1
b = 10.2301 (15) ÅT = 70 K
c = 12.0269 (18) Å7 × 6 × 2 mm
Data collection top
SXD
diffractometer
13372 independent reflections
Absorption correction: gauss integration
Gauss integration with 32 grid points
13371 reflections with I > 2σ(I)
Tmin = 3.360, Tmax = 4.903Rint = 0.000
13372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.091H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207Δρmax = 2.67 e Å3
S = 1.04Δρmin = 1.59 e Å3
13372 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
225 parametersAbsolute structure parameter: 10 (10)
0 restraints
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 100 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 1100 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1924 (2)0.49876 (12)0.90058 (10)0.0097 (2)
H10.1202 (6)0.5543 (3)0.9617 (3)0.0246 (8)
C20.2157 (3)0.36513 (13)0.91548 (11)0.0118 (3)
H20.1646 (7)0.3178 (3)0.9893 (3)0.0295 (9)
C30.3072 (3)0.29309 (13)0.83674 (12)0.0137 (3)
H30.3271 (7)0.1890 (3)0.8491 (3)0.0336 (10)
C40.3743 (2)0.35443 (15)0.74239 (13)0.0129 (3)
H40.4438 (7)0.2985 (4)0.6806 (3)0.0312 (9)
C50.3485 (2)0.48732 (14)0.72658 (11)0.0104 (3)
H50.3982 (7)0.5354 (4)0.6533 (3)0.0280 (9)
C60.2576 (2)0.56098 (12)0.80560 (10)0.0084 (2)
C70.2221 (2)0.70125 (12)0.78018 (10)0.0087 (2)
C80.1972 (2)0.79826 (12)0.87148 (11)0.0082 (2)
C90.0957 (2)0.90826 (13)0.84850 (11)0.0102 (3)
H60.0348 (6)0.9147 (4)0.7675 (3)0.0270 (8)
C100.0750 (2)1.00557 (13)0.92804 (12)0.0120 (3)
H70.0079 (7)1.0896 (3)0.9110 (4)0.0301 (9)
C110.1588 (2)0.99473 (14)1.03052 (12)0.0124 (3)
H80.1435 (7)1.0712 (4)1.0928 (3)0.0332 (10)
C120.2612 (2)0.88555 (12)1.05347 (11)0.0109 (3)
H90.3257 (7)0.8778 (4)1.1332 (3)0.0280 (8)
C130.2802 (2)0.78673 (12)0.97465 (10)0.0091 (2)
H100.3605 (6)0.7021 (4)0.9931 (3)0.0258 (8)
O10.2145 (3)0.73700 (16)0.68328 (13)0.0152 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0139 (8)0.0080 (4)0.0071 (4)0.0007 (5)0.0008 (4)0.0001 (4)
H10.032 (2)0.0202 (13)0.0219 (14)0.0040 (14)0.0117 (13)0.0023 (10)
C20.0167 (9)0.0086 (4)0.0102 (5)0.0007 (5)0.0005 (5)0.0005 (4)
H20.047 (3)0.0198 (13)0.0217 (14)0.0007 (15)0.0096 (15)0.0057 (11)
C30.0187 (9)0.0088 (4)0.0135 (5)0.0021 (5)0.0008 (5)0.0016 (4)
H30.054 (3)0.0136 (11)0.0329 (18)0.0050 (15)0.0012 (18)0.0014 (11)
C40.0125 (9)0.0126 (5)0.0137 (6)0.0012 (5)0.0012 (5)0.0051 (5)
H40.039 (3)0.0247 (14)0.0298 (17)0.0062 (17)0.0109 (16)0.0094 (13)
C50.0110 (8)0.0124 (5)0.0078 (5)0.0002 (5)0.0013 (4)0.0025 (4)
H50.039 (3)0.0253 (14)0.0192 (13)0.0022 (15)0.0110 (15)0.0010 (11)
C60.0110 (8)0.0081 (4)0.0060 (4)0.0003 (5)0.0009 (4)0.0006 (3)
C70.0117 (7)0.0088 (4)0.0057 (4)0.0002 (5)0.0000 (4)0.0000 (3)
C80.0107 (7)0.0073 (4)0.0067 (4)0.0004 (5)0.0010 (4)0.0002 (3)
C90.0118 (8)0.0090 (5)0.0098 (5)0.0003 (5)0.0007 (4)0.0012 (4)
H60.036 (3)0.0257 (15)0.0195 (14)0.0047 (15)0.0078 (13)0.0023 (11)
C100.0147 (9)0.0072 (4)0.0141 (6)0.0017 (5)0.0015 (5)0.0000 (4)
H70.038 (3)0.0182 (13)0.0338 (18)0.0092 (15)0.0004 (17)0.0016 (13)
C110.0155 (9)0.0088 (4)0.0128 (5)0.0009 (5)0.0021 (5)0.0024 (4)
H80.049 (3)0.0234 (14)0.0270 (16)0.0064 (17)0.0007 (17)0.0136 (13)
C120.0144 (9)0.0099 (5)0.0085 (5)0.0009 (5)0.0005 (5)0.0018 (4)
H90.035 (3)0.0325 (16)0.0168 (13)0.0004 (16)0.0065 (13)0.0029 (12)
C130.0109 (8)0.0090 (5)0.0075 (4)0.0008 (5)0.0014 (4)0.0013 (3)
H100.029 (2)0.0227 (13)0.0255 (15)0.0078 (15)0.0064 (13)0.0008 (12)
O10.0272 (12)0.0118 (5)0.0065 (5)0.0013 (7)0.0011 (6)0.0011 (4)
Geometric parameters (Å, º) top
C1—C21.3903 (18)C7—C81.4925 (18)
C1—C61.4009 (19)C8—C91.399 (2)
C2—C31.392 (2)C8—C131.4012 (19)
C3—C41.396 (2)C9—C101.390 (2)
C4—C51.387 (2)C10—C111.397 (2)
C5—C61.4010 (19)C11—C121.396 (2)
C6—C71.4925 (18)C12—C131.3936 (18)
C7—O11.223 (2)
C2—C1—C6120.37 (13)C6—C7—C8120.80 (11)
C1—C2—C3119.88 (14)C9—C8—C13119.91 (12)
C2—C3—C4120.19 (13)C9—C8—C7117.48 (12)
C5—C4—C3119.92 (14)C13—C8—C7122.47 (13)
C4—C5—C6120.39 (14)C10—C9—C8120.31 (14)
C1—C6—C5119.23 (12)C9—C10—C11119.81 (14)
C1—C6—C7122.55 (13)C12—C11—C10120.03 (13)
C5—C6—C7118.03 (12)C13—C12—C11120.37 (14)
O1—C7—C6119.44 (13)C12—C13—C8119.56 (13)
O1—C7—C8119.75 (13)
(Ph2CO2_Xray_295K) top
Crystal data top
C13H10ODx = 1.208 Mg m3
Mr = 182.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 623 reflections
a = 7.9958 (15) Åθ = 3.2–28.7°
b = 10.2907 (19) ŵ = 0.08 mm1
c = 12.174 (2) ÅT = 293 K
V = 1001.7 (3) Å3Block, white transparent
Z = 40.1 × 0.1 × 0.1 mm
F(000) = 384
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
1915 independent reflections
Radiation source: Enhance (Mo) X-ray Source1166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 15.9745 pixels mm-1θmax = 28.7°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011,15:58:25) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 105
Tmin = 0.788, Tmax = 1.000k = 1311
2828 measured reflectionsl = 1510
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.10 e Å3
1915 reflectionsΔρmin = 0.10 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0069 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier map
Crystal data top
C13H10OV = 1001.7 (3) Å3
Mr = 182.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9958 (15) ŵ = 0.08 mm1
b = 10.2907 (19) ÅT = 293 K
c = 12.174 (2) Å0.1 × 0.1 × 0.1 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
1915 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011,15:58:25) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1166 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.000Rint = 0.021
2828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.97Δρmax = 0.10 e Å3
1915 reflectionsΔρmin = 0.10 e Å3
128 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1940 (3)0.4979 (2)0.89906 (17)0.0602 (6)
H10.13450.54460.95150.072*
C20.2203 (3)0.3664 (2)0.91343 (19)0.0721 (7)
H20.17640.32460.97470.087*
C30.3107 (3)0.2974 (2)0.8381 (2)0.0798 (8)
H30.32930.20910.84870.096*
C40.3740 (3)0.3583 (3)0.7468 (2)0.0790 (8)
H40.43590.31110.69600.095*
C50.3461 (3)0.4887 (2)0.7303 (2)0.0663 (7)
H50.38790.52900.66760.080*
C60.2558 (3)0.5608 (2)0.80679 (16)0.0534 (5)
C70.2199 (3)0.7001 (2)0.78224 (18)0.0599 (6)
C80.1982 (3)0.7968 (2)0.87218 (17)0.0505 (5)
C90.1001 (3)0.9054 (2)0.8519 (2)0.0650 (6)
H90.04570.91330.78470.078*
C100.0822 (3)1.0011 (2)0.9291 (3)0.0779 (7)
H100.01541.07310.91460.093*
C110.1636 (3)0.9903 (2)1.0284 (3)0.0756 (8)
H110.15161.05511.08110.091*
C120.2631 (3)0.8833 (2)1.05006 (18)0.0679 (7)
H120.31910.87671.11680.081*
C130.2791 (3)0.7863 (2)0.97248 (16)0.0568 (6)
H130.34430.71370.98760.068*
O10.2096 (3)0.73555 (16)0.68655 (12)0.0952 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0693 (14)0.0595 (13)0.0517 (12)0.0016 (13)0.0019 (14)0.0045 (13)
C20.0893 (17)0.0609 (14)0.0661 (15)0.0033 (14)0.0015 (16)0.0004 (14)
C30.0881 (19)0.0613 (15)0.0901 (18)0.0071 (15)0.0106 (18)0.0125 (17)
C40.0704 (15)0.0813 (19)0.0854 (19)0.0092 (14)0.0098 (16)0.0287 (18)
C50.0637 (15)0.0822 (17)0.0530 (13)0.0088 (14)0.0000 (14)0.0110 (15)
C60.0574 (13)0.0603 (13)0.0424 (11)0.0033 (12)0.0029 (13)0.0051 (12)
C70.0646 (13)0.0667 (14)0.0484 (12)0.0086 (13)0.0023 (14)0.0042 (12)
C80.0514 (12)0.0501 (11)0.0499 (12)0.0057 (11)0.0018 (12)0.0064 (11)
C90.0651 (14)0.0615 (14)0.0685 (16)0.0039 (13)0.0062 (13)0.0142 (15)
C100.0783 (16)0.0567 (15)0.099 (2)0.0035 (14)0.0078 (17)0.0079 (18)
C110.0826 (18)0.0554 (14)0.0889 (19)0.0079 (14)0.0224 (17)0.0160 (16)
C120.0710 (15)0.0718 (16)0.0609 (14)0.0053 (14)0.0009 (15)0.0080 (13)
C130.0577 (13)0.0554 (13)0.0572 (13)0.0015 (11)0.0030 (13)0.0004 (12)
O10.1531 (16)0.0820 (11)0.0504 (9)0.0103 (13)0.0083 (13)0.0106 (9)
Geometric parameters (Å, º) top
C1—C21.380 (3)C7—C81.490 (3)
C1—C61.387 (3)C8—C131.386 (3)
C2—C31.367 (3)C8—C91.388 (3)
C3—C41.372 (3)C9—C101.369 (3)
C4—C51.375 (3)C10—C111.378 (3)
C5—C61.393 (3)C11—C121.384 (3)
C6—C71.492 (3)C12—C131.380 (2)
C7—O11.224 (2)
C2—C1—C6120.4 (2)C8—C7—C6121.13 (18)
C3—C2—C1120.3 (2)C13—C8—C9118.9 (2)
C2—C3—C4120.1 (2)C13—C8—C7122.78 (18)
C3—C4—C5120.3 (3)C9—C8—C7118.2 (2)
C4—C5—C6120.4 (2)C10—C9—C8121.1 (2)
C1—C6—C5118.5 (2)C9—C10—C11119.7 (2)
C1—C6—C7122.8 (2)C10—C11—C12120.2 (2)
C5—C6—C7118.5 (2)C13—C12—C11119.9 (2)
O1—C7—C8119.5 (2)C12—C13—C8120.25 (19)
O1—C7—C6119.4 (2)

Experimental details

(Ph2CO2_300K_neutron)(Ph2CO2_70K_neutron)(Ph2CO2_Xray_295K)
Crystal data
Chemical formulaC13H10OC13H10OC13H10O
Mr182.22182.22182.21
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)30070293
a, b, c (Å)7.979 (3), 10.274 (3), 12.103 (4)7.7145 (15), 10.2301 (15), 12.0269 (18)7.9958 (15), 10.2907 (19), 12.174 (2)
V3)992.2 (5)949.2 (3)1001.7 (3)
Z444
Radiation typeNeutron, λ = 0.4-8.8 ÅNeutron, λ = 0.4-8.8 ÅMo Kα
µ (mm1)3.78 + 0.0079 * lambda3.78 + 0.0079 * lambda0.08
Crystal size (mm)7 × 6 × 27 × 6 × 20.1 × 0.1 × 0.1
Data collection
DiffractometerSXD
diffractometer
SXD
diffractometer
Xcalibur, Sapphire3, Gemini
diffractometer
Absorption correctionGauss integration
Gauss integration with 32 grid points
Gauss integration
Gauss integration with 32 grid points
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011,15:58:25) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax3.364, 4.8913.360, 4.9030.788, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5557, 5557, 5557 13372, 13372, 13371 2828, 1915, 1166
Rint0.0000.0000.021
Distance from source to specimen (mm)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.224, 1.07 0.091, 0.207, 1.04 0.048, 0.079, 0.97
No. of reflections5557133721915
No. of parameters225225128
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.792.67, 1.590.10, 0.10
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter10 (10)10 (10)?

Computer programs: SXD2001 (Gutmann, 2005), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds