Download citation
Download citation
link to html
The structures of 1-deoxy-1-(4-fluoro­phenyl)-β-D-ribo­furan­ose in two crystal forms, (Ia) and (Ib) (C11H13FO4), 1-deoxy-1-(4-fluoro­phenyl)-β-D-ribo­furan­ose hemihydrate, (Ic) (C11H13­FO4·0.5H2O) and 1-deoxy-1-(2,4-di­fluoro­phenyl)-β-D-ribo­furan­ose, (II) (C11H12F2O4), show two-dimensional networks of intermolecular hydrogen bonds between the hydroxyl groups. Weak intermolecular C—H...F—C and C—H...πarene interactions complete the packing in the third dimension. The ribo­furan­ose ring has a conformation intermediate between a C1′-exo,C2′-endo twist and a C2′-endo envelope for (Ia) and (Ic), a conformation intermediate between a C2′-endo,C3′-exo twist and a C2′-endo envelope for (Ib) and an unsymmetrical C2′-exo,C3′-endo twist conformation for (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901361X/ka1343sup1.cif
Contains datablocks default, Ia, Ib, Ic, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901361X/ka1343Iasup2.hkl
Contains datablock (Ia)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901361X/ka1343Ibsup3.hkl
Contains datablock (Ib)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901361X/ka1343Icsup4.hkl
Contains datablock (Ic)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901361X/ka1343IIsup5.hkl
Contains datablock (II)

CCDC references: 142751; 142752; 142753; 142754

Comment top

This paper presents the crystal structures of four ribofuranose-based compounds, namely, 1-deoxy-1-(4-fluorophenyl)-β-D-ribofuranose in two crystal forms, (Ia) and (Ib), 1-deoxy-1-(4-fluorophenyl)-β-D-ribofuranose hemihydrate, (Ic), and 1-deoxy-1-(2,4-difluorophenyl)-β-D-ribofuranose, (II).

The five-membered ribofuranose rings in (Ia) and (Ic) (Fig. 1) have rather similar conformations. The ring puckering parameters defined by Cremer & Pople (1975) are q = 0.375 Å and ϕ = 60.2° for (Ia), and q = 0.421 Å and ϕ = 63.4° for (Ic). This corresponds to a conformation intermediate between a C1'-exo, C2'-endo twist and a C2'-endo envelope. The hydroxyl group on O2 and the phenyl group attached to C1 are both in pseudo-equatorial positions, while the hydroxyl group on O3 is in a pseudo-axial position and the methanol group attached to C4 is in a bisecting position with respect to the five-membered ring. No short intramolecular contacts are observed for this conformation.

The five-membered ribofuranose ring in (Ib) (Fig. 1) is considerably different. It has a conformation intermediate between a C2'-endo,C3'-exo twist and a C2'-endo envelope. The ring puckering parameters are q = 0.368 Å and ϕ = 81.6°. The hydroxyl group on O2 and the phenyl group attached to C1 are in pseudo-equatorial positions, while the hydroxyl group on O3 and the methanol group attached to C4 are both in pseudo-axial positions with respect to the five-membered ring.

The five-membered ribofuranose ring in (II) (Fig. 1) is different again. It has approximately an unsymmetrical C2'-exo,C3'-endo twist conformation. The ring puckering parameters are q = 0.390 Å and ϕ = 274.8°. The hydroxyl group on O2 is in an axial position, the hydroxyl group on O3 is in an equatorial position, the methanol group attached to C4 is in a pseudo-equatorial position and the phenyl group attached to C1 is in a pseudo-axial position with respect to the five-membered ring.

Molecules (Ib) and (II) show a short intramolecular contact distance of 2.42 (2) for (Ib) and 2.44 (2) Å for (II) between O4 and H7. This distance is equal to the van der Waals contact distance of 2.4 Å between O and H. Each molecule of (Ia) and (Ib) is connected by intermolecular hydrogen bonding (Table 1, Table 2, Fig. 2, Fig. 3) to six neighbouring molecules, leading to a two-dimensional network in the ab direction.

For (Ic), a rather similar two-dimensional network is found in the bc direction. In this case, the water molecule is included in the network. Each molecule of (Ic) is connected by hydrogen bonding (Table 3, Fig. 4) to three neighbouring molecules of (Ic) and to two different water molecules.

Each molecule of (II) is connected by intermolecular hydrogen bonding (Table 4, Fig. 5) to four different neighbouring molecules, leading to a two-dimensional network in the ab direction. Two-dimensional networks of hydrogen bonds have also been observed in the crystal structures of 1-deoxy-1-phenyl-β-D-ribofuranose (Matulic Adamic, 1996), 1-deoxy-1-(2-fluorophenyl)-β-D-ribofuranose (Bats et al., 1999a) and 1-deoxy-1-(3-fluorophenyl)-β-D-ribofuranose (Bats et al., 1999b).

The packing in the direction of the long dimension of the unit cell consists entirely of intermolecular interactions between the fluorophenyl groups. Rather short intermolecular C—H···F—C contacts are observed in (Ia), (Ib) and (Ic). The intermolecular H10···F distance is 2.30 (2) in (Ia), 2.42 (2) in (Ib) and 2.38 (2) Å in (Ic). These distances are comparable to the van der Waals contact distance between F and H [2.35 Å according to Pauling (1960) or 2.47 Å according to Bondi (1964)]. Each 4-fluorophenyl group is involved in two of these contacts, resulting in zigzag chains of molecules (Fig. 6). In addition to these C—H···F—C interactions, the crystal packing of (Ia), (Ib) and (Ic) also shows intermolecular C—H···πarene interactions. The H8···Cg distance is 2.82 in (Ia), 2.84 in (Ib) and 2.82 Å in (Ic) (Cg is the centroid of the phenyl ring). Intermolecular C—H···πarene interactions play a significant role in crystal structures (Brady et al., 1998; Gallagher et al., 1998). Koch & Egert (1995) have shown these interactions to be of an electrostatic nature.

The crystal structure of (II) shows pairs of molecules related by a twofold axis, with intermolecular distances of 2.57 (2) Å between F1 and H10(-x, y, −z) (Fig. 7). These distances are longer than the van der Waals contact distance. No other intermolecular interactions between the phenyl groups are found in this case, which can explain the crystal packing in the c direction. Intermolecular F···H contacts have also been reported for other crystal structures (Karipides et al., 1988; Bruno et al., 1997; Antolić et al., 1996; Vij et al., 1996; Shimoni et al., 1994; Weiss et al., 1997). A search of the Spring 1999 release of the Cambridge Structural Data Base (Allen & Kennard, 1993?) for structures containing fluorophenyl groups, with H-atom coordinates included and no disorder reported, revealed 1144 crystal structures. Among those structures, 1596 different C—H···F—C contacts were found with H···F distances shorter than 2.6 Å (652 shorter than 2.5, 182 shorter than 2.4 and 37 shorter than 2.3 Å). About one third of these interactions were CphenylH···F—Cphenyl contacts. The number of dimeric structures as found for (II) is rather small. Only 35 dimers were found with both C—H···F—C contacts shorter than 2.6 Å. Larsen & Marthi (1994) and Kubota & Ohba (1992) have shown the F atom in fluorophenyl groups to bear a small negative charge of about −0.1 e Å−3. Thus, the C—F bond is a likely candidate for electrostatic interactions with electropositive C—H bonds.

Howard et al. (1996) calculated the C—H···F—C interaction energy of a complex between CH3F and H4C to be approximately −0.2 kcalmol−1, which is an order of magnitude smaller than the corresponding value for a complex between CH3F and H2O. They termed the C—H···F—C interaction as a van der Waals interaction rather than a hydrogen bond. Thalladi et al. (1998) showed the packing in fluorobenzenes containing no elements other than C, H and F to be dominated by C—H···F—C interactions. They also showed the C—H···F interactions to have similar characteristics to those of weak C—H···O and C—H···N hydrogen bonds. These interactions are rather weak and thus are easily overridden by stronger intermolecular interactions. In the crystal structures reported here, however, stronger interactions are missing in one direction. Thus, weaker C—H···F—C and C—H···π interactions dominate the crystal packing in this direction.

Experimental top

The title compounds were prepared according to Krohn et al. (1992). Thus, 1-bromo-4-fluorobenzene [for (I)] or 1-bromo-2,4-difluorobenzene [for (II)] was lithiated and added to 2',3',5'-tri-O-benzyl-D-ribono-1,4-lactone (Barker & Fletcher, 1961; Timpe et al., 1975). The resulting intermediate lactol was directly dehydroxylated to yield a sterically uniform β-C-riboside. Debenzylation of the hydroxyl groups resulted in the unprotected C-nucleoside. Compound (I) was recrystallized from methanol, resuling in two different crystalline modifications, (Ia) and (Ib), while recrystallization from water yielded the hemihydrate (Ic). Compound (II) was also recrystallized from water.

Computing details top

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL; software used to prepare material for publication: CIF in SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecules of (Ia), (Ib), (Ic) and (II) with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (Ia) shown down the a axis.
[Figure 3] Fig. 3. The crystal packing of (Ib) shown down the a axis.
[Figure 4] Fig. 4. The crystal packing of (Ic) shown down the b axis.
[Figure 5] Fig. 5. The crystal packing of (II) shown down the b axis.
[Figure 6] Fig. 6. Zigzag chains of molecules connected by C—H···F interactions in (Ia). Similar chains occur in (Ib) and (Ic).
[Figure 7] Fig. 7. Dimers of molecules of (II) connected by C—H···F interactions.
(Ia) 1'-deoxy-1'-(4-fluorophenyl)-β-D-ribofuranose top
Crystal data top
C11H13FO4Dx = 1.416 Mg m3
Mr = 228.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 279 reflections
a = 5.4741 (9) Åθ = 3–23°
b = 7.3018 (7) ŵ = 0.12 mm1
c = 26.791 (3) ÅT = 134 K
V = 1070.9 (2) Å3Plate, colourless
Z = 41.30 × 0.64 × 0.15 mm
F(000) = 480
Data collection top
Siemens SMART
diffractometer
3273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 31.3°, θmin = 2.9°
ω scansh = 78
18913 measured reflectionsk = 1010
3431 independent reflectionsl = 3835
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.39 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
3431 reflections(Δ/σ)max = 0.002
197 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13FO4V = 1070.9 (2) Å3
Mr = 228.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4741 (9) ŵ = 0.12 mm1
b = 7.3018 (7) ÅT = 134 K
c = 26.791 (3) Å1.30 × 0.64 × 0.15 mm
Data collection top
Siemens SMART
diffractometer
3273 reflections with I > 2σ(I)
18913 measured reflectionsRint = 0.084
3431 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.39Δρmax = 0.36 e Å3
3431 reflectionsΔρmin = 0.20 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.76882 (16)0.33447 (10)0.78927 (3)0.01865 (17)
F0.5477 (2)0.63072 (12)1.01688 (3)0.0391 (2)
O30.63932 (16)0.00392 (11)0.74918 (3)0.02119 (17)
O40.58996 (18)0.03869 (11)0.86967 (3)0.02431 (19)
O51.02384 (16)0.37191 (11)0.81932 (3)0.02209 (18)
C20.78380 (19)0.17676 (13)0.81964 (4)0.01504 (18)
C30.79950 (19)0.00591 (13)0.79128 (4)0.01600 (19)
C10.5644 (2)0.14795 (14)0.85402 (4)0.01712 (19)
C100.3775 (3)0.53286 (17)0.94093 (5)0.0290 (3)
C70.7353 (2)0.26211 (18)0.93564 (4)0.0237 (2)
C60.5575 (2)0.27333 (14)0.89837 (4)0.01727 (19)
C90.5541 (2)0.51538 (16)0.97721 (5)0.0257 (2)
C80.7339 (2)0.38401 (19)0.97552 (4)0.0271 (2)
C50.9144 (2)0.25106 (14)0.85456 (4)0.0212 (2)
C40.7080 (2)0.14229 (14)0.83058 (4)0.0185 (2)
C110.3813 (2)0.40980 (16)0.90120 (4)0.0234 (2)
H70.859 (4)0.161 (3)0.9349 (6)0.030 (4)*
H20.925 (3)0.191 (2)0.8403 (6)0.020 (4)*
H10.421 (3)0.171 (2)0.8320 (5)0.010 (3)*
H5B1.045 (4)0.164 (2)0.8646 (6)0.024 (4)*
H80.849 (4)0.380 (3)1.0015 (7)0.031 (4)*
H30.957 (3)0.0349 (19)0.7808 (5)0.014 (3)*
HO50.937 (5)0.454 (3)0.8111 (7)0.040 (5)*
H40.583 (3)0.224 (2)0.8160 (5)0.017 (3)*
H110.267 (4)0.415 (2)0.8775 (7)0.036 (5)*
H5A0.840 (4)0.319 (3)0.8835 (7)0.039 (5)*
H100.262 (5)0.639 (3)0.9446 (7)0.054 (6)*
HO30.733 (4)0.050 (3)0.7269 (7)0.045 (5)*
HO20.634 (5)0.346 (3)0.7739 (7)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0208 (4)0.0152 (3)0.0199 (3)0.0011 (3)0.0000 (3)0.0016 (3)
F0.0458 (5)0.0397 (4)0.0318 (4)0.0062 (4)0.0017 (4)0.0213 (3)
O30.0246 (4)0.0230 (4)0.0160 (3)0.0038 (3)0.0047 (3)0.0008 (3)
O40.0354 (5)0.0159 (3)0.0215 (4)0.0003 (3)0.0104 (3)0.0006 (3)
O50.0245 (4)0.0171 (4)0.0247 (4)0.0006 (3)0.0008 (3)0.0031 (3)
C20.0155 (4)0.0147 (4)0.0150 (4)0.0002 (3)0.0005 (4)0.0012 (3)
C30.0177 (4)0.0159 (4)0.0143 (4)0.0006 (3)0.0009 (3)0.0019 (3)
C10.0169 (4)0.0169 (4)0.0176 (4)0.0001 (4)0.0010 (4)0.0023 (3)
C100.0313 (6)0.0237 (5)0.0319 (6)0.0075 (5)0.0005 (5)0.0084 (4)
C70.0217 (5)0.0305 (5)0.0188 (5)0.0064 (5)0.0020 (4)0.0031 (4)
C60.0177 (4)0.0181 (4)0.0160 (4)0.0008 (4)0.0011 (4)0.0010 (3)
C90.0301 (6)0.0251 (5)0.0219 (5)0.0058 (5)0.0027 (4)0.0088 (4)
C80.0244 (5)0.0382 (6)0.0188 (5)0.0002 (5)0.0030 (4)0.0067 (4)
C50.0294 (5)0.0176 (4)0.0165 (4)0.0012 (4)0.0028 (4)0.0005 (4)
C40.0231 (5)0.0153 (4)0.0173 (4)0.0000 (4)0.0004 (4)0.0012 (3)
C110.0229 (5)0.0241 (5)0.0232 (5)0.0062 (4)0.0036 (4)0.0052 (4)
Geometric parameters (Å, º) top
O2—C21.4124 (12)C1—C61.5004 (13)
F—C91.3565 (12)C10—C91.3770 (18)
O3—C31.4286 (12)C10—C111.3933 (15)
O4—C11.4327 (13)C7—C81.3907 (15)
O4—C41.4445 (13)C7—C61.3969 (15)
O5—C51.4245 (13)C6—C111.3888 (16)
C2—C11.5282 (14)C9—C81.3751 (19)
C2—C31.5374 (13)C5—C41.5235 (16)
C3—C41.5333 (14)
C1—O4—C4109.25 (8)C11—C6—C7119.14 (10)
O2—C2—C1114.44 (8)C11—C6—C1119.90 (10)
O2—C2—C3115.21 (8)C7—C6—C1120.85 (10)
C1—C2—C3102.85 (8)F—C9—C8118.52 (11)
O3—C3—C4110.37 (9)F—C9—C10118.50 (11)
O3—C3—C2110.30 (8)C8—C9—C10122.96 (10)
C4—C3—C2101.88 (7)C9—C8—C7118.40 (11)
O4—C1—C6110.56 (8)O5—C5—C4110.81 (8)
O4—C1—C2103.33 (8)O4—C4—C5107.39 (8)
C6—C1—C2114.40 (9)O4—C4—C3107.69 (8)
C9—C10—C11117.97 (11)C5—C4—C3112.69 (9)
C8—C7—C6120.52 (11)C6—C11—C10120.99 (11)
O2—C2—C3—O340.37 (11)C11—C10—C9—F177.96 (12)
C1—C2—C3—O384.83 (9)C11—C10—C9—C80.7 (2)
O2—C2—C3—C4157.57 (9)F—C9—C8—C7177.92 (11)
C1—C2—C3—C432.36 (10)C10—C9—C8—C70.8 (2)
C4—O4—C1—C6153.22 (9)C6—C7—C8—C90.13 (19)
C4—O4—C1—C230.39 (11)C1—O4—C4—C5131.18 (9)
O2—C2—C1—O4164.70 (8)C1—O4—C4—C39.57 (12)
C3—C2—C1—O438.99 (10)O5—C5—C4—O4173.87 (8)
O2—C2—C1—C675.05 (11)O5—C5—C4—C367.70 (11)
C3—C2—C1—C6159.24 (8)O3—C3—C4—O4102.07 (10)
C8—C7—C6—C111.04 (18)C2—C3—C4—O415.08 (11)
C8—C7—C6—C1177.17 (11)O3—C3—C4—C5139.67 (9)
O4—C1—C6—C11133.56 (11)C2—C3—C4—C5103.18 (9)
C2—C1—C6—C11110.31 (12)C7—C6—C11—C101.08 (18)
O4—C1—C6—C750.33 (13)C1—C6—C11—C10177.25 (11)
C2—C1—C6—C765.80 (13)C9—C10—C11—C60.21 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O3i0.85 (2)1.96 (2)2.729 (1)151 (2)
O3—HO3···O5ii0.88 (2)1.91 (2)2.774 (1)169 (2)
O5—HO5···O2iii0.80 (2)1.89 (2)2.682 (1)172 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y1, z.
(Ib) 1'-deoxy-1'-(4-fluorophenyl)-β-D-ribofuranose top
Crystal data top
C11H13FO4Dx = 1.461 Mg m3
Mr = 228.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 161 reflections
a = 6.7109 (14) Åθ = 3–23°
b = 6.7653 (7) ŵ = 0.12 mm1
c = 22.846 (3) ÅT = 135 K
V = 1037.2 (3) Å3Rod, colourless
Z = 40.66 × 0.45 × 0.28 mm
F(000) = 480
Data collection top
Siemens SMART
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 31.9°, θmin = 1.8°
Absorption correction: numerical (SHELXTL; sheldrick, 1996)
?
h = 99
Tmin = 0.932, Tmax = 0.968k = 1010
19895 measured reflectionsl = 3431
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3512 reflectionsΔρmax = 0.30 e Å3
198 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C11H13FO4V = 1037.2 (3) Å3
Mr = 228.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7109 (14) ŵ = 0.12 mm1
b = 6.7653 (7) ÅT = 135 K
c = 22.846 (3) Å0.66 × 0.45 × 0.28 mm
Data collection top
Siemens SMART
diffractometer
3512 independent reflections
Absorption correction: numerical (SHELXTL; sheldrick, 1996)
?
2944 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.968Rint = 0.058
19895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090All H-atom parameters refined
S = 1.11Δρmax = 0.30 e Å3
3512 reflectionsΔρmin = 0.20 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.13084 (14)0.41021 (13)0.76631 (4)0.02036 (19)
O50.73253 (12)0.22777 (12)0.66755 (4)0.02106 (19)
F0.33765 (16)1.11352 (13)0.46221 (4)0.0454 (3)
O40.46441 (12)0.56444 (12)0.68270 (4)0.02004 (19)
O20.06632 (12)0.57415 (13)0.67107 (4)0.01943 (18)
C70.4733 (2)0.77456 (18)0.57821 (6)0.0244 (3)
C40.42437 (16)0.36681 (17)0.70464 (5)0.0159 (2)
C110.14812 (19)0.91003 (18)0.59712 (5)0.0215 (3)
C10.28136 (16)0.66180 (15)0.66811 (5)0.0154 (2)
C60.30337 (19)0.78431 (16)0.61310 (5)0.0178 (2)
C50.52017 (17)0.21584 (17)0.66459 (6)0.0189 (2)
C20.12640 (16)0.49594 (16)0.66321 (5)0.0153 (2)
C30.19792 (17)0.34891 (17)0.70967 (5)0.0159 (2)
C100.1592 (2)1.0222 (2)0.54614 (6)0.0281 (3)
C90.3288 (2)1.00628 (19)0.51258 (5)0.0303 (3)
C80.4866 (2)0.8878 (2)0.52740 (6)0.0311 (3)
H20.142 (2)0.437 (2)0.6228 (6)0.022 (4)*
H40.485 (2)0.3559 (18)0.7426 (5)0.007 (3)*
H10.239 (2)0.751 (2)0.7013 (6)0.016 (3)*
H30.148 (2)0.217 (2)0.7025 (5)0.014 (3)*
H110.022 (2)0.9189 (19)0.6210 (6)0.012 (3)*
HO50.775 (3)0.133 (3)0.6905 (7)0.028 (4)*
H5B0.483 (2)0.242 (2)0.6230 (7)0.030 (4)*
H5A0.472 (2)0.084 (2)0.6770 (6)0.020 (4)*
H70.582 (2)0.693 (3)0.5899 (6)0.028 (4)*
HO30.122 (3)0.317 (4)0.7873 (9)0.057 (6)*
H80.599 (2)0.885 (2)0.5036 (7)0.029 (4)*
H100.054 (3)1.100 (3)0.5344 (8)0.038 (5)*
HO20.152 (2)0.485 (3)0.6690 (7)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0240 (5)0.0182 (4)0.0189 (4)0.0025 (4)0.0051 (3)0.0011 (3)
O50.0134 (4)0.0181 (4)0.0316 (5)0.0007 (3)0.0001 (3)0.0017 (4)
F0.0740 (7)0.0364 (5)0.0260 (4)0.0143 (5)0.0018 (5)0.0117 (3)
O40.0134 (4)0.0128 (4)0.0340 (5)0.0007 (3)0.0020 (3)0.0033 (3)
O20.0121 (4)0.0173 (4)0.0289 (5)0.0002 (3)0.0001 (3)0.0014 (4)
C70.0259 (7)0.0180 (5)0.0292 (6)0.0007 (5)0.0079 (5)0.0025 (5)
C40.0147 (5)0.0147 (5)0.0182 (5)0.0008 (4)0.0010 (4)0.0005 (4)
C110.0237 (6)0.0187 (5)0.0221 (6)0.0009 (5)0.0018 (5)0.0010 (4)
C10.0139 (5)0.0138 (4)0.0185 (5)0.0012 (4)0.0001 (4)0.0017 (4)
C60.0212 (6)0.0132 (5)0.0188 (5)0.0034 (4)0.0011 (4)0.0023 (4)
C50.0144 (5)0.0166 (5)0.0258 (6)0.0003 (4)0.0002 (5)0.0039 (5)
C20.0131 (5)0.0147 (5)0.0182 (5)0.0006 (4)0.0004 (4)0.0018 (4)
C30.0150 (5)0.0144 (5)0.0183 (5)0.0017 (4)0.0021 (4)0.0010 (4)
C100.0357 (8)0.0203 (6)0.0284 (7)0.0022 (5)0.0070 (6)0.0048 (5)
C90.0515 (10)0.0206 (6)0.0186 (5)0.0115 (6)0.0005 (6)0.0027 (5)
C80.0402 (9)0.0255 (7)0.0275 (7)0.0058 (6)0.0149 (6)0.0015 (5)
Geometric parameters (Å, º) top
O3—C31.4314 (14)C4—C31.5288 (16)
O5—C51.4290 (14)C11—C101.3920 (17)
F—C91.3616 (14)C11—C61.3937 (17)
O4—C11.4332 (14)C1—C61.5126 (15)
O4—C41.4530 (14)C1—C21.5340 (15)
O2—C21.4089 (13)C2—C31.5318 (16)
C7—C61.3932 (17)C10—C91.3762 (19)
C7—C81.3938 (19)C9—C81.371 (2)
C4—C51.5146 (16)
C1—O4—C4110.16 (8)O5—C5—C4110.89 (10)
C6—C7—C8120.18 (13)O2—C2—C3116.31 (9)
O4—C4—C5109.48 (9)O2—C2—C1109.77 (9)
O4—C4—C3106.42 (9)C3—C2—C1102.24 (9)
C5—C4—C3114.45 (10)O3—C3—C4110.95 (9)
C10—C11—C6120.78 (12)O3—C3—C2109.86 (9)
O4—C1—C6111.18 (9)C4—C3—C2102.00 (9)
O4—C1—C2105.18 (9)C9—C10—C11117.89 (13)
C6—C1—C2113.98 (9)F—C9—C8119.12 (13)
C7—C6—C11119.41 (11)F—C9—C10117.73 (13)
C7—C6—C1121.96 (11)C8—C9—C10123.15 (12)
C11—C6—C1118.62 (11)C9—C8—C7118.55 (13)
C1—O4—C4—C5118.21 (10)O4—C1—C2—C333.81 (11)
C1—O4—C4—C35.98 (12)C6—C1—C2—C3155.85 (9)
C4—O4—C1—C6141.43 (9)O4—C4—C3—O390.15 (11)
C4—O4—C1—C217.61 (11)C5—C4—C3—O3148.78 (10)
C8—C7—C6—C110.79 (18)O4—C4—C3—C226.81 (11)
C8—C7—C6—C1179.09 (11)C5—C4—C3—C294.26 (11)
C10—C11—C6—C71.45 (17)O2—C2—C3—O338.12 (13)
C10—C11—C6—C1178.44 (11)C1—C2—C3—O381.44 (10)
O4—C1—C6—C78.79 (14)O2—C2—C3—C4155.86 (9)
C2—C1—C6—C7109.87 (12)C1—C2—C3—C436.30 (10)
O4—C1—C6—C11171.33 (10)C6—C11—C10—C90.66 (18)
C2—C1—C6—C1170.01 (13)C11—C10—C9—F178.85 (11)
O4—C4—C5—O567.36 (13)C11—C10—C9—C80.8 (2)
C3—C4—C5—O5173.29 (10)F—C9—C8—C7178.21 (12)
O4—C1—C2—O2157.86 (9)C10—C9—C8—C71.5 (2)
C6—C1—C2—O280.11 (11)C6—C7—C8—C90.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O5i0.83 (2)1.91 (2)2.706 (1)160 (1)
O3—HO3···O2ii0.79 (2)1.94 (2)2.721 (1)170 (1)
O5—HO5···O3iii0.88 (2)1.91 (2)2.782 (1)174 (1)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
(Ic) 1'-deoxy-1'-(4-fluorophenyl)-β-D-ribofuranose hemihydrate top
Crystal data top
C11H13FO4·0.5H2OF(000) = 500
Mr = 237.22Dx = 1.378 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 29.356 (6) ÅCell parameters from 185 reflections
b = 5.3068 (7) Åθ = 3–23°
c = 7.3530 (11) ŵ = 0.12 mm1
β = 93.215 (10)°T = 154 K
V = 1143.7 (3) Å3Block, colourless
Z = 40.45 × 0.44 × 0.40 mm
Data collection top
Siemens SMART
diffractometer
2746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 29.0°, θmin = 1.4°
ω scansh = 4037
5566 measured reflectionsk = 76
2827 independent reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.49(Δ/σ)max = 0.001
2827 reflectionsΔρmax = 0.35 e Å3
207 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.006 (2)
Crystal data top
C11H13FO4·0.5H2OV = 1143.7 (3) Å3
Mr = 237.22Z = 4
Monoclinic, C2Mo Kα radiation
a = 29.356 (6) ŵ = 0.12 mm1
b = 5.3068 (7) ÅT = 154 K
c = 7.3530 (11) Å0.45 × 0.44 × 0.40 mm
β = 93.215 (10)°
Data collection top
Siemens SMART
diffractometer
2746 reflections with I > 2σ(I)
5566 measured reflectionsRint = 0.041
2827 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.100All H-atom parameters refined
S = 1.49Δρmax = 0.35 e Å3
2827 reflectionsΔρmin = 0.17 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11/20.4642 (3)00.0229 (3)
O50.42037 (3)0.29036 (19)0.12047 (12)0.0253 (2)
O20.44746 (3)0.0340 (2)0.59397 (11)0.0276 (2)
O30.47406 (3)0.1638 (2)0.27211 (12)0.0238 (2)
F0.23974 (4)0.0784 (2)0.88272 (15)0.0476 (3)
O40.36669 (3)0.0947 (2)0.22057 (12)0.0268 (2)
C110.34127 (5)0.2884 (3)0.67354 (19)0.0263 (3)
C10.38200 (4)0.1323 (2)0.40715 (15)0.0191 (2)
C50.38855 (5)0.2240 (3)0.01174 (16)0.0231 (3)
C60.34325 (4)0.1166 (2)0.53157 (15)0.0198 (2)
C20.41858 (4)0.0702 (2)0.43697 (15)0.0177 (2)
C40.40457 (4)0.0065 (2)0.12087 (16)0.0202 (2)
C30.44395 (4)0.0474 (2)0.26191 (15)0.0192 (2)
C70.31067 (5)0.0741 (3)0.5132 (2)0.0275 (3)
C100.30653 (6)0.2742 (3)0.79519 (19)0.0323 (3)
C90.27470 (5)0.0877 (3)0.77005 (19)0.0299 (3)
C80.27581 (5)0.0892 (3)0.6332 (2)0.0318 (3)
H20.4041 (6)0.231 (4)0.438 (2)0.018 (4)*
H110.3635 (5)0.418 (4)0.685 (2)0.017 (4)*
H10.3972 (5)0.299 (3)0.423 (2)0.012 (3)*
HO50.4459 (6)0.375 (4)0.069 (2)0.029 (4)*
HO30.5008 (7)0.113 (4)0.331 (2)0.035 (5)*
H5B0.3595 (6)0.192 (4)0.050 (2)0.025 (4)*
H30.4588 (6)0.204 (4)0.239 (2)0.023 (4)*
H5A0.3850 (6)0.374 (4)0.099 (2)0.026 (4)*
H40.4130 (5)0.140 (4)0.040 (2)0.023 (4)*
H80.2534 (7)0.214 (5)0.621 (2)0.039 (5)*
HO20.4345 (7)0.106 (4)0.686 (3)0.035 (5)*
H70.3135 (7)0.202 (4)0.423 (2)0.033 (5)*
H100.3038 (8)0.398 (6)0.887 (3)0.063 (7)*
HO10.5068 (7)0.369 (5)0.085 (3)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (6)0.0205 (6)0.0179 (6)00.0077 (5)0
O50.0309 (5)0.0299 (5)0.0154 (4)0.0038 (4)0.0033 (3)0.0003 (4)
O20.0207 (4)0.0466 (6)0.0154 (4)0.0057 (4)0.0004 (3)0.0052 (4)
O30.0187 (4)0.0318 (5)0.0210 (4)0.0028 (4)0.0025 (3)0.0064 (3)
F0.0421 (6)0.0542 (7)0.0497 (6)0.0022 (5)0.0306 (5)0.0068 (5)
O40.0237 (4)0.0405 (6)0.0161 (4)0.0128 (4)0.0015 (3)0.0003 (4)
C110.0292 (6)0.0256 (6)0.0250 (6)0.0041 (5)0.0087 (5)0.0055 (5)
C10.0216 (5)0.0207 (6)0.0155 (5)0.0015 (4)0.0035 (4)0.0002 (4)
C50.0242 (6)0.0276 (6)0.0177 (5)0.0019 (5)0.0027 (4)0.0003 (5)
C60.0205 (5)0.0206 (6)0.0185 (5)0.0015 (4)0.0038 (4)0.0003 (4)
C20.0172 (5)0.0215 (6)0.0145 (5)0.0001 (4)0.0017 (4)0.0034 (4)
C40.0210 (5)0.0239 (6)0.0160 (5)0.0026 (4)0.0034 (4)0.0012 (4)
C30.0198 (5)0.0224 (6)0.0155 (5)0.0024 (4)0.0027 (4)0.0014 (4)
C70.0251 (6)0.0260 (7)0.0318 (7)0.0022 (5)0.0038 (5)0.0053 (6)
C100.0368 (8)0.0360 (8)0.0252 (6)0.0002 (6)0.0123 (5)0.0060 (6)
C90.0271 (6)0.0349 (7)0.0292 (7)0.0033 (6)0.0143 (5)0.0078 (6)
C80.0252 (6)0.0288 (7)0.0419 (8)0.0050 (5)0.0076 (5)0.0005 (6)
Geometric parameters (Å, º) top
O5—C51.4296 (14)C1—C21.5261 (16)
O2—C21.4066 (14)C5—C41.5228 (18)
O3—C31.4270 (16)C6—C71.3936 (18)
F—C91.3553 (13)C2—C31.5277 (15)
O4—C11.4335 (14)C4—C31.5359 (17)
O4—C41.4439 (14)C7—C81.3905 (18)
C11—C61.3897 (17)C10—C91.367 (2)
C11—C101.3959 (17)C9—C81.378 (2)
C1—C61.5016 (15)
C1—O4—C4108.77 (9)O4—C4—C5107.70 (10)
C6—C11—C10120.58 (13)O4—C4—C3106.83 (10)
O4—C1—C6111.57 (9)C5—C4—C3113.88 (11)
O4—C1—C2102.71 (9)O3—C3—C2110.35 (9)
C6—C1—C2115.12 (10)O3—C3—C4109.25 (10)
O5—C5—C4111.21 (10)C2—C3—C4101.51 (9)
C11—C6—C7119.45 (11)C8—C7—C6120.41 (12)
C11—C6—C1119.10 (11)C9—C10—C11118.10 (13)
C7—C6—C1121.37 (11)F—C9—C10118.61 (13)
O2—C2—C1114.11 (10)F—C9—C8118.13 (13)
O2—C2—C3112.39 (9)C10—C9—C8123.25 (12)
C1—C2—C3101.28 (9)C9—C8—C7118.18 (13)
C4—O4—C1—C6156.02 (10)O2—C2—C3—O343.78 (13)
C4—O4—C1—C232.17 (13)C1—C2—C3—O378.40 (11)
C10—C11—C6—C71.2 (2)O2—C2—C3—C4159.53 (11)
C10—C11—C6—C1177.95 (13)C1—C2—C3—C437.35 (11)
O4—C1—C6—C11138.36 (13)O4—C4—C3—O397.35 (11)
C2—C1—C6—C11105.12 (14)C5—C4—C3—O3143.88 (10)
O4—C1—C6—C744.98 (16)O4—C4—C3—C219.20 (13)
C2—C1—C6—C771.54 (15)C5—C4—C3—C299.56 (11)
O4—C1—C2—O2164.23 (10)C11—C6—C7—C81.5 (2)
C6—C1—C2—O274.31 (13)C1—C6—C7—C8178.14 (13)
O4—C1—C2—C343.25 (11)C6—C11—C10—C90.2 (2)
C6—C1—C2—C3164.71 (10)C11—C10—C9—F177.30 (13)
C1—O4—C4—C5130.79 (11)C11—C10—C9—C81.4 (2)
C1—O4—C4—C38.08 (14)F—C9—C8—C7177.57 (13)
O5—C5—C4—O4167.32 (10)C10—C9—C8—C71.1 (2)
O5—C5—C4—C374.41 (13)C6—C7—C8—C90.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O3i0.84 (2)1.86 (2)2.701 (1)176 (2)
O2—HO2···O5ii0.88 (2)1.79 (2)2.661 (1)167 (2)
O3—HO3···O2iii0.92 (2)1.77 (2)2.669 (1)168 (2)
O5—HO5···O1iv0.93 (2)1.85 (2)2.777 (1)172 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y1, z.
(II) 1'-deoxy-1'-(2,4-difluorophenyl)-β-D-ribofuranose top
Crystal data top
C11H12F2O4F(000) = 512
Mr = 246.21Dx = 1.536 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 14.684 (2) ÅCell parameters from 217 reflections
b = 4.6609 (6) Åθ = 3–23°
c = 15.772 (2) ŵ = 0.14 mm1
β = 99.476 (11)°T = 134 K
V = 1064.7 (2) Å3Thick plate, colourless
Z = 40.75 × 0.70 × 0.20 mm
Data collection top
Siemens SMART
diffractometer
2794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 30.6°, θmin = 2.6°
ω scansh = 2021
9578 measured reflectionsk = 66
3048 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.122All H-atom parameters refined
S = 1.40 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C11H12F2O4V = 1064.7 (2) Å3
Mr = 246.21Z = 4
Monoclinic, C2Mo Kα radiation
a = 14.684 (2) ŵ = 0.14 mm1
b = 4.6609 (6) ÅT = 134 K
c = 15.772 (2) Å0.75 × 0.70 × 0.20 mm
β = 99.476 (11)°
Data collection top
Siemens SMART
diffractometer
2794 reflections with I > 2σ(I)
9578 measured reflectionsRint = 0.068
3048 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.122All H-atom parameters refined
S = 1.40Δρmax = 0.37 e Å3
3048 reflectionsΔρmin = 0.25 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.02678 (6)0.7268 (3)0.21085 (7)0.0271 (3)
F10.10379 (8)1.4124 (3)0.00868 (7)0.0318 (3)
O50.37647 (7)0.8548 (3)0.42169 (8)0.0196 (2)
O40.23391 (7)0.5471 (3)0.27468 (7)0.0190 (3)
O30.15553 (8)0.8680 (3)0.48253 (8)0.0196 (3)
O20.06523 (8)0.4483 (3)0.40898 (8)0.0197 (3)
C60.13283 (10)0.8192 (4)0.19743 (10)0.0172 (3)
C70.20907 (11)0.9690 (4)0.15442 (11)0.0204 (3)
C20.09098 (10)0.6931 (4)0.35722 (10)0.0160 (3)
C90.11363 (13)1.2161 (4)0.07061 (11)0.0225 (3)
C40.25176 (10)0.6421 (4)0.35703 (11)0.0161 (3)
C30.17079 (10)0.8380 (4)0.39217 (10)0.0168 (3)
C100.03547 (11)1.0737 (4)0.10997 (11)0.0232 (4)
C50.34654 (11)0.7837 (4)0.34261 (11)0.0203 (3)
C10.13874 (10)0.6002 (4)0.26730 (10)0.0164 (3)
C110.04810 (10)0.8765 (4)0.17248 (10)0.0195 (3)
C80.20042 (12)1.1682 (4)0.09082 (12)0.0225 (4)
H20.0395 (13)0.810 (5)0.3560 (11)0.013 (5)*
H80.2511 (17)1.264 (7)0.0595 (15)0.036 (7)*
H70.2698 (19)0.939 (7)0.1719 (16)0.041 (7)*
H5B0.3434 (14)0.948 (6)0.3124 (12)0.016 (5)*
H5A0.3889 (13)0.643 (5)0.3089 (12)0.013 (5)*
HO50.3637 (15)0.722 (6)0.4545 (14)0.024 (6)*
H10.1144 (15)0.417 (5)0.2492 (13)0.024 (6)*
H100.025 (2)1.115 (8)0.0964 (16)0.047 (8)*
H40.2477 (13)0.489 (6)0.3949 (12)0.016 (5)*
H30.1834 (15)1.020 (6)0.3674 (13)0.021 (5)*
HO20.0089 (18)0.436 (7)0.4163 (15)0.038 (7)*
HO30.1447 (18)0.726 (7)0.5058 (16)0.033 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0161 (4)0.0324 (6)0.0341 (6)0.0064 (4)0.0074 (4)0.0093 (5)
F10.0377 (6)0.0293 (7)0.0303 (6)0.0020 (5)0.0110 (5)0.0115 (5)
O50.0170 (5)0.0194 (6)0.0239 (6)0.0058 (5)0.0074 (4)0.0023 (5)
O40.0141 (5)0.0216 (6)0.0224 (6)0.0045 (4)0.0068 (4)0.0051 (5)
O30.0230 (5)0.0159 (6)0.0201 (6)0.0005 (5)0.0037 (4)0.0020 (5)
O20.0129 (5)0.0194 (6)0.0271 (6)0.0025 (4)0.0043 (4)0.0061 (5)
C60.0165 (6)0.0161 (8)0.0191 (7)0.0003 (6)0.0039 (5)0.0024 (6)
C70.0171 (6)0.0217 (8)0.0226 (8)0.0011 (6)0.0036 (6)0.0015 (6)
C20.0137 (6)0.0155 (8)0.0191 (7)0.0006 (6)0.0039 (5)0.0004 (6)
C90.0285 (8)0.0198 (9)0.0201 (8)0.0008 (7)0.0061 (6)0.0012 (6)
C40.0137 (6)0.0140 (7)0.0212 (8)0.0006 (5)0.0050 (5)0.0007 (6)
C30.0154 (6)0.0136 (7)0.0217 (8)0.0006 (6)0.0039 (5)0.0014 (6)
C100.0223 (7)0.0243 (9)0.0249 (8)0.0014 (7)0.0096 (6)0.0029 (7)
C50.0150 (6)0.0247 (9)0.0216 (8)0.0045 (6)0.0044 (6)0.0007 (6)
C10.0135 (6)0.0163 (8)0.0204 (7)0.0018 (6)0.0059 (5)0.0015 (6)
C110.0167 (6)0.0196 (9)0.0226 (8)0.0029 (6)0.0047 (6)0.0010 (6)
C80.0222 (8)0.0222 (9)0.0226 (8)0.0035 (6)0.0017 (6)0.0001 (6)
Geometric parameters (Å, º) top
F2—C111.3575 (18)C6—C11.515 (2)
F1—C91.363 (2)C7—C81.388 (3)
O5—C51.428 (2)C2—C31.532 (2)
O4—C41.4365 (19)C2—C11.537 (2)
O4—C11.4428 (17)C9—C101.382 (3)
O3—C31.4127 (19)C9—C81.382 (2)
O2—C21.418 (2)C4—C51.523 (2)
C6—C111.391 (2)C4—C31.529 (2)
C6—C71.397 (2)C10—C111.383 (2)
C4—O4—C1110.09 (11)C5—C4—C3115.62 (14)
C11—C6—C7116.71 (15)O3—C3—C4114.17 (13)
C11—C6—C1119.73 (14)O3—C3—C2113.77 (13)
C7—C6—C1123.55 (14)C4—C3—C2101.64 (13)
C8—C7—C6121.59 (15)C9—C10—C11116.16 (15)
O2—C2—C3107.15 (13)O5—C5—C4112.04 (13)
O2—C2—C1110.02 (14)O4—C1—C6110.28 (13)
C3—C2—C1101.32 (12)O4—C1—C2105.94 (12)
F1—C9—C10117.78 (15)C6—C1—C2114.16 (13)
F1—C9—C8118.98 (16)F2—C11—C10117.75 (13)
C10—C9—C8123.24 (17)F2—C11—C6118.15 (15)
O4—C4—C5107.27 (12)C10—C11—C6124.08 (15)
O4—C4—C3105.36 (12)C9—C8—C7118.20 (16)
C11—C6—C7—C80.9 (3)C11—C6—C1—O4172.31 (15)
C1—C6—C7—C8179.92 (16)C7—C6—C1—O46.8 (2)
C1—O4—C4—C5139.81 (14)C11—C6—C1—C268.57 (19)
C1—O4—C4—C316.10 (17)C7—C6—C1—C2112.30 (17)
O4—C4—C3—O3157.35 (13)O2—C2—C1—O483.09 (15)
C5—C4—C3—O384.42 (18)C3—C2—C1—O430.05 (16)
O4—C4—C3—C234.42 (16)O2—C2—C1—C6155.36 (12)
C5—C4—C3—C2152.66 (13)C3—C2—C1—C691.49 (15)
O2—C2—C3—O346.40 (18)C9—C10—C11—F2178.22 (16)
C1—C2—C3—O3161.69 (14)C9—C10—C11—C60.8 (3)
O2—C2—C3—C476.80 (15)C7—C6—C11—F2177.64 (15)
C1—C2—C3—C438.49 (15)C1—C6—C11—F21.6 (2)
F1—C9—C10—C11179.95 (16)C7—C6—C11—C101.4 (3)
C8—C9—C10—C110.3 (3)C1—C6—C11—C10179.46 (17)
O4—C4—C5—O5172.73 (14)F1—C9—C8—C7179.58 (16)
C3—C4—C5—O570.09 (19)C10—C9—C8—C70.7 (3)
C4—O4—C1—C6114.97 (14)C6—C7—C8—C90.0 (3)
C4—O4—C1—C29.04 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O5i0.82 (2)1.97 (2)2.780 (1)171 (2)
O3—HO3···O5ii0.76 (2)2.07 (2)2.827 (1)174 (2)
O5—HO5···O3ii0.81 (2)1.92 (2)2.724 (1)171 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z+1.

Experimental details

(Ia)(Ib)(Ic)(II)
Crystal data
Chemical formulaC11H13FO4C11H13FO4C11H13FO4·0.5H2OC11H12F2O4
Mr228.21228.21237.22246.21
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Monoclinic, C2Monoclinic, C2
Temperature (K)134135154134
a, b, c (Å)5.4741 (9), 7.3018 (7), 26.791 (3)6.7109 (14), 6.7653 (7), 22.846 (3)29.356 (6), 5.3068 (7), 7.3530 (11)14.684 (2), 4.6609 (6), 15.772 (2)
α, β, γ (°)90, 90, 9090, 90, 9090, 93.215 (10), 9090, 99.476 (11), 90
V3)1070.9 (2)1037.2 (3)1143.7 (3)1064.7 (2)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.120.120.14
Crystal size (mm)1.30 × 0.64 × 0.150.66 × 0.45 × 0.280.45 × 0.44 × 0.400.75 × 0.70 × 0.20
Data collection
DiffractometerSiemens SMART
diffractometer
Siemens SMART
diffractometer
Siemens SMART
diffractometer
Siemens SMART
diffractometer
Absorption correctionNumerical (SHELXTL; Sheldrick, 1996)
Tmin, Tmax0.932, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
18913, 3431, 3273 19895, 3512, 2944 5566, 2827, 2746 9578, 3048, 2794
Rint0.0840.0580.0410.068
(sin θ/λ)max1)0.7310.7440.6820.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.39 0.039, 0.090, 1.11 0.034, 0.100, 1.49 0.046, 0.122, 1.40
No. of reflections3431351228273048
No. of parameters197198207202
No. of restraints0011
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.200.30, 0.200.35, 0.170.37, 0.25

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXTL (Sheldrick, 1996), SHELXL97 (Sheldrick, 1997), XP in SHELXTL, CIF in SHELXL97.

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O3i0.85 (2)1.96 (2)2.729 (1)151 (2)
O3—HO3···O5ii0.88 (2)1.91 (2)2.774 (1)169 (2)
O5—HO5···O2iii0.80 (2)1.89 (2)2.682 (1)172 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O5i0.83 (2)1.91 (2)2.706 (1)160 (1)
O3—HO3···O2ii0.79 (2)1.94 (2)2.721 (1)170 (1)
O5—HO5···O3iii0.88 (2)1.91 (2)2.782 (1)174 (1)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O3i0.84 (2)1.86 (2)2.701 (1)176 (2)
O2—HO2···O5ii0.88 (2)1.79 (2)2.661 (1)167 (2)
O3—HO3···O2iii0.92 (2)1.77 (2)2.669 (1)168 (2)
O5—HO5···O1iv0.93 (2)1.85 (2)2.777 (1)172 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—HO2···O5i0.82 (2)1.97 (2)2.780 (1)171 (2)
O3—HO3···O5ii0.76 (2)2.07 (2)2.827 (1)174 (2)
O5—HO5···O3ii0.81 (2)1.92 (2)2.724 (1)171 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds