organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-tri­carboxylic acid–1,2-bis­­(1,2,4-triazol-4-yl)ethane–water (4/1/2)

aInstitut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
*Correspondence e-mail: janiak@uni-freiburg.de

(Received 1 March 2008; accepted 26 May 2008; online 7 June 2008)

The title compound, 4C9H6O6·C6H8N6·2H2O, crystallizes in a layer structure where each sheet is composed of anellated hydrogen-bonded rings of six distinct sizes: R22(16), R33(18), R44(12), R44(18), R44(22) and R44(25). The two largest rings, viz. R44(22) and R44(25), are associated with O—H⋯N bonds from the carboxyl groups to the triazole rings. The typical head-to-tail carbox­yl–carboxyl R22(8) motif is not observed.

Related literature

For related literature, see: Althoff et al. (2006[Althoff, G., Ruiz, J., Rodríguez, V., López, G., Pérez, J. & Janiak, C. (2006). CrystEngComm, 8, 662-665.]); Dale & Elsegood (2004[Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.]); Dale et al. (2004[Dale, S. H., Elsegood, M. R. J. & Richards, S. J. (2004). Chem. Commun. pp. 1278-1279.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 663-641.], 2006[Dorn, T., Chamayou, A.-C. & Janiak, C. (2006). New J. Chem. 30, 156-167.]); Du et al. (2005[Du, M., Zhang, Z.-H. & Zhao, X.-J. (2005). Cryst. Growth Des. 5, 1247-1254.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Fan et al. (2005[Fan, Z.-Z., Li, X.-H. & Wang, G.-P. (2005). Acta Cryst. E61, o1607-o1608.]); Goldberg & Bernstein (2007[Goldberg, I. & Bernstein, J. (2007). Chem. Commun. pp. 132-143.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Shattock et al. (2005[Shattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 2046-2049.]); Turner et al. (2008[Turner, D. R., Pek, S. N. & Batten, S. R. (2008). New J. Chem. 32, 719-726.]); Wang & Wang (2005[Wang, W.-J. & Wang, J.-S. (2005). Mol. Cryst. Liq. Cryst. 440, 147-152.]); Wisser & Janiak (2007a[Wisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732-m1733.],b[Wisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871-o2872.]).

[Scheme 1]

Experimental

Crystal data
  • 4C9H6O6·C6H8N6·2H2O

  • Mr = 1040.76

  • Triclinic, [P \overline 1]

  • a = 9.7989 (1) Å

  • b = 10.7511 (2) Å

  • c = 12.6578 (2) Å

  • α = 108.801 (1)°

  • β = 98.737 (1)°

  • γ = 113.340 (1)°

  • V = 1097.44 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 203 (2) K

  • 0.37 × 0.05 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.997

  • 20984 measured reflections

  • 4824 independent reflections

  • 3452 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.02

  • 4824 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O11i 0.92 (2) 1.67 (2) 2.594 (2) 175 (2)
O4—H4⋯O8 0.88 (2) 1.75 (2) 2.626 (2) 174 (2)
O6—H6⋯O1ii 0.91 (2) 1.84 (2) 2.699 (2) 157 (2)
O7—H7⋯N1 0.96 (2) 1.75 (2) 2.703 (2) 172 (2)
O9—H9⋯O13 0.91 (3) 1.63 (3) 2.531 (2) 170 (2)
O12—H12⋯N2iii 0.90 (2) 1.76 (2) 2.644 (2) 167 (2)
O13—H13A⋯O10iv 0.91 (2) 1.81 (3) 2.711 (2) 171 (2)
O13—H13B⋯O5 0.85 (3) 1.92 (3) 2.751 (2) 167 (2)
Symmetry codes: (i) x+1, y, z-1; (ii) -x+3, -y+2, -z+1; (iii) -x, -y, -z+1; (iv) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Hydrogen bonding within crystalline systems is of timely interest for the rational design of organized solids (Althoff et al., 2006; Dorn et al., 2005; Dorn et al. 2006; Wisser & Janiak, 2007a,b). Co-crystallization of benzene-di, -tri- and -tetra-carboxylic acids, like trimesic acid or hemimellitic acid with solvent molecules or nitrogen bases is the focus of permanent and recent research activities (Dale & Elsegood, 2004; Dale et al., 2004; Du et al., 2005; Fan et al., 2005; Goldberg & Bernstein, 2007; Shattock et al., 2005; Turner et al., 2008; Wang & Wang, 2005). Co-crystal structures of trimesic acid (benzene-1,3,5-tricarboxylic acid) have been reported with 2,5-bis(3- and 4-pyridyl)-1,3,4-oxadiazole (two-dimensional sheet, Du et al., 2005), 3,6-bis(3'-pyridyl)-1,2,4,5-tetrazine (one-dimensional ribbon, Wang & Wang, 2005), 1,2-bis(4-pyridyl)ethane (two-dimensional 6,3- and 10,3-network with interpenetration, Shattock et al., 2005), mono- and bis(methanol) (one-dimensional tape, Dale et al., 2004), acetic acid (Goldberg & Bernstein, 2007) and dihydrate (three-dimensional network, Fan et al., 2005).

The hydrogen-bonded sheet in the title compound contains several different motifs that engage all of the strong hydrogen bond donors and acceptors available (Fig. 1 and 2). The hydrogen bond distances in the sheet are spread over a narrow range, with D···A distances from 2.53 to 2.75 Å. The sheet is constructed of six distinct hydrogen-bonded rings of sizes R22(16), R33(18), R44(12), R44(18), R44(22) and R44(25), using Etter's graph set analysis (Etter et al., 1990). The two largest rings R44(22) and R44(25) are associated with the O—H···N bonds from the carboxylic acid groups to the triazole rings. All N1 and N2 nitrogen atoms of the 1,2-bis(1,2,4-triazol-4-yl)ethane molecule act as hydrogen-bond acceptors. The smallest ring R44(12) incorporates two water molecules and two carboxylic acid groups. The 18-membered R33(18) and R44(18) rings are constructed from one water molecule in combination with three and four carboxylic acid groups, respectively. These water and carboxylic acid containing motifs are different from those seen in the structure of the trimesic acid dihydrate (Fan et al., 2005). Also, formation of the common R22(8) head-to-tail carboxylic acid–acid graph-set motif is apparently prevented in the structure of the title compound by the water and the bis-triazole molecule. No relevant ππ or C—H···π interactions are found between molecules in adjacent sheets (Fig. 3) (Janiak, 2000).

Related literature top

For related literature, see: Althoff et al. (2006); Dale & Elsegood (2004); Dale et al. (2004); Dorn et al. (2005, 2006); Du et al. (2005); Etter et al. (1990); Fan et al. (2005); Goldberg & Bernstein (2007); Janiak (2000); Shattock et al. (2005); Turner et al. (2008); Wang & Wang (2005); Wisser & Janiak (2007a,b).

Experimental top

A mixture of trimesic acid, H3btc (210 mg, 1.00 mmol), 1,2-bis(1,2,4-triazol-4-yl)ethane, btre (164 mg, 1.00 mmol) and water (15 ml) was stirred for 30 min at room temperature, transferred to a Teflon-lined stainless-steel autoclave and heated at 453 K for 3 d. Then the autoclave was cooled to room temperature at a rate of 2.8 K h-1. A colorless crystalline product was filtered off, washed with distilled water and dried in air (yield 135 mg, 52% based on H3btc). Elemental analysis C21H18N3O13 (520.38) calcd. C 48.47, H 3.49, N 8.07; found: C 47.84, H 3.49, N 8.02%.

Refinement top

Hydrogen atoms for aromatic CH and aliphatic CH2 were positioned geometrically (C—H = 0.94 Å for aromatic CH, C—H = 0.98 Å for CH2) and refined using a riding model. Protic hydrogen atoms of the carboxyl groups and of the water of crystallization were found and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Fully labelled displacement ellipsoid diagram (at 50% probability) of the asymmetric unit. Symmetry code (v) 1-x, -y, -z.
[Figure 2] Fig. 2. The hydrogen-bonded sheet in the structure of 2(C6H3-1,3,5-(COOH)3).0.5(C6H8N6).H2O with graph set pattern of hydrogen-bonded rings in violet. Hydrogen bond data is given in Table 1. Additional symmetry code (v) 1-x, -y, -z.
[Figure 3] Fig. 3. Packing of the hydrogen-bonded sheets parallel to the (-2,3,-2)-plane with a d-spacing (distance of neighboring sheets) of 3.155 Å.
benzene-1,3,5-tricarboxylic acid–1,2-bis(1,2,4-triazol-4-yl)ethane–water (4/1/2) top
Crystal data top
4C9H6O6·C6H8N6·2H2OZ = 1
Mr = 1040.76F(000) = 538
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7989 (1) ÅCell parameters from 5028 reflections
b = 10.7511 (2) Åθ = 2.2–31.5°
c = 12.6578 (2) ŵ = 0.13 mm1
α = 108.801 (1)°T = 203 K
β = 98.737 (1)°Needle, colourless
γ = 113.340 (1)°0.37 × 0.05 × 0.02 mm
V = 1097.44 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4824 independent reflections
Radiation source: fine-focus sealed tube3452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.952, Tmax = 0.997k = 1313
20984 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0985P]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
4C9H6O6·C6H8N6·2H2Oγ = 113.340 (1)°
Mr = 1040.76V = 1097.44 (3) Å3
Triclinic, P1Z = 1
a = 9.7989 (1) ÅMo Kα radiation
b = 10.7511 (2) ŵ = 0.13 mm1
c = 12.6578 (2) ÅT = 203 K
α = 108.801 (1)°0.37 × 0.05 × 0.02 mm
β = 98.737 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3452 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.997Rint = 0.036
20984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
4824 reflectionsΔρmin = 0.24 e Å3
359 parameters
Special details top

Experimental. IR (KBr) 3512m (νCOO-H), 3427m (νCOO-H), 3122m, 1886m, 1704 s, (νasymCO2), 1539m (νasymCO2),1452 s (νsymCO2), 1356w (νsymCO2), 1320w (δOH···O),1285m, 1225m, 1190m, 1071m, 1020m, 986m, 936m (γOH···O), 905m, 870w, 844w, 814w, 745 s, 683 s, 666 s, 936m, 605w, 570w, 510m, 448m cm-1.

Thermogravimetric analysis (simultaneous thermoanalysis apparatus STA 409 C from Netzsch under nitrogen with a heating rate of 10 K min-1 in the range of 323 to 920 K): A sample of the compound shows the first weight loss in the temperature range 450–490 K which corresponds to the removal of the water molecule (obs. 3.67, calcd. 3.45%). From 550 to 610 K a less well resolved weight loss of about 17% occurs which is assigned to the half btre molecule (calcd. 15.8%). A third weight loss in the range 610–650 K of around 40% is assigned to the removal of one H~3~btc molecule (calcd. 40.3%). A weight loss continues to 920 K where 18.6% of the original mass is retained.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.35077 (13)0.71622 (12)0.20868 (9)0.0281 (3)
O21.12433 (15)0.50380 (13)0.11195 (10)0.0342 (3)
H21.169 (2)0.490 (2)0.0526 (19)0.051*
O30.72628 (14)0.32810 (13)0.28747 (10)0.0357 (3)
O40.75183 (14)0.47603 (13)0.46864 (10)0.0295 (3)
H40.658 (3)0.402 (2)0.4509 (17)0.044*
O51.23563 (17)0.97506 (14)0.69889 (11)0.0479 (4)
O61.41605 (14)1.03213 (13)0.61107 (11)0.0335 (3)
H61.473 (3)1.117 (2)0.6791 (19)0.050*
C11.15857 (19)0.65177 (17)0.30595 (13)0.0226 (3)
C21.01588 (19)0.54260 (17)0.29865 (13)0.0241 (4)
H2A0.96030.45200.23060.031 (5)*
C30.95434 (19)0.56593 (17)0.39110 (13)0.0224 (3)
C41.03774 (18)0.69911 (17)0.49313 (13)0.0230 (3)
H4A0.99630.71590.55550.028*
C51.18299 (19)0.80705 (17)0.50200 (13)0.0228 (3)
C61.24244 (19)0.78375 (17)0.40836 (13)0.0230 (3)
H6A1.33970.85760.41440.028*
C71.22269 (19)0.62928 (17)0.20573 (13)0.0235 (3)
C80.79976 (19)0.44429 (17)0.37606 (14)0.0237 (3)
C91.2777 (2)0.94488 (18)0.61364 (14)0.0260 (4)
O70.23309 (14)0.11931 (13)0.42638 (10)0.0327 (3)
H70.230 (2)0.064 (2)0.349 (2)0.049*
O80.47138 (14)0.26410 (13)0.43007 (10)0.0369 (3)
O90.82100 (16)0.72343 (14)0.77430 (11)0.0405 (3)
H90.916 (3)0.808 (3)0.814 (2)0.061*
O100.75891 (16)0.79239 (14)0.93837 (11)0.0487 (4)
O110.23548 (16)0.46243 (14)0.93776 (11)0.0443 (4)
O120.10133 (15)0.22723 (13)0.79990 (11)0.0360 (3)
H120.029 (3)0.214 (2)0.8372 (19)0.054*
C110.40237 (18)0.33372 (17)0.60392 (13)0.0226 (3)
C120.54215 (19)0.46733 (17)0.66014 (14)0.0248 (4)
H12A0.61370.49320.61930.030*
C130.57695 (19)0.56305 (17)0.77641 (14)0.0252 (4)
C140.47026 (19)0.52582 (17)0.83609 (14)0.0259 (4)
H14A0.49290.59080.91440.031*
C150.33011 (19)0.39277 (17)0.78027 (14)0.0242 (4)
C160.29563 (19)0.29562 (17)0.66414 (13)0.0226 (3)
H16A0.20120.20520.62670.027*
C170.37241 (19)0.23634 (17)0.47946 (14)0.0255 (4)
C180.7287 (2)0.70561 (18)0.83851 (15)0.0295 (4)
C190.2168 (2)0.36255 (19)0.84716 (14)0.0276 (4)
O131.09496 (16)0.94370 (15)0.86765 (12)0.0442 (4)
H13A1.134 (3)1.031 (3)0.932 (2)0.066*
H13B1.129 (3)0.959 (3)0.813 (2)0.066*
C210.2033 (2)0.17823 (19)0.03864 (14)0.0307 (4)
H21A0.15190.26130.03490.037*
C220.3793 (2)0.02501 (18)0.18472 (14)0.0277 (4)
H22A0.47470.11150.23320.033*
C230.4714 (2)0.0680 (2)0.01332 (16)0.0338 (4)
H23A0.42410.15850.06050.041*
H23B0.56080.06570.06230.041*
N10.25099 (16)0.01876 (15)0.21283 (12)0.0281 (3)
N20.13810 (16)0.14927 (15)0.11899 (12)0.0293 (3)
N30.35506 (16)0.07258 (15)0.07521 (11)0.0272 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (6)0.0268 (6)0.0238 (6)0.0049 (5)0.0126 (5)0.0063 (5)
O20.0292 (7)0.0311 (7)0.0215 (6)0.0013 (6)0.0140 (5)0.0010 (5)
O30.0264 (7)0.0300 (7)0.0276 (7)0.0011 (6)0.0100 (5)0.0032 (6)
O40.0195 (6)0.0265 (6)0.0300 (6)0.0014 (5)0.0130 (5)0.0073 (5)
O50.0467 (9)0.0343 (7)0.0338 (7)0.0005 (6)0.0268 (7)0.0017 (6)
O60.0236 (7)0.0270 (6)0.0248 (6)0.0018 (5)0.0099 (5)0.0015 (5)
C10.0207 (8)0.0239 (8)0.0197 (8)0.0080 (7)0.0084 (7)0.0075 (7)
C20.0208 (9)0.0237 (8)0.0187 (8)0.0054 (7)0.0065 (7)0.0049 (7)
C30.0187 (8)0.0223 (8)0.0225 (8)0.0070 (7)0.0074 (7)0.0081 (7)
C40.0209 (8)0.0235 (8)0.0221 (8)0.0079 (7)0.0111 (7)0.0082 (7)
C50.0207 (9)0.0219 (8)0.0228 (8)0.0079 (7)0.0091 (7)0.0078 (7)
C60.0178 (8)0.0226 (8)0.0229 (8)0.0050 (7)0.0093 (7)0.0076 (7)
C70.0211 (9)0.0219 (8)0.0209 (8)0.0058 (7)0.0084 (7)0.0065 (7)
C80.0191 (8)0.0245 (8)0.0240 (8)0.0069 (7)0.0083 (7)0.0100 (7)
C90.0248 (9)0.0218 (8)0.0250 (8)0.0062 (7)0.0131 (7)0.0065 (7)
O70.0237 (7)0.0300 (6)0.0214 (6)0.0013 (5)0.0110 (5)0.0004 (5)
O80.0273 (7)0.0332 (7)0.0261 (6)0.0017 (6)0.0167 (6)0.0013 (5)
O90.0282 (7)0.0291 (7)0.0359 (7)0.0047 (6)0.0161 (6)0.0014 (6)
O100.0416 (8)0.0347 (7)0.0305 (7)0.0044 (6)0.0152 (6)0.0049 (6)
O110.0399 (8)0.0402 (8)0.0307 (7)0.0046 (6)0.0237 (6)0.0018 (6)
O120.0269 (7)0.0324 (7)0.0349 (7)0.0026 (6)0.0202 (6)0.0079 (6)
C110.0199 (9)0.0220 (8)0.0225 (8)0.0073 (7)0.0090 (7)0.0081 (7)
C120.0223 (9)0.0240 (8)0.0255 (8)0.0077 (7)0.0123 (7)0.0095 (7)
C130.0234 (9)0.0218 (8)0.0242 (8)0.0072 (7)0.0094 (7)0.0063 (7)
C140.0243 (9)0.0239 (8)0.0220 (8)0.0075 (7)0.0101 (7)0.0051 (7)
C150.0223 (9)0.0251 (8)0.0245 (8)0.0096 (7)0.0109 (7)0.0101 (7)
C160.0197 (8)0.0208 (8)0.0223 (8)0.0060 (7)0.0083 (7)0.0072 (7)
C170.0219 (9)0.0237 (8)0.0240 (8)0.0051 (7)0.0104 (7)0.0082 (7)
C180.0273 (10)0.0236 (9)0.0274 (9)0.0054 (8)0.0115 (8)0.0060 (7)
C190.0242 (9)0.0311 (9)0.0227 (8)0.0092 (8)0.0109 (7)0.0094 (7)
O130.0374 (8)0.0341 (7)0.0289 (7)0.0054 (6)0.0157 (6)0.0019 (6)
C210.0262 (9)0.0272 (9)0.0209 (8)0.0011 (7)0.0097 (7)0.0032 (7)
C220.0236 (9)0.0258 (8)0.0229 (8)0.0040 (7)0.0103 (7)0.0062 (7)
C230.0336 (10)0.0365 (10)0.0329 (9)0.0138 (8)0.0233 (8)0.0144 (8)
N10.0233 (8)0.0249 (7)0.0228 (7)0.0023 (6)0.0103 (6)0.0049 (6)
N20.0223 (8)0.0280 (7)0.0234 (7)0.0022 (6)0.0105 (6)0.0053 (6)
N30.0239 (8)0.0268 (7)0.0235 (7)0.0055 (6)0.0132 (6)0.0079 (6)
Geometric parameters (Å, º) top
O1—C71.2182 (19)O12—C191.298 (2)
O2—C71.3221 (19)O12—H120.90 (2)
O2—H20.92 (2)C11—C121.390 (2)
O3—C81.2147 (19)C11—C161.395 (2)
O4—C81.3217 (19)C11—C171.489 (2)
O4—H40.88 (2)C12—C131.391 (2)
O5—C91.2065 (19)C12—H12A0.9400
O6—C91.3204 (19)C13—C141.388 (2)
O6—H60.91 (2)C13—C181.497 (2)
C1—C21.390 (2)C14—C151.389 (2)
C1—C61.391 (2)C14—H14A0.9400
C1—C71.492 (2)C15—C161.395 (2)
C2—C31.393 (2)C15—C191.494 (2)
C2—H2A0.9400C16—H16A0.9400
C3—C41.395 (2)O13—H13A0.91 (2)
C3—C81.491 (2)O13—H13B0.85 (3)
C4—C51.394 (2)C21—N21.300 (2)
C4—H4A0.9400C21—N31.353 (2)
C5—C61.393 (2)C21—H21A0.9400
C5—C91.489 (2)C22—N11.306 (2)
C6—H6A0.9400C22—N31.358 (2)
O7—C171.3090 (19)C22—H22A0.9400
O7—H70.96 (2)C23—N31.472 (2)
O8—C171.2230 (18)C23—C23i1.513 (3)
O9—C181.304 (2)C23—H23A0.9800
O9—H90.91 (3)C23—H23B0.9800
O10—C181.210 (2)N1—N21.3784 (18)
O11—C191.2201 (19)
C7—O2—H2110.6 (13)C14—C13—C12119.73 (15)
C8—O4—H4107.2 (13)C14—C13—C18119.44 (14)
C9—O6—H6112.6 (13)C12—C13—C18120.83 (14)
C2—C1—C6119.32 (14)C13—C14—C15120.10 (15)
C2—C1—C7120.95 (14)C13—C14—H14A120.0
C6—C1—C7119.73 (14)C15—C14—H14A120.0
C1—C2—C3120.72 (14)C14—C15—C16120.34 (14)
C1—C2—H2A119.6C14—C15—C19117.53 (14)
C3—C2—H2A119.6C16—C15—C19122.06 (15)
C2—C3—C4119.85 (14)C15—C16—C11119.51 (15)
C2—C3—C8117.56 (14)C15—C16—H16A120.2
C4—C3—C8122.59 (14)C11—C16—H16A120.2
C5—C4—C3119.53 (14)O8—C17—O7122.24 (14)
C5—C4—H4A120.2O8—C17—C11122.17 (15)
C3—C4—H4A120.2O7—C17—C11115.59 (13)
C6—C5—C4120.21 (14)O10—C18—O9125.16 (16)
C6—C5—C9119.87 (14)O10—C18—C13121.74 (15)
C4—C5—C9119.88 (13)O9—C18—C13113.10 (14)
C1—C6—C5120.34 (14)O11—C19—O12125.08 (15)
C1—C6—H6A119.8O11—C19—C15120.02 (15)
C5—C6—H6A119.8O12—C19—C15114.90 (14)
O1—C7—O2123.19 (14)H13A—O13—H13B110 (2)
O1—C7—C1124.36 (15)N2—C21—N3110.82 (14)
O2—C7—C1112.45 (13)N2—C21—H21A124.6
O3—C8—O4123.84 (15)N3—C21—H21A124.6
O3—C8—C3123.02 (14)N1—C22—N3110.10 (15)
O4—C8—C3113.14 (14)N1—C22—H22A124.9
O5—C9—O6122.58 (16)N3—C22—H22A124.9
O5—C9—C5124.55 (15)N3—C23—C23i111.15 (18)
O6—C9—C5112.86 (13)N3—C23—H23A109.4
C17—O7—H7107.8 (13)C23i—C23—H23A109.4
C18—O9—H9112.4 (14)N3—C23—H23B109.4
C19—O12—H12113.6 (14)C23i—C23—H23B109.4
C12—C11—C16119.86 (14)H23A—C23—H23B108.0
C12—C11—C17117.73 (14)C22—N1—N2107.37 (13)
C16—C11—C17122.41 (14)C21—N2—N1106.94 (13)
C11—C12—C13120.45 (14)C21—N3—C22104.77 (13)
C11—C12—H12A119.8C21—N3—C23127.89 (14)
C13—C12—H12A119.8C22—N3—C23127.25 (14)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11ii0.92 (2)1.67 (2)2.594 (2)175 (2)
O4—H4···O80.88 (2)1.75 (2)2.626 (2)174 (2)
O6—H6···O1iii0.91 (2)1.84 (2)2.699 (2)157 (2)
O7—H7···N10.96 (2)1.75 (2)2.703 (2)172 (2)
O9—H9···O130.91 (3)1.63 (3)2.531 (2)170 (2)
O12—H12···N2iv0.90 (2)1.76 (2)2.644 (2)167 (2)
O13—H13A···O10v0.91 (2)1.81 (3)2.711 (2)171 (2)
O13—H13B···O50.85 (3)1.92 (3)2.751 (2)167 (2)
Symmetry codes: (ii) x+1, y, z1; (iii) x+3, y+2, z+1; (iv) x, y, z+1; (v) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula4C9H6O6·C6H8N6·2H2O
Mr1040.76
Crystal system, space groupTriclinic, P1
Temperature (K)203
a, b, c (Å)9.7989 (1), 10.7511 (2), 12.6578 (2)
α, β, γ (°)108.801 (1), 98.737 (1), 113.340 (1)
V3)1097.44 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.37 × 0.05 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
20984, 4824, 3452
Rint0.036
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.02
No. of reflections4824
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2006), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11i0.92 (2)1.67 (2)2.594 (2)175 (2)
O4—H4···O80.88 (2)1.75 (2)2.626 (2)174 (2)
O6—H6···O1ii0.91 (2)1.84 (2)2.699 (2)157 (2)
O7—H7···N10.96 (2)1.75 (2)2.703 (2)172 (2)
O9—H9···O130.91 (3)1.63 (3)2.531 (2)170 (2)
O12—H12···N2iii0.90 (2)1.76 (2)2.644 (2)167 (2)
O13—H13A···O10iv0.91 (2)1.81 (3)2.711 (2)171 (2)
O13—H13B···O50.85 (3)1.92 (3)2.751 (2)167 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x+3, y+2, z+1; (iii) x, y, z+1; (iv) x+2, y+2, z+2.
 

Acknowledgements

Support through DFG grant No. Ja466/14-1 is acknowledged.

References

First citationAlthoff, G., Ruiz, J., Rodríguez, V., López, G., Pérez, J. & Janiak, C. (2006). CrystEngComm, 8, 662–665.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444–o448.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDale, S. H., Elsegood, M. R. J. & Richards, S. J. (2004). Chem. Commun. pp. 1278–1279.  Web of Science CSD CrossRef Google Scholar
First citationDorn, T., Chamayou, A.-C. & Janiak, C. (2006). New J. Chem. 30, 156–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 663–641.  Web of Science CSD CrossRef Google Scholar
First citationDu, M., Zhang, Z.-H. & Zhao, X.-J. (2005). Cryst. Growth Des. 5, 1247–1254.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, Z.-Z., Li, X.-H. & Wang, G.-P. (2005). Acta Cryst. E61, o1607–o1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoldberg, I. & Bernstein, J. (2007). Chem. Commun. pp. 132–143.  Web of Science CSD CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationShattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 2046–2049.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, D. R., Pek, S. N. & Batten, S. R. (2008). New J. Chem. 32, 719–726.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, W.-J. & Wang, J.-S. (2005). Mol. Cryst. Liq. Cryst. 440, 147–152.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732–m1733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871–o2872.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds