Download citation
Download citation
link to html
In the title compounds, C15H12N4OS, (I), and C14H10N4OS, (II), the thia­diazine ring adopts a skew-boat conformation, while the triazole and furyl rings are essentially planar. The phenyl group is twisted by 33.5 (2) and 47.9 (1)° out of the triazole-ring plane in (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014079/ka1344sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014079/ka1344Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014079/ka1344IIsup3.hkl
Contains datablock II

CCDC references: 142764; 142765

Comment top

The prevalence of resistant infections decreases the applicability of existing chemotherapeutic and chemopreventive antimicrobial agents and stimulates the search for new compounds. The 1,2,4-triazole nucleus and the nitrogen-bridged heterocycles derived from it have recently been incorporated into a variety of compounds with antibacterial (Holla & Kalluraya, 1988), antifungal (Prasad et al., 1989) and antiparasitic (El-Dawy et al., 1983) properties. In a previous work, we reported on the synthesis and the antimicrobial effects of novel 6-aryl-3-(2-furyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines (Ergenç et al., 1996). To further investigate this bicyclic system and establish its structure unambiguously, single-crystal X-ray diffraction studies were carried out on 6-phenyl- and 6-(4-methylphenyl)-3-(2-furyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine, i.e. (II) and (I), respectively.

The title compounds consist of a fused triazolo-thiadiazine system, one furyl ring and one phenyl ring. The four rings do not share a common plane. As expected, the 1,2,4-triazole and furanyl rings in both compounds are planar which can be attributed to a wide range of electron delocalization [maximum deviations 0.007 (2) and −0.003 (3) Å for C4 and C8, respectively, in (I), and −0.006 (2) and 0.003 (3) Å for N3 and C7 in (II)]. The thiadiazine ring fused to the triazole ring deviates from planarity. In (I) and (II), the puckering parameters (Cremer & Pople, 1975) are Q = 0.587 (2) and 0.616 (2) Å, θ = 65.8 (2) and 66.7 (2)°, and ϕ = 34.2 (2) and 34.6 (2)° for (I) and (II), respectively. So the thiadiazine moiety assumes a skew-boat conformation in both compounds. The phenyl ring is essentially planar and twisted out of the plane of the triazole ring, the dihedral angle between these planes is 33.5 (2)° in (I) and 47.9 (1)° in (II). The dihedral angles between the triazole and furyl rings are 16.2 (2) and 10.8 (1)° in (I) and (II), respectively.

The bond lengths and angles in both compounds are very similar and within expected ranges. The N1—C4 and N2—C3 bond distances [average values 1.311 (3) and 1.304 (3) Å, respectively] are in a good agreement with those found for structures containing the 1,2,4-triazole ring (Özbey et al., 1999; Wang et al., 1998). In both compounds, the presence of the electron-donating furyl group in the 3-position of the triazole ring leads to an elongation of the N1—N2 bond length to 1.402 (3) Å (average value). This bond is 1.371 (2) Å in 5-amino-3-trifluoromethyl-1H-1,2,4-triazole (Borbulevych et al., 1998), in which an electron-withdrawing group is bound to the 3-position of the triazole ring. The difference between the S1—C2 bond distance [average value 1.814 (3) Å] and the S1—C3 bond distance [average value 1.733 Å] can be attributed to the different hybridization of the Csp3 and Csp2 atoms (Argay et al., 1977, 1980).

Since (I) is the 4-methyl derivative of (II), the identical space groups and the similarity of the lattice parameters suggest some degree of isostructurality, as shown by the descriptors Δ(pc) = 3.6% and Π = 0.034 (Kálmán et al., 1991, 1993). In terms of the predictions given by Kitaigorodskii (1961), it is unique that a relatively small molecule such as (I) (Mr = 296.35) retains similar close packing to that of (II) enlarged by the bulky methyl group (5% of the molecular weight). This, of course, accounts for the low index of isostructurality Ii(20) = 52% calculated by the algorithm of Kálmán et al. (1991, 1993). To avoid the ambivalence raised by the choice of a common origin for oblique (monoclinic) unit cells, the isostructuralities of (I) and (II) were calculated by the novel volumetric method developed by Fábián (1999) and reported in detail by Fábián & Kálmán (1999). The volumetric index of isostructurality amounts to 72% for the whole unit cell with four molecules indicating significant packing similarity of the related structures.

In both compounds, the N4 atom of the thiadiazine moiety is involved in an intramolecular hydrogen-bond interaction (Tables 2 and 4). In compound (I), there is also one intermolecular interaction (Table 2). These bonds, together with normal van der Waals interactions, are responsible for the packing in the crystal.

Experimental top

Both compounds were synthesized as described in Ergen˛c et al. (1996) and recrystallized from C2H5OH.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: MolEN; program(s) used to refine structure: MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: MolEN and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) drawing of (II). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
(I) top
Crystal data top
C15H12N4OSZ = 4
Mr = 296.35Dx = 1.43 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.342 (1) Åθ = 10.0–18.2°
b = 9.106 (1) ŵ = 0.24 mm1
c = 16.208 (1) ÅT = 295 K
β = 92.58 (1)°Prismatic, yellow
V = 1377.4 (2) Å30.64 × 0.40 × 0.16 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.011
ω/2θ scansθmax = 26.3°
Absorption correction: empirical (using intensity measurements)
via ψ scans (Fair, 1990)
h = 110
Tmin = 0.940, Tmax = 1.000k = 110
3072 measured reflectionsl = 2020
2705 independent reflections3 standard reflections every 120 min
1890 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038w = 1/[σ(F2) + (0.02F)2 + 1]
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 0.70Δρmax = 0.25 e Å3
1890 reflectionsΔρmin = 0.22 e Å3
190 parameters
Crystal data top
C15H12N4OSV = 1377.4 (2) Å3
Mr = 296.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.342 (1) ŵ = 0.24 mm1
b = 9.106 (1) ÅT = 295 K
c = 16.208 (1) Å0.64 × 0.40 × 0.16 mm
β = 92.58 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1890 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (Fair, 1990)
Rint = 0.011
Tmin = 0.940, Tmax = 1.0003 standard reflections every 120 min
3072 measured reflections intensity decay: 0.8%
2705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038190 parameters
wR(F2) = 0.043H-atom parameters constrained
S = 0.70Δρmax = 0.25 e Å3
1890 reflectionsΔρmin = 0.22 e Å3
Special details top

Refinement. In (I) and (II), H atoms were placed geometrically 0.95 Å from their parent atoms except for the H atoms of C2, which were found from Δρ maps and refined isotropically for a few cycles and then fixed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55632 (7)0.1903 (1)0.78080 (4)0.0557 (2)
O10.1516 (2)0.4867 (2)1.0204 (1)0.0609 (5)
N10.2597 (2)0.4417 (3)0.8634 (1)0.0508 (6)
N20.3277 (2)0.3763 (3)0.7975 (1)0.0548 (6)
N30.4343 (2)0.3028 (2)0.9138 (1)0.0380 (5)
N40.5366 (2)0.2488 (2)0.9707 (1)0.0373 (5)
C10.6096 (2)0.1374 (3)0.9466 (1)0.0363 (6)
C20.5779 (3)0.0610 (3)0.8655 (1)0.0465 (6)
C30.4310 (3)0.2958 (3)0.8295 (1)0.0447 (8)
C40.3256 (2)0.3970 (3)0.9320 (1)0.0398 (6)
C50.2850 (2)0.4286 (3)1.0148 (1)0.0407 (6)
C60.3450 (3)0.4069 (3)1.0908 (2)0.0478 (8)
C70.2437 (3)0.4545 (3)1.1475 (2)0.0590 (8)
C80.1298 (3)0.5005 (4)1.1027 (2)0.0692 (8)
C90.7210 (2)0.0814 (3)1.0059 (1)0.0356 (6)
C100.7611 (3)0.1613 (3)1.0766 (2)0.0479 (6)
C110.8586 (3)0.1051 (3)1.1344 (2)0.0530 (8)
C120.9217 (2)0.0314 (3)1.1247 (1)0.0450 (8)
C130.8846 (3)0.1081 (3)1.0539 (2)0.0467 (6)
C140.7862 (2)0.0541 (3)0.9952 (1)0.0424 (6)
C151.0259 (3)0.0929 (4)1.1893 (2)0.0667 (12)
H60.4380.3671.1030.0621*
H70.2560.4541.2060.0747*
H80.0450.5381.1250.0874*
H100.7200.2551.0850.0633*
H110.8840.1611.1820.0684*
H130.9280.2011.0450.0608*
H140.7630.1100.9470.0557*
H210.4860.0040.8670.0545*
H220.6520.0060.8490.0545*
H1511.0570.1871.1720.0823*
H1521.1060.0291.1960.0823*
H1530.9800.1021.2400.0823*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0555 (3)0.0822 (5)0.0296 (3)0.0068 (4)0.0041 (2)0.0008 (3)
O10.0518 (9)0.080 (1)0.0506 (9)0.024 (1)0.0001 (8)0.001 (1)
N10.053 (1)0.056 (1)0.043 (1)0.006 (1)0.0031 (9)0.010 (1)
N20.057 (1)0.070 (1)0.037 (1)0.007 (1)0.0038 (9)0.012 (1)
N30.0364 (9)0.047 (1)0.0302 (8)0.0001 (9)0.0023 (7)0.0031 (9)
N40.0366 (9)0.044 (1)0.0310 (8)0.0003 (9)0.0028 (7)0.0025 (8)
C10.036 (1)0.041 (1)0.032 (1)0.005 (1)0.0020 (9)0.000 (1)
C20.049 (1)0.053 (1)0.037 (1)0.000 (1)0.003 (1)0.008 (1)
C30.046 (1)0.058 (2)0.030 (1)0.004 (1)0.0004 (9)0.007 (1)
C40.039 (1)0.040 (1)0.040 (1)0.001 (1)0.001 (1)0.006 (1)
C50.038 (1)0.038 (1)0.046 (1)0.003 (1)0.000 (1)0.001 (1)
C60.043 (1)0.055 (2)0.045 (1)0.006 (1)0.004 (1)0.003 (1)
C70.060 (1)0.076 (2)0.041 (1)0.012 (2)0.002 (1)0.011 (1)
C80.061 (1)0.094 (2)0.053 (1)0.028 (2)0.008 (1)0.008 (2)
C90.034 (1)0.040 (1)0.033 (1)0.003 (1)0.0021 (9)0.001 (1)
C100.050 (1)0.050 (1)0.043 (1)0.008 (1)0.006 (1)0.008 (1)
C110.055 (1)0.064 (2)0.039 (1)0.002 (1)0.010 (1)0.009 (1)
C120.037 (1)0.056 (2)0.042 (1)0.000 (1)0.001 (1)0.008 (1)
C130.043 (1)0.039 (1)0.058 (1)0.002 (1)0.001 (1)0.004 (1)
C140.044 (1)0.041 (1)0.042 (1)0.005 (1)0.001 (1)0.005 (1)
C150.057 (2)0.085 (2)0.057 (2)0.016 (2)0.008 (1)0.011 (2)
Geometric parameters (Å, º) top
S1—C21.813 (3)C6—H60.950
S1—C31.732 (3)C7—C81.329 (4)
O1—C51.361 (3)C7—H70.950
O1—C81.364 (3)C8—H80.950
N1—N21.400 (3)C9—C101.395 (3)
N1—C41.310 (3)C9—C141.390 (3)
N2—C31.301 (3)C10—C111.375 (4)
N3—N41.388 (2)C10—H100.950
N3—C31.367 (3)C11—C121.387 (4)
N3—C41.371 (3)C11—H110.950
N4—C11.293 (3)C12—C131.376 (3)
C1—C21.505 (3)C12—C151.506 (4)
C1—C91.475 (3)C13—C141.382 (3)
C2—H211.004C13—H130.950
C2—H220.969C14—H140.950
C4—C51.441 (3)C15—H1510.950
C5—C61.344 (3)C15—H1520.950
C6—C71.417 (4)C15—H1530.950
C2—S1—C394.0 (1)N3—C4—C5123.6 (2)
C5—O1—C8106.1 (2)O1—C5—C4114.8 (2)
N2—N1—C4107.6 (2)O1—C5—C6110.0 (2)
N1—N2—C3106.8 (2)C4—C5—C6135.1 (2)
N4—N3—C3129.2 (2)C5—C6—C7106.7 (2)
N4—N3—C4125.0 (2)C5—C6—H6126.2
C3—N3—C4105.0 (2)C7—C6—H6127.1
N3—N4—C1115.7 (2)C6—C7—C8106.5 (2)
N4—C1—C2122.7 (2)C6—C7—H7126.5
N4—C1—C9116.2 (2)C8—C7—H7127.0
C2—C1—C9121.0 (2)O1—C8—C7110.7 (3)
S1—C2—C1111.9 (2)O1—C8—H8124.7
S1—C2—H21106.9C7—C8—H8124.6
S1—C2—H22105.2C1—C9—C10120.7 (2)
C1—C2—H21110.5C1—C9—C14121.8 (2)
C1—C2—H22114.2C10—C9—C14117.5 (2)
H21—C2—H22107.8C9—C10—C11120.7 (2)
S1—C3—N2129.4 (2)C9—C10—H10119.2
S1—C3—N3119.7 (2)C11—C10—H10120.1
N2—C3—N3110.8 (2)C10—C11—C12121.9 (2)
N1—C4—N3109.7 (2)C10—C11—H11119.3
N1—C4—C5126.5 (2)C12—C11—H11118.8
C11—C12—C13117.2 (2)C13—C14—H14119.9
C11—C12—C15121.3 (2)C12—C15—H151109.4
C13—C12—C15121.5 (2)C12—C15—H152109.4
C12—C13—C14121.9 (2)C12—C15—H153109.6
C12—C13—H13118.7H151—C15—H152109.5
C14—C13—H13119.4H151—C15—H153109.5
C9—C14—C13120.8 (2)H152—C15—H153109.5
C9—C14—H14119.3
C3—S1—C2—C152.0 (2)N3—C4—C5—O1160.9 (2)
C3—S1—C2—H2169.1N3—C4—C5—C614.4 (5)
C3—S1—C2—H22176.6O1—C5—C6—C70.2 (3)
C2—S1—C3—N2151.8 (3)O1—C5—C6—H6179.9
C2—S1—C3—N328.9 (2)C4—C5—C6—C7175.8 (3)
C8—O1—C5—C4176.4 (2)C4—C5—C6—H64.4
C8—O1—C5—C60.1 (3)C5—C6—C7—C80.5 (3)
C5—O1—C8—C70.4 (3)C5—C6—C7—H7179.3
C5—O1—C8—H8179.6H6—C6—C7—C8179.7
C4—N1—N2—C30.1 (3)H6—C6—C7—H70.5
N2—N1—C4—N30.6 (3)C6—C7—C8—O10.5 (4)
N2—N1—C4—C5175.3 (2)C6—C7—C8—H8179.4
N1—N2—C3—S1178.6 (2)H7—C7—C8—O1179.3
N1—N2—C3—N30.8 (3)H7—C7—C8—H80.8
C3—N3—N4—C126.7 (3)C1—C9—C10—C11175.9 (2)
C4—N3—N4—C1164.9 (2)C1—C9—C10—H103.5
N4—N3—C3—S18.2 (4)C14—C9—C10—C111.8 (4)
N4—N3—C3—N2171.3 (2)C14—C9—C10—H10178.7
C4—N3—C3—S1178.3 (2)C1—C9—C14—C13176.4 (2)
C4—N3—C3—N21.1 (3)C1—C9—C14—H143.8
N4—N3—C4—N1171.8 (2)C10—C9—C14—C131.4 (3)
N4—N3—C4—C513.4 (4)C10—C9—C14—H14178.4
C3—N3—C4—N11.1 (3)C9—C10—C11—C120.6 (4)
C3—N3—C4—C5175.9 (2)C9—C10—C11—H11179.9
N3—N4—C1—C25.5 (3)H10—C10—C11—C12179.9
N3—N4—C1—C9178.6 (2)H10—C10—C11—H110.4
N4—C1—C2—S147.8 (3)C10—C11—C12—C131.1 (4)
N4—C1—C2—H2171.2C10—C11—C12—C15178.8 (2)
N4—C1—C2—H22167.1H11—C11—C12—C13178.5
C9—C1—C2—S1136.5 (2)H11—C11—C12—C151.7
C9—C1—C2—H21104.6C11—C12—C13—C141.5 (4)
C9—C1—C2—H2217.1C11—C12—C13—H13178.6
N4—C1—C9—C1011.2 (3)C15—C12—C13—C14178.3 (2)
N4—C1—C9—C14166.5 (2)C15—C12—C13—H131.6
C2—C1—C9—C10172.8 (2)C12—C13—C14—C90.3 (4)
C2—C1—C9—C149.5 (3)C12—C13—C14—H14179.9
N1—C4—C5—O113.0 (4)H13—C13—C14—C9179.9
N1—C4—C5—C6171.6 (3)H13—C13—C14—H140.0
(II) top
Crystal data top
C14H10N4OSZ = 4
Mr = 282.33Dx = 1.49 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.799 (2) Åθ = 9.8–18.2°
b = 9.302 (1) ŵ = 0.26 mm1
c = 15.5437 (1) ÅT = 295 K
β = 97.40 (1)°Prismatic, yellow
V = 1261.6 (2) Å30.60 × 0.42 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.018
ω/2θ scansθmax = 26.3°
Absorption correction: empirical (using intensity measurements)
via ψ scans (Fair, 1990)
h = 100
Tmin = 0.932, Tmax = 1.00k = 110
2893 measured reflectionsl = 1919
2546 independent reflections3 standard reflections every 120 min
1986 reflections with I > 2σ(I) intensity decay: 0.6%
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037w = 1/[σ(F2) + (0.02F)2 + 1]
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 0.74Δρmax = 0.19 e Å3
1986 reflectionsΔρmin = 0.29 e Å3
181 parameters
Crystal data top
C14H10N4OSV = 1261.6 (2) Å3
Mr = 282.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.799 (2) ŵ = 0.26 mm1
b = 9.302 (1) ÅT = 295 K
c = 15.5437 (1) Å0.60 × 0.42 × 0.18 mm
β = 97.40 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1986 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (Fair, 1990)
Rint = 0.018
Tmin = 0.932, Tmax = 1.003 standard reflections every 120 min
2893 measured reflections intensity decay: 0.6%
2546 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037181 parameters
wR(F2) = 0.042H-atom parameters constrained
S = 0.74Δρmax = 0.19 e Å3
1986 reflectionsΔρmin = 0.29 e Å3
Special details top

Refinement. In (I) and (II), H atoms were placed geometrically 0.95 Å from their parent atoms except for the H atoms of C2, which were found from Δρ maps and refined isotropically for a few cycles and then fixed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89590 (7)0.18735 (7)0.20244 (3)0.0524 (2)
O11.3414 (2)0.4792 (2)0.0218 (1)0.0570 (5)
N11.2241 (2)0.4280 (2)0.1376 (1)0.0471 (5)
N21.1453 (2)0.3673 (2)0.2016 (1)0.0503 (6)
N31.0381 (2)0.2935 (2)0.0735 (1)0.0360 (4)
N40.9291 (2)0.2432 (2)0.0078 (1)0.0361 (4)
C10.8490 (2)0.1343 (2)0.0281 (1)0.0348 (5)
C20.8796 (2)0.0584 (2)0.1141 (1)0.0427 (6)
C31.0355 (2)0.2886 (2)0.1614 (1)0.0424 (6)
C41.1572 (2)0.3840 (2)0.0619 (1)0.0375 (5)
C51.2036 (2)0.4119 (2)0.0220 (1)0.0379 (5)
C61.1443 (2)0.3822 (3)0.1037 (1)0.0504 (6)
C71.2492 (3)0.4328 (3)0.1585 (2)0.0525 (6)
C81.3652 (3)0.4893 (3)0.1067 (2)0.0582 (6)
C90.7270 (2)0.0858 (2)0.0399 (1)0.0351 (5)
C100.6663 (2)0.1799 (2)0.1056 (1)0.0464 (6)
C110.5557 (3)0.1338 (3)0.1705 (1)0.0527 (6)
C120.5046 (2)0.0071 (3)0.1725 (1)0.0490 (6)
C130.5629 (3)0.0999 (2)0.1079 (2)0.0515 (6)
C140.6721 (2)0.0544 (2)0.0414 (1)0.0436 (6)
H61.0490.3360.1210.0646*
H71.2380.4280.2200.0671*
H81.4530.5310.1260.0747*
H100.7030.2760.1060.0595*
H110.5130.1990.2140.0684*
H120.4300.0390.2180.0646*
H130.5280.1970.1090.0659*
H140.7100.1190.0040.0570*
H210.9770.0050.1180.0507*
H220.7970.0040.1250.0709*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0625 (3)0.0603 (3)0.0352 (2)0.0072 (3)0.0092 (2)0.0008 (3)
O10.0462 (7)0.066 (1)0.0580 (8)0.0227 (7)0.0033 (7)0.0066 (8)
N10.0495 (9)0.0424 (9)0.0463 (9)0.0038 (8)0.0062 (8)0.0037 (8)
N20.060 (1)0.048 (1)0.0398 (9)0.0036 (9)0.0049 (8)0.0061 (8)
N30.0363 (7)0.0355 (8)0.0346 (7)0.0019 (7)0.0017 (6)0.0012 (7)
N40.0362 (7)0.0371 (8)0.0337 (7)0.0034 (7)0.0010 (6)0.0012 (7)
C10.0350 (8)0.0339 (9)0.0358 (8)0.0023 (8)0.0056 (7)0.0005 (8)
C20.047 (1)0.040 (1)0.0404 (9)0.0023 (9)0.0030 (8)0.0050 (9)
C30.049 (1)0.041 (1)0.0358 (9)0.0030 (9)0.0001 (8)0.0016 (9)
C40.0353 (9)0.0290 (9)0.046 (1)0.0011 (8)0.0033 (8)0.0027 (8)
C50.0349 (9)0.0284 (9)0.049 (1)0.0024 (8)0.0005 (8)0.0002 (8)
C60.045 (1)0.058 (1)0.046 (1)0.016 (1)0.0022 (9)0.003 (1)
C70.051 (1)0.059 (1)0.047 (1)0.011 (1)0.0048 (9)0.005 (1)
C80.054 (1)0.063 (1)0.059 (1)0.016 (1)0.013 (1)0.002 (1)
C90.0345 (8)0.0341 (9)0.0373 (8)0.0018 (8)0.0072 (7)0.0031 (8)
C100.052 (1)0.040 (1)0.045 (1)0.009 (1)0.0027 (9)0.0041 (9)
C110.058 (1)0.051 (1)0.046 (1)0.005 (1)0.005 (1)0.003 (1)
C120.041 (1)0.058 (1)0.047 (1)0.006 (1)0.0020 (9)0.014 (1)
C130.051 (1)0.037 (1)0.066 (1)0.009 (1)0.006 (1)0.011 (1)
C140.047 (1)0.032 (1)0.052 (1)0.0003 (9)0.0066 (9)0.0002 (9)
Geometric parameters (Å, º) top
S1—C21.815 (2)C6—C71.415 (3)
S1—C31.733 (2)C6—H60.950
O1—C51.364 (2)C7—C81.325 (3)
O1—C81.365 (3)C7—H70.950
N1—N21.403 (3)C8—H80.950
N1—C41.311 (2)C9—C101.397 (3)
N2—C31.306 (3)C9—C141.390 (3)
N3—N41.389 (2)C10—C111.377 (3)
N3—C31.369 (2)C10—H100.950
N3—C41.374 (2)C11—C121.385 (3)
N4—C11.296 (3)C11—H110.950
C1—C21.506 (3)C12—C131.372 (3)
C1—C91.477 (2)C12—H120.950
C2—H210.989C13—C141.384 (3)
C2—H220.960C13—H130.950
C4—C51.439 (3)C14—H140.950
C5—C61.338 (3)
C2—S1—C394.1 (1)N3—C4—C5122.7 (2)
C5—O1—C8106.1 (2)O1—C5—C4115.9 (2)
N2—N1—C4107.8 (2)O1—C5—C6109.5 (2)
N1—N2—C3106.8 (2)C4—C5—C6134.5 (2)
N4—N3—C3128.6 (2)C5—C6—C7107.3 (2)
N4—N3—C4125.1 (2)C5—C6—H6126.2
C3—N3—C4105.2 (2)C7—C6—H6126.5
N3—N4—C1115.4 (1)C6—C7—C8106.1 (2)
N4—C1—C2122.8 (2)C6—C7—H7126.9
N4—C1—C9115.6 (2)C8—C7—H7127.0
C2—C1—C9121.5 (2)O1—C8—C7111.0 (2)
S1—C2—C1110.4 (1)O1—C8—H8124.6
S1—C2—H21108.0C7—C8—H8124.5
S1—C2—H22105.0C1—C9—C10120.3 (2)
C1—C2—H21109.9C1—C9—C14121.2 (2)
C1—C2—H22112.3C10—C9—C14118.5 (2)
H21—C2—H22111.1C9—C10—C11120.5 (2)
S1—C3—N2130.1 (2)C9—C10—H10119.5
S1—C3—N3119.3 (1)C11—C10—H10120.0
N2—C3—N3110.6 (2)C10—C11—C12120.5 (2)
N1—C4—N3109.6 (2)C10—C11—H11119.8
N1—C4—C5127.6 (2)C12—C11—H11119.7
C11—C12—C13119.3 (2)C14—C13—H13119.6
C11—C12—H12120.4C9—C14—C13120.3 (2)
C13—C12—H12120.3C9—C14—H14119.6
C12—C13—C14120.8 (2)C13—C14—H14120.1
C12—C13—H13119.5
C3—S1—C2—C153.8 (2)N3—C4—C5—O1167.0 (2)
C3—S1—C2—H2166.4N3—C4—C5—C610.2 (4)
C3—S1—C2—H22175.1O1—C5—C6—C70.1 (3)
C2—S1—C3—N2151.2 (2)O1—C5—C6—H6179.7
C2—S1—C3—N329.5 (2)C4—C5—C6—C7177.2 (2)
C8—O1—C5—C4177.5 (2)C4—C5—C6—H63.0
C8—O1—C5—C60.3 (3)C5—C6—C7—C80.2 (3)
C5—O1—C8—C70.5 (3)C5—C6—C7—H7179.3
C5—O1—C8—H8179.4H6—C6—C7—C8180.0
C4—N1—N2—C30.5 (2)H6—C6—C7—H70.5
N2—N1—C4—N31.2 (2)C6—C7—C8—O10.4 (3)
N2—N1—C4—C5176.1 (2)C6—C7—C8—H8179.4
N1—N2—C3—S1179.0 (2)H7—C7—C8—O1179.1
N1—N2—C3—N30.4 (2)H7—C7—C8—H81.1
C3—N3—N4—C129.2 (3)C1—C9—C10—C11178.2 (2)
C4—N3—N4—C1164.4 (2)C1—C9—C10—H101.3
N4—N3—C3—S19.9 (3)C14—C9—C10—C110.6 (3)
N4—N3—C3—N2169.5 (2)C14—C9—C10—H10179.9
C4—N3—C3—S1178.4 (1)C1—C9—C14—C13176.9 (2)
C4—N3—C3—N21.0 (2)C1—C9—C14—H143.2
N4—N3—C4—N1170.4 (2)C10—C9—C14—C131.7 (3)
N4—N3—C4—C514.4 (3)C10—C9—C14—H14178.1
C3—N3—C4—N11.3 (2)C9—C10—C11—C121.1 (3)
C3—N3—C4—C5176.6 (2)C9—C10—C11—H11178.3
N3—N4—C1—C25.1 (3)H10—C10—C11—C12178.3
N3—N4—C1—C9176.6 (2)H10—C10—C11—H112.3
N4—C1—C2—S149.2 (2)C10—C11—C12—C131.5 (3)
N4—C1—C2—H2169.7C10—C11—C12—H12178.4
N4—C1—C2—H22166.1H11—C11—C12—C13177.9
C9—C1—C2—S1132.6 (2)H11—C11—C12—H122.2
C9—C1—C2—H21108.5C11—C12—C13—C140.3 (3)
C9—C1—C2—H2215.8C11—C12—C13—H13179.8
N4—C1—C9—C1022.8 (3)H12—C12—C13—C14179.6
N4—C1—C9—C14155.9 (2)H12—C12—C13—H130.3
C2—C1—C9—C10158.9 (2)C12—C13—C14—C91.3 (3)
C2—C1—C9—C1422.4 (3)C12—C13—C14—H14178.5
N1—C4—C5—O17.3 (3)H13—C13—C14—C9178.6
N1—C4—C5—C6175.5 (2)H13—C13—C14—H141.6

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H12N4OSC14H10N4OS
Mr296.35282.33
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)295295
a, b, c (Å)9.342 (1), 9.106 (1), 16.208 (1)8.799 (2), 9.302 (1), 15.5437 (1)
β (°) 92.58 (1) 97.40 (1)
V3)1377.4 (2)1261.6 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.240.26
Crystal size (mm)0.64 × 0.40 × 0.160.60 × 0.42 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (Fair, 1990)
Empirical (using intensity measurements)
via ψ scans (Fair, 1990)
Tmin, Tmax0.940, 1.0000.932, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
3072, 2705, 1890 2893, 2546, 1986
Rint0.0110.018
(sin θ/λ)max1)0.6230.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.043, 0.70 0.037, 0.042, 0.74
No. of reflections18901986
No. of parameters190181
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.220.19, 0.29

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, MolEN (Fair, 1990), ORTEPII (Johnson, 1976), MolEN and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
S1—C21.813 (3)C1—C91.475 (3)
S1—C31.732 (3)C4—C51.441 (3)
O1—C51.361 (3)C5—C61.344 (3)
O1—C81.364 (3)C6—C71.417 (4)
N1—N21.400 (3)C7—C81.329 (4)
N1—C41.310 (3)C9—C101.395 (3)
N2—C31.301 (3)C9—C141.390 (3)
N3—N41.388 (2)C10—C111.375 (4)
N3—C31.367 (3)C11—C121.387 (4)
N3—C41.371 (3)C12—C131.376 (3)
N4—C11.293 (3)C12—C151.506 (4)
C1—C21.505 (3)C13—C141.382 (3)
C2—S1—C394.0 (1)C11—C12—C13117.2 (2)
C5—O1—C8106.1 (2)C11—C12—C15121.3 (2)
N2—N1—C4107.6 (2)C13—C12—C15121.5 (2)
N1—N2—C3106.8 (2)C12—C13—C14121.9 (2)
N4—N3—C3129.2 (2)C9—C14—C13120.8 (2)
N4—N3—C4125.0 (2)N3—C4—C5123.6 (2)
C3—N3—C4105.0 (2)O1—C5—C4114.8 (2)
N3—N4—C1115.7 (2)O1—C5—C6110.0 (2)
N4—C1—C2122.7 (2)C4—C5—C6135.1 (2)
N4—C1—C9116.2 (2)C5—C6—C7106.7 (2)
C2—C1—C9121.0 (2)C6—C7—C8106.5 (2)
S1—C2—C1111.9 (2)O1—C8—C7110.7 (3)
S1—C3—N2129.4 (2)C1—C9—C10120.7 (2)
S1—C3—N3119.7 (2)C1—C9—C14121.8 (2)
N2—C3—N3110.8 (2)C10—C9—C14117.5 (2)
N1—C4—N3109.7 (2)C9—C10—C11120.7 (2)
N1—C4—C5126.5 (2)C10—C11—C12121.9 (2)
Selected geometric parameters (Å, º) for (II) top
S1—C21.815 (2)C1—C91.477 (2)
S1—C31.733 (2)C4—C51.439 (3)
O1—C51.364 (2)C5—C61.338 (3)
O1—C81.365 (3)C6—C71.415 (3)
N1—N21.403 (3)C7—C81.325 (3)
N1—C41.311 (2)C9—C101.397 (3)
N2—C31.306 (3)C9—C141.390 (3)
N3—N41.389 (2)C10—C111.377 (3)
N3—C31.369 (2)C11—C121.385 (3)
N3—C41.374 (2)C12—C131.372 (3)
N4—C11.296 (3)C13—C141.384 (3)
C1—C21.506 (3)
C2—S1—C394.1 (1)N1—C4—C5127.6 (2)
C5—O1—C8106.1 (2)C11—C12—C13119.3 (2)
N2—N1—C4107.8 (2)C12—C13—C14120.8 (2)
N1—N2—C3106.8 (2)N3—C4—C5122.7 (2)
N4—N3—C3128.6 (2)O1—C5—C4115.9 (2)
N4—N3—C4125.1 (2)O1—C5—C6109.5 (2)
C3—N3—C4105.2 (2)C4—C5—C6134.5 (2)
N3—N4—C1115.4 (1)C5—C6—C7107.3 (2)
N4—C1—C2122.8 (2)C6—C7—C8106.1 (2)
N4—C1—C9115.6 (2)O1—C8—C7111.0 (2)
C2—C1—C9121.5 (2)C1—C9—C10120.3 (2)
S1—C2—C1110.4 (1)C1—C9—C14121.2 (2)
S1—C3—N2130.1 (2)C10—C9—C14118.5 (2)
S1—C3—N3119.3 (1)C9—C10—C11120.5 (2)
N2—C3—N3110.6 (2)C10—C11—C12120.5 (2)
N1—C4—N3109.6 (2)C9—C14—C13120.3 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds