Download citation
Download citation
link to html
In situ single-crystal diffraction experiments provide researchers with the opportunity to study the response of crystalline systems, including metal-organic frameworks and other nanoporous materials, to changing local microenvironments. This paper reports a new environmental control cell that is remarkably easy to use, completely reusable, and capable of delivering static or dynamic vacuum, liquids or gases to a single-crystal sample. Furthermore the device is nearly identical in size to standard single-crystal mounts so a full unrestricted range of motion is expected for most commercial goniometers. In situ single-crystal X-ray diffraction experiments performed under dynamic gas-flow conditions revealed the cell was capable of stabilizing a novel metastable intermediate in the dehydration reaction of a previously reported metal-organic framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160057671500432X/kc5005sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160057671500432X/kc5005Isup2.hkl
Contains datablock I

CCDC reference: 1051798

Computing details top

Cell refinement: SAINT v7.68A (Bruker, 2009); data reduction: SAINT v7.68A (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C13H11CoN2O5·2(H2O)F(000) = 760
Mr = 370.20Dx = 1.662 Mg m3
Monoclinic, P21/cCell parameters from 9893 reflections
a = 12.6105 (6) Åθ = 2.6–17.2°
b = 7.6858 (3) ŵ = 0.26 mm1
c = 15.9256 (7) ÅT = 296 K
β = 106.541 (1)°Plate, violet
V = 1479.66 (11) Å30.15 × 0.12 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX2 area detector
diffractometer
4261 independent reflections
Radiation source: synchrotron, Bending magnet, ID-15B, APS, ANL3722 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.078
Detector resolution: 7.9 pixels mm-1θmax = 17.2°, θmin = 1.6°
ω and φ scansh = 1817
Absorption correction: multi-scan
SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1579 before and 0.1047 after correction. The Ratio of minimum to maximum transmission is 0.8645. The λ/2 correction factor is 0.0015.
k = 108
Tmin = 0.617, Tmax = 0.714l = 2222
28364 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.1592P)2 + 0.5543P]
where P = (Fo2 + 2Fc2)/3
4261 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 1.73 e Å3
Crystal data top
C13H11CoN2O5·2(H2O)β = 106.541 (1)°
Mr = 370.20V = 1479.66 (11) Å3
Monoclinic, P21/cZ = 4
a = 12.6105 (6) ŵ = 0.26 mm1
b = 7.6858 (3) ÅT = 296 K
c = 15.9256 (7) Å0.15 × 0.12 × 0.04 mm
Data collection top
Bruker SMART APEX2 area detector
diffractometer
4261 independent reflections
Absorption correction: multi-scan
SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1579 before and 0.1047 after correction. The Ratio of minimum to maximum transmission is 0.8645. The λ/2 correction factor is 0.0015.
3722 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.714Rint = 0.078
28364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.22Δρmax = 1.61 e Å3
4261 reflectionsΔρmin = 1.73 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.30400 (3)0.00854 (4)0.17802 (2)0.01507 (19)
O20.37286 (19)0.3360 (3)0.33008 (12)0.0283 (4)
C80.40714 (19)0.0856 (3)0.62713 (14)0.0161 (4)
H80.41950.06350.68660.019*
C60.36927 (19)0.0469 (3)0.56608 (14)0.0152 (4)
N10.45305 (17)0.1113 (3)0.16169 (12)0.0159 (4)
H1A0.49340.03050.14370.019*
H1B0.49410.15330.21350.019*
C40.35877 (18)0.1843 (3)0.35387 (14)0.0162 (4)
O10.32983 (18)0.0558 (3)0.30328 (12)0.0267 (4)
C30.37520 (18)0.1489 (3)0.44963 (13)0.0143 (4)
O40.37073 (17)0.2547 (2)0.18120 (11)0.0234 (4)
C20.41121 (18)0.2824 (3)0.51048 (14)0.0151 (4)
H20.42510.39250.49180.018*
O50.16518 (19)0.1595 (3)0.20415 (15)0.0355 (5)
H5A0.18860.22220.25180.053*
H5B0.11360.08930.21110.053*
C10.42634 (18)0.2505 (3)0.59908 (13)0.0138 (4)
C70.3440 (2)0.2802 (3)0.09901 (15)0.0176 (4)
N20.18485 (18)0.1706 (3)0.11048 (14)0.0219 (4)
O30.29523 (18)0.1626 (3)0.04740 (13)0.0283 (4)
C110.0380 (2)0.4306 (4)0.02352 (18)0.0286 (6)
C50.3528 (2)0.0156 (3)0.47706 (17)0.0165 (5)
H50.32720.10380.43640.020*
C130.1739 (3)0.3202 (5)0.1481 (2)0.0457 (10)
H130.21630.33780.20570.055*
C90.1278 (4)0.1544 (6)0.0278 (2)0.0646 (15)
H90.13780.05430.00190.078*
C120.1029 (4)0.4530 (5)0.1070 (2)0.0488 (11)
H120.09990.55650.13650.059*
C100.0538 (5)0.2777 (7)0.0174 (3)0.087 (3)
H100.01450.25820.07560.104*
O70.2325 (2)0.6013 (4)0.36079 (17)0.0430 (6)
H7A0.27760.52470.35340.065*
H7B0.24390.61990.41530.065*
O60.0098 (6)0.0409 (15)0.2157 (6)0.171 (4)
H6A0.07860.03490.18930.256*
H6B0.00080.06400.26940.256*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0235 (3)0.0096 (3)0.0107 (3)0.00518 (9)0.00259 (17)0.00018 (8)
O20.0460 (12)0.0224 (10)0.0164 (8)0.0079 (8)0.0087 (8)0.0042 (7)
C80.0262 (10)0.0102 (9)0.0112 (9)0.0006 (7)0.0043 (7)0.0009 (7)
C60.0259 (10)0.0059 (9)0.0140 (9)0.0018 (7)0.0059 (8)0.0001 (7)
N10.0269 (9)0.0091 (9)0.0100 (8)0.0026 (7)0.0025 (7)0.0014 (6)
C40.0205 (9)0.0188 (11)0.0094 (9)0.0008 (8)0.0044 (7)0.0005 (7)
O10.0448 (11)0.0235 (10)0.0120 (8)0.0041 (8)0.0083 (7)0.0054 (7)
C30.0216 (9)0.0120 (10)0.0092 (8)0.0011 (7)0.0041 (7)0.0014 (7)
O40.0409 (10)0.0122 (8)0.0175 (8)0.0038 (7)0.0090 (7)0.0028 (6)
C20.0232 (10)0.0102 (9)0.0114 (9)0.0036 (7)0.0041 (7)0.0006 (7)
O50.0362 (11)0.0325 (13)0.0347 (12)0.0045 (9)0.0052 (9)0.0002 (9)
C10.0220 (9)0.0080 (9)0.0100 (8)0.0007 (7)0.0025 (7)0.0011 (7)
C70.0246 (10)0.0110 (10)0.0173 (10)0.0009 (7)0.0061 (8)0.0013 (7)
N20.0239 (9)0.0176 (10)0.0205 (10)0.0072 (7)0.0003 (7)0.0019 (7)
O30.0424 (11)0.0134 (9)0.0243 (9)0.0108 (7)0.0017 (8)0.0010 (7)
C110.0307 (13)0.0234 (14)0.0237 (12)0.0128 (10)0.0052 (10)0.0010 (10)
C50.0251 (12)0.0109 (10)0.0136 (11)0.0020 (7)0.0054 (9)0.0024 (7)
C130.059 (2)0.0353 (18)0.0261 (14)0.0285 (15)0.0150 (13)0.0104 (12)
C90.094 (3)0.040 (2)0.0323 (17)0.047 (2)0.0253 (18)0.0159 (14)
C120.062 (2)0.0315 (17)0.0330 (17)0.0312 (17)0.0187 (15)0.0142 (14)
C100.123 (5)0.061 (3)0.0368 (19)0.068 (3)0.041 (2)0.026 (2)
O70.0518 (14)0.0359 (14)0.0359 (13)0.0041 (11)0.0036 (11)0.0040 (10)
O60.081 (4)0.323 (11)0.117 (6)0.101 (6)0.042 (4)0.000 (6)
Geometric parameters (Å, º) top
Co1—N12.174 (2)O5—H5A0.8762
Co1—O11.9900 (18)O5—H5B0.8756
Co1—O42.0653 (19)C1—N1iii1.430 (3)
Co1—O52.236 (2)C7—C6iv1.496 (3)
Co1—N22.095 (2)C7—O31.258 (3)
Co1—O32.369 (2)N2—C131.322 (4)
O2—C41.254 (3)N2—C91.314 (4)
C8—H80.9300C11—C11v1.486 (5)
C8—C61.395 (3)C11—C121.360 (4)
C8—C11.388 (3)C11—C101.386 (5)
C6—C7i1.496 (3)C5—H50.9300
C6—C51.394 (3)C13—H130.9300
N1—H1A0.9000C13—C121.392 (4)
N1—H1B0.9000C9—H90.9300
N1—C1ii1.430 (3)C9—C101.380 (5)
C4—O11.261 (3)C12—H120.9300
C4—C31.504 (3)C10—H100.9300
C3—C21.395 (3)O7—H7A0.8500
C3—C51.393 (3)O7—H7B0.8502
O4—C71.271 (3)O6—H6A0.8506
C2—H20.9300O6—H6B0.8500
C2—C11.391 (3)
N1—Co1—O5172.50 (8)C1—C2—C3119.9 (2)
N1—Co1—O386.13 (8)C1—C2—H2120.0
O1—Co1—N196.57 (8)Co1—O5—H5A111.0
O1—Co1—O4104.69 (8)Co1—O5—H5B110.7
O1—Co1—O581.70 (9)H5A—O5—H5B107.9
O1—Co1—N2103.90 (9)C8—C1—N1iii118.82 (18)
O1—Co1—O3163.32 (8)C8—C1—C2120.08 (19)
O4—Co1—N191.77 (8)C2—C1—N1iii120.92 (19)
O4—Co1—O581.67 (9)O4—C7—C6iv118.5 (2)
O4—Co1—N2147.37 (8)O3—C7—C6iv121.5 (2)
O4—Co1—O358.70 (7)O3—C7—O4119.9 (2)
O5—Co1—O393.48 (8)C13—N2—Co1119.38 (18)
N2—Co1—N1100.28 (8)C9—N2—Co1124.1 (2)
N2—Co1—O587.22 (9)C9—N2—C13116.0 (2)
N2—Co1—O391.73 (8)C7—O3—Co183.89 (14)
C6—C8—H8120.0C12—C11—C11v121.6 (3)
C1—C8—H8120.0C12—C11—C10116.1 (3)
C1—C8—C6119.92 (19)C10—C11—C11v122.0 (3)
C8—C6—C7i117.98 (19)C6—C5—H5120.3
C5—C6—C8120.3 (2)C3—C5—C6119.4 (2)
C5—C6—C7i121.7 (2)C3—C5—H5120.3
Co1—N1—H1A109.4N2—C13—H13118.0
Co1—N1—H1B109.4N2—C13—C12124.1 (3)
H1A—N1—H1B108.0C12—C13—H13118.0
C1ii—N1—Co1110.98 (14)N2—C9—H9118.2
C1ii—N1—H1A109.4N2—C9—C10123.6 (3)
C1ii—N1—H1B109.4C10—C9—H9118.2
O2—C4—O1125.1 (2)C11—C12—C13119.6 (3)
O2—C4—C3119.0 (2)C11—C12—H12120.2
O1—C4—C3115.9 (2)C13—C12—H12120.2
C4—O1—Co1140.34 (18)C11—C10—H10119.9
C2—C3—C4119.7 (2)C9—C10—C11120.2 (3)
C5—C3—C4120.0 (2)C9—C10—H10119.9
C5—C3—C2120.30 (19)H7A—O7—H7B109.5
C7—O4—Co197.44 (15)H6A—O6—H6B109.4
C3—C2—H2120.0
Co1—O4—C7—C6iv176.31 (18)O4—Co1—N2—C915.3 (4)
Co1—O4—C7—O32.1 (3)O4—Co1—O3—C71.14 (15)
Co1—N2—C13—C12175.4 (4)O4—C7—O3—Co11.8 (2)
Co1—N2—C9—C10176.3 (6)C2—C3—C5—C61.5 (4)
O2—C4—O1—Co17.0 (5)O5—Co1—N1—C1ii167.4 (5)
O2—C4—C3—C23.3 (3)O5—Co1—O1—C4142.1 (3)
O2—C4—C3—C5175.7 (2)O5—Co1—O4—C798.13 (16)
C8—C6—C5—C30.4 (4)O5—Co1—N2—C13103.5 (3)
C6—C8—C1—N1iii173.0 (2)O5—Co1—N2—C985.2 (4)
C6—C8—C1—C22.0 (3)O5—Co1—O3—C776.93 (16)
C6iv—C7—O3—Co1176.5 (2)C1—C8—C6—C7i176.8 (2)
N1—Co1—O1—C445.3 (3)C1—C8—C6—C51.4 (4)
N1—Co1—O4—C785.52 (16)C7i—C6—C5—C3178.5 (2)
N1—Co1—N2—C1376.8 (3)N2—Co1—N1—C1ii10.93 (15)
N1—Co1—N2—C994.6 (4)N2—Co1—O1—C457.1 (3)
N1—Co1—O3—C795.57 (16)N2—Co1—O4—C726.8 (2)
C4—C3—C2—C1179.9 (2)N2—Co1—O3—C7164.24 (16)
C4—C3—C5—C6179.5 (2)N2—C13—C12—C111.3 (8)
O1—Co1—N1—C1ii116.39 (15)N2—C9—C10—C111.4 (11)
O1—Co1—O4—C7177.22 (15)O3—Co1—N1—C1ii80.13 (14)
O1—Co1—N2—C1322.7 (3)O3—Co1—O1—C4143.8 (3)
O1—Co1—N2—C9165.9 (4)O3—Co1—O4—C71.13 (14)
O1—Co1—O3—C74.4 (4)O3—Co1—N2—C13163.1 (3)
O1—C4—C3—C2177.6 (2)O3—Co1—N2—C98.2 (4)
O1—C4—C3—C53.4 (3)C11v—C11—C12—C13179.2 (5)
C3—C4—O1—Co1174.0 (2)C11v—C11—C10—C9178.0 (6)
C3—C2—C1—C80.9 (3)C5—C3—C2—C10.9 (3)
C3—C2—C1—N1iii174.0 (2)C13—N2—C9—C104.7 (9)
O4—Co1—N1—C1ii138.60 (14)C9—N2—C13—C123.3 (7)
O4—Co1—O1—C4138.8 (3)C12—C11—C10—C93.3 (9)
O4—Co1—N2—C13173.3 (3)C10—C11—C12—C134.6 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H11CoN2O5·2(H2O)
Mr370.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6105 (6), 7.6858 (3), 15.9256 (7)
β (°) 106.541 (1)
V3)1479.66 (11)
Z4
Radiation type?, λ = 0.41328 Å
µ (mm1)0.26
Crystal size (mm)0.15 × 0.12 × 0.04
Data collection
DiffractometerBruker SMART APEX2 area detector
diffractometer
Absorption correctionMulti-scan
SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1579 before and 0.1047 after correction. The Ratio of minimum to maximum transmission is 0.8645. The λ/2 correction factor is 0.0015.
Tmin, Tmax0.617, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
28364, 4261, 3722
Rint0.078
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.234, 1.22
No. of reflections4261
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 1.73

Computer programs: SAINT v7.68A (Bruker, 2009), SHELXS97 (Sheldrick, 2008), XL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds