Download citation
Download citation
link to html
In tris(4-hydroxy­phenyl)­methane (or 4,4′,4′′-methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H...O hydrogen bonds [O...O = 2.662 (2) and 2.648 (2) Å] into two-dimensional square networks that are twofold interpenetrated. In tris(4-hydroxy­phenyl)­methane–4,4′-bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H...O [O...O = 2.694 (3) Å] and C—H...O [C...O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O...N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103014288/jz1567sup1.cif
Contains datablocks an, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014288/jz1567Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014288/jz1567IIsup3.hkl
Contains datablock II

CCDC references: 219589; 219590

Comment top

The crystal structures of 1,1,1-tris(4-hydroxyphenyl)ethane and its adducts with many nitrogen bases have been reported (Ferguson et al., 1997, Bényei et al., 1998, Zakaria et al., 2002a, Zakaria et al., 2002b). These structures contain sheets and open networks of O—H···O, O—H···N and N+—H···O hydrogen bonds, with up to tenfold interpenetration of giant hexagons in 1,1,1-tris(4-hydroxyphenyl)ethane:4,4'-bipyridine (2:3) (Bényei et al., 1998). Molecules with C3 symmetry are important in crystal engineering (Desiraju, 1989; Moberg, 1998) for building supramolecular architectures, in host–guest systems and in the design of non-linear optical materials. In this context, we have determined the crystal structure of tris(4-hydroxyphenyl)methane, (I). Cocrystallization of (I) with 4,4'-bipyridine in a 2:3 stoichiometry gave the 1:1 adduct (II). The crystal structure of (I) is similar to that of 1,1,1-tris(4-hydroxyphenyl)ethane.

The crystal structure of (I) contains one molecule of tris(4-hydroxyphenyl)methane in the asymmetric unit (Fig. 1). The phenolic groups act as donors and acceptors of hydrogen bonds, such that each molecule is bonded to six others by O—H···O hydrogen bonds. Hydroxyl atom O1 acts as a hydrogen bond donor to atom O2 at (x − 1/2, y − 1/2, z), thus generating chains of molecules running parallel to [110]. Atom O3 acts as a hydrogen bond donor to atom O1 at (1 + x, y, 1 + z) and generates chains of molecules parallel to [101]. The intersection of these two linear motifs generates two-dimensional square networks parallel to the (111) plane (Fig. 2), which are similar to the square nets observed in the crystal structure of 1,1,1-tris(4-hydroxyphenyl)ethane (Ferguson et al., 1997). The third hydroxyl group (O2) acts as a hydrogen-bond donor to atom O3 at (x − 1/2, 1/2 − y, z − 3/2), thus generating an identical square network parallel to the (111) plane. These two square networks interpenetrate in the structure at an angle of \sim160°, being connected via the O2—H2···O3 hydrogen bond (Fig. 3).

The crystal structure of (II) contains one molecule of trisphenol (I) and one molecule of 4,4'-bipyridine in the asymmetric unit (Fig 4). One of the hydroxyl groups of the trisphenol acts as a hydrogen-bond donor to a d-glide-related O atom, and the other two hydroxyl groups act as hydrogen-bond donors to 4,4'-bipyridine molecules. Each molecule of trisphenol is connected to two others, thus forming zigzag chains via O—H···O hydrogen bonds. Atom O2 acts as a hydrogen-bond donor to atom O1 in the molecule at (3/4 − x, 1/4 + y, −1/4 + z), thus generating a zigzag chain parallel to [011] and produced by the d-glide plane. The zigzag chain related by the twofold rotation axis runs parallel to [011]. Atom C15 acts as a hydrogen bond donor to atom O2 of the d-glide-related molecule at (−1/4 + x, 5/4 − y, −1/4 + z), resulting in a zigzag chain parallel to [101]. The net result of the O—H···O and C—H···O hydrogen-bonded chains is a rectangular grid parallel to the ab plane, with voids of 9.6 Å × 12.5 Å (Fig. 5). This two-dimensional network is not flat but has undulated layers, with trisphenol molecules occupying a thickness approximately equal to the length of the c axis. Atoms O1 and O3 act as hydrogen-bond donors to atoms N1 and N2, respectively. Thus, each rectangular network is connected to two others by a bipyridine molecule parallel to [001]. The threading of two bipyridine molecules through a rectangular void is shown as a stereoview in Fig. 6. The crystal structure of (II) may be compared with the 2:1 adduct of 1,1,1-tris(4-hydroxyphenyl)ethane:bis-(4-pyridyl)ethane (Zakaria et al., 2002a), in which the supramolecular structure consists of continuously interwoven bilayers.

The conformation of the trisphenol molecule in the two crystal structures is different (Tables 1 and 3). Whereas the torsion angles about the C1—C(aryl) bond are similar in (II), they are very different in (I). In (II), the dihedral angle between bipyridine rings is −32.2 (3)°.

Experimental top

Tris(4-hydroxyphenyl)methane was prepared according to the procedure of Kolasa et al. (2000). A mixture of 4-hydroxybenzaldehyde (1.0 g, 8 mmol) and phenol (2.6 g, 28 mmol) in 1,4-dioxane (15 ml) and water (15 ml) at 273 K was treated dropwise with concentrated H2SO4 (10 ml). The reaction mixture was allowed to warm to room temperature and was stirred for 6 h. The reaction mixture was neutralized with NaHCO3 solution and extracted with ether. The ether layer was washed with water and brine, dried with MgSO4, and concentrated in vacuo to yield trisphenol (I). The product was purified by column chromatography to yield pure (I), which was crystallized from methanol (m.p. 513 K). Crystals of the 1:1 molecular complex, (II) (m.p. 470 K), of (I) and 4,4'-bipyridine were obtained upon complexation of the components in a 2:3 ratio from acetonitrile.

Refinement top

Both structures are non-centrosymmetric. However, because the anomalous dispersion effects were insignificant, Friedel opposite reflections were merged. The Flack parameters are thus indeterminate.

Computing details top

For both compounds, data collection: KM-4 Software (Kuma, 1999); cell refinement: KM-4 Software; data reduction: CrysAlis (Kuma, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at 50% the probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the cystal structure of (I), showing the two-dimensional square network.
[Figure 3] Fig. 3. A stereoview of (I), showing the concatenation of two square nets. H atoms bonded to C atoms have been omitted for clarity.
[Figure 4] Fig. 4. A view of the molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 5] Fig. 5. A view of the crystal structure of (II), showing the rectangular voids in the ab plane. H atoms bonded to C atoms, except that involved in hydrogen bonding (C15), have been omitted for clarity.
[Figure 6] Fig. 6. A view of the crystal structure of (II), showing two bipyridine linkers connecting the hydrogen-bonded networks of (I) and passing through the rectangular void of a third network. H atoms bonded to C atoms, except that involved in hydrogen bonding (C15), have been omitted for clarity.
(I) 4,4',4''-methanetriyltriphenol top
Crystal data top
C19H16O3Dx = 1.242 Mg m3
Mr = 292.32Melting point: 513 K
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.326 (3) ÅCell parameters from 1475 reflections
b = 18.573 (4) Åθ = 3.7–29.7°
c = 7.4961 (15) ŵ = 0.08 mm1
β = 114.36 (3)°T = 100 K
V = 1563.4 (7) Å3Needles, brown
Z = 40.40 × 0.35 × 0.20 mm
F(000) = 616
Data collection top
KUMA KM-4 CCD
diffractometer
1844 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 29.7°, θmin = 3.7°
oscillation method scansh = 1616
7459 measured reflectionsk = 2514
2056 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101All H-atom parameters refined
S = 1.22 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.0272P]
where P = (Fo2 + 2Fc2)/3
2056 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H16O3V = 1563.4 (7) Å3
Mr = 292.32Z = 4
Monoclinic, CcMo Kα radiation
a = 12.326 (3) ŵ = 0.08 mm1
b = 18.573 (4) ÅT = 100 K
c = 7.4961 (15) Å0.40 × 0.35 × 0.20 mm
β = 114.36 (3)°
Data collection top
KUMA KM-4 CCD
diffractometer
1844 reflections with I > 2σ(I)
7459 measured reflectionsRint = 0.031
2056 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.101All H-atom parameters refined
S = 1.22Δρmax = 0.18 e Å3
2056 reflectionsΔρmin = 0.20 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00969 (14)0.01158 (9)0.7987 (2)0.0288 (4)
H10.025 (3)0.0280 (18)0.734 (5)0.036 (8)*
O20.41243 (17)0.38869 (9)0.6051 (2)0.0343 (4)
H20.365 (3)0.3886 (16)0.477 (5)0.031 (7)*
O30.80622 (15)0.09900 (10)1.7171 (2)0.0330 (4)
H30.866 (3)0.0746 (17)1.727 (5)0.044 (9)*
C10.45666 (18)0.10807 (12)0.9324 (3)0.0234 (4)
H1A0.484 (3)0.0762 (16)0.856 (4)0.032 (7)*
C20.33246 (18)0.08214 (12)0.9020 (3)0.0236 (4)
C30.3015 (2)0.01062 (12)0.8562 (3)0.0249 (4)
H3A0.360 (2)0.0212 (14)0.851 (4)0.024 (6)*
C40.1881 (2)0.01444 (12)0.8227 (3)0.0251 (4)
H4A0.169 (2)0.0634 (16)0.787 (4)0.027 (7)*
C50.10443 (18)0.03358 (12)0.8329 (3)0.0240 (4)
C60.1334 (2)0.10513 (12)0.8810 (3)0.0268 (5)
H6A0.077 (3)0.1359 (15)0.895 (4)0.029 (7)*
C70.2471 (2)0.12927 (12)0.9144 (3)0.0263 (4)
H7A0.269 (3)0.1820 (17)0.945 (5)0.037 (8)*
C80.45157 (19)0.18336 (12)0.8465 (3)0.0251 (4)
C90.3746 (2)0.19511 (13)0.6498 (3)0.0290 (5)
H9A0.323 (3)0.1554 (17)0.568 (4)0.037 (8)*
C100.3616 (2)0.26245 (14)0.5666 (3)0.0294 (5)
H10A0.313 (3)0.2678 (18)0.434 (5)0.039 (8)*
C110.4258 (2)0.31983 (12)0.6796 (3)0.0269 (5)
C120.5042 (2)0.30960 (14)0.8723 (3)0.0325 (5)
H12A0.545 (3)0.3501 (16)0.948 (4)0.035 (8)*
C130.5166 (2)0.24113 (14)0.9542 (3)0.0310 (5)
H13A0.573 (3)0.2352 (19)1.092 (5)0.046 (9)*
C140.54637 (19)0.10264 (11)1.1439 (3)0.0235 (4)
C150.5233 (2)0.12951 (13)1.2987 (3)0.0270 (4)
H15A0.444 (3)0.1498 (17)1.273 (5)0.042 (8)*
C160.6101 (2)0.12828 (13)1.4903 (3)0.0276 (5)
H16A0.591 (2)0.1452 (14)1.599 (4)0.022 (6)*
C170.72154 (18)0.09961 (12)1.5275 (3)0.0247 (4)
C180.7458 (2)0.07210 (13)1.3767 (3)0.0292 (5)
H18A0.823 (2)0.0504 (15)1.407 (4)0.025 (6)*
C190.6582 (2)0.07355 (12)1.1860 (3)0.0266 (4)
H19A0.679 (2)0.0545 (15)1.080 (4)0.028 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (7)0.0289 (9)0.0304 (9)0.0027 (6)0.0053 (6)0.0015 (7)
O20.0405 (10)0.0319 (9)0.0221 (8)0.0088 (7)0.0043 (7)0.0038 (6)
O30.0267 (8)0.0443 (10)0.0209 (8)0.0077 (7)0.0027 (6)0.0027 (7)
C10.0209 (9)0.0271 (10)0.0190 (10)0.0001 (8)0.0049 (8)0.0029 (8)
C20.0223 (10)0.0289 (11)0.0164 (9)0.0005 (8)0.0047 (8)0.0006 (8)
C30.0247 (10)0.0271 (11)0.0208 (10)0.0021 (8)0.0072 (8)0.0011 (8)
C40.0261 (11)0.0241 (11)0.0208 (10)0.0005 (8)0.0053 (8)0.0008 (8)
C50.0196 (9)0.0300 (11)0.0178 (9)0.0026 (8)0.0031 (8)0.0008 (8)
C60.0235 (10)0.0275 (11)0.0266 (11)0.0034 (8)0.0074 (9)0.0016 (8)
C70.0250 (10)0.0236 (10)0.0260 (11)0.0014 (8)0.0060 (8)0.0010 (8)
C80.0207 (9)0.0325 (11)0.0205 (10)0.0004 (8)0.0068 (8)0.0010 (8)
C90.0295 (11)0.0323 (12)0.0202 (10)0.0045 (9)0.0052 (9)0.0023 (9)
C100.0272 (11)0.0354 (12)0.0195 (10)0.0030 (9)0.0035 (9)0.0011 (9)
C110.0265 (10)0.0315 (11)0.0217 (10)0.0045 (9)0.0090 (8)0.0030 (9)
C120.0334 (12)0.0347 (13)0.0210 (11)0.0116 (10)0.0025 (9)0.0009 (9)
C130.0289 (11)0.0374 (13)0.0197 (11)0.0102 (10)0.0030 (9)0.0021 (9)
C140.0220 (10)0.0239 (10)0.0214 (10)0.0009 (8)0.0059 (8)0.0008 (8)
C150.0207 (9)0.0325 (11)0.0260 (11)0.0019 (8)0.0081 (8)0.0000 (9)
C160.0258 (11)0.0327 (12)0.0239 (11)0.0012 (9)0.0098 (9)0.0020 (8)
C170.0214 (10)0.0270 (11)0.0208 (10)0.0002 (7)0.0038 (8)0.0000 (8)
C180.0237 (10)0.0332 (12)0.0273 (11)0.0044 (9)0.0071 (9)0.0005 (9)
C190.0266 (10)0.0292 (12)0.0230 (10)0.0034 (8)0.0093 (9)0.0011 (8)
Geometric parameters (Å, º) top
O1—C51.383 (3)C8—C131.382 (3)
O1—H10.86 (3)C8—C91.403 (3)
O2—C111.378 (3)C9—C101.377 (3)
O2—H20.90 (3)C9—H9A1.00 (3)
O3—C171.373 (2)C10—C111.388 (3)
O3—H30.84 (3)C10—H10A0.93 (3)
C1—C141.516 (3)C11—C121.380 (3)
C1—C21.530 (3)C12—C131.393 (3)
C1—C81.530 (3)C12—H12A0.95 (3)
C1—H1A0.98 (3)C13—H13A0.98 (3)
C2—C31.385 (3)C14—C191.391 (3)
C2—C71.402 (3)C14—C151.396 (3)
C3—C41.394 (3)C15—C161.393 (3)
C3—H3A0.95 (3)C15—H15A0.99 (3)
C4—C51.390 (3)C16—C171.390 (3)
C4—H4A0.95 (3)C16—H16A0.99 (3)
C5—C61.385 (3)C17—C181.381 (3)
C6—C71.392 (3)C18—C191.391 (3)
C6—H6A0.94 (3)C18—H18A0.97 (3)
C7—H7A1.02 (3)C19—H19A0.99 (3)
C5—O1—H1109 (2)C8—C9—H9A120.8 (17)
C11—O2—H2110.4 (19)C9—C10—C11119.4 (2)
C17—O3—H3111 (2)C9—C10—H10A119 (2)
C14—C1—C2112.86 (17)C11—C10—H10A122 (2)
C14—C1—C8112.72 (18)O2—C11—C12117.8 (2)
C2—C1—C8111.11 (17)O2—C11—C10121.5 (2)
C14—C1—H1A107.0 (17)C12—C11—C10120.7 (2)
C2—C1—H1A106.9 (17)C11—C12—C13119.3 (2)
C8—C1—H1A105.7 (16)C11—C12—H12A118.9 (18)
C3—C2—C7118.5 (2)C13—C12—H12A121.7 (17)
C3—C2—C1119.68 (19)C8—C13—C12121.3 (2)
C7—C2—C1121.76 (19)C8—C13—H13A121 (2)
C2—C3—C4121.2 (2)C12—C13—H13A118 (2)
C2—C3—H3A118.1 (16)C19—C14—C15118.2 (2)
C4—C3—H3A120.7 (16)C19—C14—C1119.38 (19)
C5—C4—C3119.2 (2)C15—C14—C1122.31 (19)
C5—C4—H4A121.4 (17)C16—C15—C14121.2 (2)
C3—C4—H4A119.3 (17)C16—C15—H15A119.1 (19)
O1—C5—C6117.7 (2)C14—C15—H15A119.7 (19)
O1—C5—C4121.4 (2)C17—C16—C15119.2 (2)
C6—C5—C4120.8 (2)C17—C16—H16A120.4 (15)
C5—C6—C7119.3 (2)C15—C16—H16A120.3 (15)
C5—C6—H6A119.1 (17)O3—C17—C18121.04 (19)
C7—C6—H6A121.6 (17)O3—C17—C16118.51 (19)
C6—C7—C2121.0 (2)C18—C17—C16120.45 (19)
C6—C7—H7A120.4 (17)C17—C18—C19119.7 (2)
C2—C7—H7A118.6 (17)C17—C18—H18A118.9 (16)
C13—C8—C9118.1 (2)C19—C18—H18A121.3 (16)
C13—C8—C1123.41 (19)C14—C19—C18121.2 (2)
C9—C8—C1118.49 (19)C14—C19—H19A120.9 (16)
C10—C9—C8121.3 (2)C18—C19—H19A117.9 (16)
C10—C9—H9A117.7 (17)
H1A—C1—C2—C326.9 (13)H1A—C1—C8—C961.2 (14)
H1A—C1—C14—C1916.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)1.81 (3)2.662 (2)168 (3)
O2—H2···O3ii0.88 (2)1.81 (2)2.662 (2)163 (2)
O3—H3···O1iii0.86 (3)1.81 (3)2.648 (2)166 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z3/2; (iii) x+1, y, z+1.
(II) 4,4',4''-methanetriyltriphenol–bipyridine (1/1) top
Crystal data top
C19H16O3·C10H8N2Dx = 1.259 Mg m3
Mr = 448.50Melting point: 470 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
a = 26.483 (5) ÅCell parameters from 2377 reflections
b = 34.102 (7) Åθ = 3.5–29.9°
c = 10.483 (2) ŵ = 0.08 mm1
V = 9468 (3) Å3T = 100 K
Z = 16Needles, brown
F(000) = 37760.45 × 0.40 × 0.25 mm
Data collection top
KUMA KM-4 CCD
diffractometer
2951 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 29.9°, θmin = 3.5°
oscillation method scansh = 3634
22391 measured reflectionsk = 4645
3352 independent reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.069
3352 reflectionsΔρmax = 0.18 e Å3
404 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00029 (7)
Crystal data top
C19H16O3·C10H8N2V = 9468 (3) Å3
Mr = 448.50Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 26.483 (5) ŵ = 0.08 mm1
b = 34.102 (7) ÅT = 100 K
c = 10.483 (2) Å0.45 × 0.40 × 0.25 mm
Data collection top
KUMA KM-4 CCD
diffractometer
2951 reflections with I > 2σ(I)
22391 measured reflectionsRint = 0.043
3352 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.095All H-atom parameters refined
S = 1.12Δρmax = 0.18 e Å3
3352 reflectionsΔρmin = 0.18 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32160 (6)0.39098 (5)0.89242 (16)0.0303 (4)
H10.3221 (12)0.3717 (9)0.816 (3)0.056 (9)*
O20.35329 (7)0.65343 (5)0.81091 (18)0.0385 (4)
H20.3773 (16)0.6485 (11)0.750 (4)0.077 (13)*
O30.03987 (6)0.53753 (5)1.12242 (17)0.0325 (4)
H30.0440 (12)0.5188 (10)1.191 (3)0.056 (9)*
N10.33181 (7)0.34733 (6)0.68810 (19)0.0294 (4)
N20.30547 (7)0.26211 (6)0.0771 (2)0.0340 (5)
C10.20948 (8)0.53011 (6)0.7881 (2)0.0214 (4)
H1A0.1927 (9)0.5288 (6)0.701 (2)0.016 (5)*
C20.24083 (7)0.49326 (6)0.8093 (2)0.0212 (4)
C30.28385 (8)0.49363 (6)0.8867 (2)0.0247 (4)
H3A0.2968 (9)0.5190 (7)0.919 (2)0.023 (6)*
C40.31023 (8)0.45962 (6)0.9129 (2)0.0247 (4)
H4A0.3403 (10)0.4607 (7)0.968 (3)0.030 (7)*
C50.29460 (8)0.42415 (6)0.8622 (2)0.0246 (4)
C60.25207 (9)0.42300 (7)0.7848 (2)0.0302 (5)
H6A0.2406 (10)0.3966 (8)0.749 (2)0.035 (7)*
C70.22584 (9)0.45750 (7)0.7586 (2)0.0284 (5)
H7A0.1952 (10)0.4561 (7)0.699 (3)0.031 (7)*
C80.24278 (8)0.56651 (6)0.7910 (2)0.0220 (4)
C90.27123 (8)0.57619 (6)0.6835 (2)0.0258 (4)
H9A0.2658 (9)0.5611 (7)0.600 (2)0.026 (6)*
C100.30781 (9)0.60531 (7)0.6881 (2)0.0291 (5)
H10A0.3280 (10)0.6107 (8)0.611 (3)0.039 (7)*
C110.31647 (9)0.62539 (6)0.8005 (2)0.0277 (5)
C120.28728 (9)0.61733 (7)0.9071 (2)0.0288 (5)
H12A0.2932 (11)0.6320 (9)0.989 (3)0.045 (8)*
C130.25068 (8)0.58800 (7)0.9018 (2)0.0264 (5)
H13A0.2312 (10)0.5809 (7)0.983 (3)0.027 (6)*
C140.16504 (8)0.53237 (6)0.8806 (2)0.0215 (4)
C150.12119 (8)0.55249 (6)0.8466 (2)0.0218 (4)
H15A0.1183 (10)0.5654 (7)0.765 (3)0.030 (7)*
C160.07994 (8)0.55433 (6)0.9280 (2)0.0241 (4)
H16A0.0501 (9)0.5676 (7)0.905 (2)0.021 (6)*
C170.08175 (8)0.53613 (6)1.0468 (2)0.0237 (4)
C180.12580 (8)0.51712 (7)1.0836 (2)0.0264 (5)
H18A0.1267 (10)0.5038 (7)1.172 (3)0.032 (7)*
C190.16668 (8)0.51531 (7)1.0007 (2)0.0262 (5)
H19A0.1985 (11)0.5017 (8)1.028 (3)0.045 (8)*
C200.35052 (10)0.36524 (7)0.5848 (3)0.0329 (5)
H20A0.3669 (10)0.3906 (8)0.592 (3)0.032 (7)*
C210.34862 (9)0.34921 (7)0.4643 (2)0.0298 (5)
H21A0.3620 (10)0.3630 (7)0.391 (3)0.034 (7)*
C220.32576 (8)0.31292 (6)0.4468 (2)0.0242 (4)
C230.30760 (9)0.29379 (7)0.5549 (2)0.0266 (5)
H23A0.2926 (10)0.2676 (8)0.546 (3)0.039 (7)*
C240.31091 (9)0.31190 (7)0.6727 (2)0.0272 (5)
H24A0.2980 (9)0.2993 (7)0.749 (2)0.023 (6)*
C250.31977 (8)0.29545 (6)0.3182 (2)0.0253 (5)
C260.31204 (9)0.31861 (8)0.2109 (2)0.0315 (5)
H26A0.3090 (11)0.3475 (8)0.213 (3)0.035 (7)*
C270.30519 (10)0.30098 (8)0.0936 (2)0.0348 (6)
H27A0.2994 (10)0.3168 (7)0.019 (3)0.029 (6)*
C280.31299 (9)0.23976 (8)0.1804 (3)0.0323 (5)
H28A0.3135 (10)0.2119 (8)0.164 (3)0.035 (7)*
C290.32015 (8)0.25481 (7)0.3014 (2)0.0282 (5)
H29A0.3242 (10)0.2387 (8)0.376 (3)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (8)0.0279 (8)0.0279 (9)0.0100 (6)0.0073 (7)0.0056 (7)
O20.0448 (10)0.0361 (9)0.0346 (10)0.0194 (8)0.0139 (8)0.0125 (8)
O30.0240 (8)0.0438 (10)0.0297 (9)0.0050 (7)0.0056 (7)0.0115 (8)
N10.0336 (10)0.0278 (9)0.0268 (10)0.0054 (8)0.0029 (8)0.0050 (8)
N20.0269 (10)0.0482 (12)0.0268 (11)0.0001 (9)0.0041 (8)0.0113 (9)
C10.0216 (9)0.0235 (10)0.0192 (10)0.0002 (8)0.0003 (8)0.0015 (8)
C20.0222 (9)0.0218 (9)0.0195 (10)0.0001 (8)0.0021 (8)0.0006 (8)
C30.0255 (10)0.0235 (10)0.0250 (11)0.0022 (8)0.0005 (9)0.0018 (9)
C40.0224 (10)0.0285 (11)0.0232 (11)0.0004 (8)0.0016 (8)0.0032 (9)
C50.0264 (10)0.0261 (10)0.0213 (11)0.0046 (8)0.0009 (8)0.0012 (9)
C60.0313 (12)0.0261 (11)0.0333 (13)0.0001 (9)0.0074 (10)0.0069 (9)
C70.0257 (11)0.0281 (11)0.0315 (12)0.0005 (9)0.0070 (9)0.0023 (9)
C80.0225 (9)0.0208 (9)0.0228 (10)0.0015 (8)0.0025 (8)0.0024 (8)
C90.0298 (11)0.0268 (11)0.0208 (11)0.0024 (9)0.0016 (9)0.0016 (9)
C100.0320 (11)0.0319 (12)0.0234 (12)0.0073 (9)0.0074 (9)0.0018 (9)
C110.0326 (11)0.0240 (10)0.0264 (12)0.0052 (9)0.0062 (9)0.0022 (9)
C120.0357 (12)0.0275 (11)0.0233 (12)0.0048 (9)0.0058 (9)0.0085 (9)
C130.0294 (11)0.0275 (11)0.0222 (11)0.0014 (9)0.0067 (9)0.0013 (9)
C140.0202 (9)0.0233 (10)0.0210 (10)0.0009 (8)0.0007 (8)0.0010 (8)
C150.0247 (10)0.0220 (10)0.0187 (10)0.0015 (8)0.0011 (8)0.0027 (8)
C160.0209 (10)0.0252 (10)0.0263 (11)0.0005 (8)0.0029 (8)0.0040 (9)
C170.0205 (10)0.0276 (11)0.0229 (11)0.0013 (8)0.0011 (8)0.0015 (8)
C180.0258 (10)0.0317 (11)0.0216 (11)0.0003 (9)0.0013 (9)0.0080 (9)
C190.0218 (10)0.0310 (11)0.0257 (11)0.0020 (9)0.0005 (8)0.0075 (9)
C200.0409 (13)0.0242 (11)0.0336 (13)0.0010 (10)0.0028 (11)0.0039 (10)
C210.0332 (12)0.0254 (11)0.0307 (12)0.0013 (9)0.0005 (10)0.0014 (9)
C220.0235 (10)0.0253 (10)0.0238 (11)0.0047 (8)0.0007 (9)0.0019 (9)
C230.0279 (11)0.0240 (11)0.0278 (12)0.0006 (8)0.0006 (9)0.0019 (9)
C240.0298 (11)0.0291 (11)0.0229 (12)0.0028 (9)0.0024 (9)0.0005 (9)
C250.0226 (10)0.0290 (11)0.0242 (11)0.0011 (8)0.0029 (8)0.0044 (9)
C260.0357 (12)0.0305 (12)0.0283 (13)0.0027 (10)0.0026 (10)0.0009 (10)
C270.0373 (13)0.0444 (15)0.0227 (12)0.0052 (11)0.0022 (10)0.0002 (11)
C280.0238 (10)0.0364 (13)0.0367 (14)0.0032 (9)0.0006 (10)0.0133 (11)
C290.0244 (11)0.0301 (12)0.0301 (12)0.0029 (9)0.0016 (9)0.0034 (10)
Geometric parameters (Å, º) top
O1—C51.375 (3)C12—C131.394 (3)
O1—H11.04 (3)C12—H12A1.01 (3)
O2—C111.370 (3)C13—H13A1.02 (3)
O2—H20.92 (4)C14—C191.387 (3)
O3—C171.364 (3)C14—C151.395 (3)
O3—H30.97 (3)C15—C161.388 (3)
N1—C201.338 (3)C15—H15A0.96 (3)
N1—C241.339 (3)C16—C171.392 (3)
N2—C271.337 (3)C16—H16A0.94 (2)
N2—C281.339 (3)C17—C181.389 (3)
C1—C81.523 (3)C18—C191.390 (3)
C1—C21.522 (3)C18—H18A1.03 (3)
C1—C141.527 (3)C19—H19A1.00 (3)
C1—H1A1.01 (3)C20—C211.377 (4)
C2—C71.388 (3)C20—H20A0.97 (3)
C2—C31.399 (3)C21—C221.390 (3)
C3—C41.381 (3)C21—H21A0.97 (3)
C3—H3A0.99 (2)C22—C231.393 (3)
C4—C51.384 (3)C22—C251.483 (3)
C4—H4A0.99 (3)C23—C241.383 (3)
C5—C61.389 (3)C23—H23A0.98 (3)
C6—C71.393 (3)C24—H24A0.97 (3)
C6—H6A1.02 (3)C25—C261.389 (3)
C7—H7A1.03 (3)C25—C291.397 (3)
C8—C131.389 (3)C26—C271.381 (4)
C8—C91.396 (3)C26—H26A0.99 (3)
C9—C101.388 (3)C27—H27A0.97 (3)
C9—H9A1.03 (3)C28—C291.381 (3)
C10—C111.382 (3)C28—H28A0.96 (3)
C10—H10A0.98 (3)C29—H29A0.96 (3)
C11—C121.386 (3)
C5—O1—H1110.5 (18)C19—C14—C1122.08 (19)
C11—O2—H2108 (2)C15—C14—C1120.24 (19)
C17—O3—H3108.5 (19)C16—C15—C14121.3 (2)
C20—N1—C24117.8 (2)C16—C15—H15A117.5 (16)
C27—N2—C28117.4 (2)C14—C15—H15A121.2 (16)
C8—C1—C2110.74 (17)C15—C16—C17120.20 (19)
C8—C1—C14113.08 (17)C15—C16—H16A121.9 (15)
C2—C1—C14111.66 (17)C17—C16—H16A117.9 (15)
C8—C1—H1A108.0 (12)O3—C17—C18122.53 (19)
C2—C1—H1A109.5 (12)O3—C17—C16118.42 (18)
C14—C1—H1A103.5 (13)C18—C17—C16119.05 (19)
C7—C2—C3117.57 (19)C19—C18—C17120.1 (2)
C7—C2—C1120.90 (19)C19—C18—H18A121.7 (15)
C3—C2—C1121.42 (18)C17—C18—H18A118.2 (15)
C4—C3—C2121.3 (2)C14—C19—C18121.6 (2)
C4—C3—H3A119.2 (14)C14—C19—H19A118.5 (18)
C2—C3—H3A119.4 (14)C18—C19—H19A119.8 (18)
C3—C4—C5120.4 (2)N1—C20—C21123.2 (2)
C3—C4—H4A119.5 (14)N1—C20—H20A120.6 (16)
C5—C4—H4A120.1 (15)C21—C20—H20A116.2 (16)
O1—C5—C4118.36 (19)C20—C21—C22119.4 (2)
O1—C5—C6122.2 (2)C20—C21—H21A121.2 (16)
C4—C5—C6119.4 (2)C22—C21—H21A119.4 (16)
C5—C6—C7119.7 (2)C21—C22—C23117.4 (2)
C5—C6—H6A118.6 (15)C21—C22—C25121.7 (2)
C7—C6—H6A121.7 (15)C23—C22—C25120.96 (19)
C2—C7—C6121.6 (2)C24—C23—C22119.7 (2)
C2—C7—H7A120.0 (14)C24—C23—H23A120.9 (17)
C6—C7—H7A118.4 (14)C22—C23—H23A119.5 (17)
C13—C8—C9117.99 (19)N1—C24—C23122.5 (2)
C13—C8—C1122.30 (19)N1—C24—H24A116.6 (14)
C9—C8—C1119.26 (19)C23—C24—H24A120.9 (14)
C10—C9—C8121.2 (2)C26—C25—C29117.6 (2)
C10—C9—H9A119.1 (13)C26—C25—C22121.55 (19)
C8—C9—H9A119.7 (13)C29—C25—C22120.8 (2)
C11—C10—C9120.0 (2)C27—C26—C25119.5 (2)
C11—C10—H10A120.9 (16)C27—C26—H26A116.1 (16)
C9—C10—H10A119.1 (16)C25—C26—H26A124.3 (16)
O2—C11—C10122.1 (2)N2—C27—C26123.1 (2)
O2—C11—C12118.1 (2)N2—C27—H27A116.8 (15)
C10—C11—C12119.8 (2)C26—C27—H27A120.1 (15)
C11—C12—C13119.9 (2)N2—C28—C29123.4 (2)
C11—C12—H12A120.3 (17)N2—C28—H28A114.6 (18)
C13—C12—H12A119.8 (17)C29—C28—H28A121.9 (18)
C8—C13—C12121.1 (2)C28—C29—C25118.9 (2)
C8—C13—H13A119.5 (14)C28—C29—H29A123.4 (16)
C12—C13—H13A119.2 (14)C25—C29—H29A117.7 (16)
C19—C14—C15117.7 (2)
C23—C22—C25—C2932.2 (3)H1A—C1—C14—C1534.6 (12)
H1A—C1—C2—C733.0 (14)H1A—C1—C8—C940.7 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.97 (3)2.42 (3)3.384 (3)175 (2)
O2—H2···O1ii0.92 (4)1.78 (4)2.694 (3)174 (3)
O1—H1···N11.04 (3)1.60 (3)2.622 (3)169 (3)
O3—H3···N2iii0.97 (3)1.80 (3)2.764 (3)174 (3)
Symmetry codes: (i) x1/4, y+5/4, z1/4; (ii) x+3/4, y+1/4, z1/4; (iii) x1/4, y+3/4, z+5/4.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H16O3C19H16O3·C10H8N2
Mr292.32448.50
Crystal system, space groupMonoclinic, CcOrthorhombic, Fdd2
Temperature (K)100100
a, b, c (Å)12.326 (3), 18.573 (4), 7.4961 (15)26.483 (5), 34.102 (7), 10.483 (2)
α, β, γ (°)90, 114.36 (3), 9090, 90, 90
V3)1563.4 (7)9468 (3)
Z416
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.40 × 0.35 × 0.200.45 × 0.40 × 0.25
Data collection
DiffractometerKUMA KM-4 CCD
diffractometer
KUMA KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7459, 2056, 1844 22391, 3352, 2951
Rint0.0310.043
(sin θ/λ)max1)0.6980.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.22 0.043, 0.095, 1.12
No. of reflections20563352
No. of parameters263404
No. of restraints21
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.200.18, 0.18

Computer programs: KM-4 Software (Kuma, 1999), KM-4 Software, CrysAlis (Kuma, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)1.81 (3)2.662 (2)168 (3)
O2—H2···O3ii0.88 (2)1.81 (2)2.662 (2)163 (2)
O3—H3···O1iii0.86 (3)1.81 (3)2.648 (2)166 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z3/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.97 (3)2.42 (3)3.384 (3)175 (2)
O2—H2···O1ii0.92 (4)1.78 (4)2.694 (3)174 (3)
O1—H1···N11.04 (3)1.60 (3)2.622 (3)169 (3)
O3—H3···N2iii0.97 (3)1.80 (3)2.764 (3)174 (3)
Symmetry codes: (i) x1/4, y+5/4, z1/4; (ii) x+3/4, y+1/4, z1/4; (iii) x1/4, y+3/4, z+5/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds