Download citation
Download citation
link to html
The title complex, [ZnCl2(C7H6N2S)2], contains a Zn centre with a distorted tetrahedral coordination sphere, involving two Cl ligands and two endocyclic N atoms from the thia­zole moiety [Zn—Cl = 2.2284 (7) and 2.2236 (7) Å, and Zn—N = 2.081 (2) and 2.041 (2) Å]. The interplanar angle between the two ligands is 79.32 (6)°. The amino groups participate in intermolecular N—H...Cl hydrogen bonds, with N...Cl distances in the range 3.463 (2)–3.519 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102020668/jz1531sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020668/jz1531Isup2.hkl
Contains datablock I

CCDC reference: 190233

Comment top

As the activities of many enzymes depend upon the interaction of an imidazole or thiazole group with a metal ion (Kaim & Schwederski, 1996), the coordination behaviour of 1,3-benzothiazole (bta) and its derivatives towards ZnII as a biogenic element is of particular interest. These ligands include both S and N heteroatoms, as well as π-donor aromatic systems. A search of the literature showed that the chemistry of the 7-amino-1,3-benzothiazole (7-NH2-bta) ligand with ZnII salts has apparently not been previously studied, in contrast with 2-amino-1,3-benzothiazole. As a general rule, 2-substituted derivatives of 1,3-benzothiazole (2-X-bta, where X is NH2, CH3, Cl or S) act as σ-monodentate ligands through the ring N atom (Giusti & Peyronel, 1982) or the exocyclic S atom (X = S). In the case of 2-mercapto-1,3-benzothiazole derivatives, both endo-N and exo-S atoms can act as donor atoms, resulting in versatile coordination modes (McCleverty et al., 1980; Raper, 1985, 1996, 1997; Baggio et al., 1993, Castro et al., 1993; Popović et al., 2002).

A survey of the Cambridge Structural Database (Version?; Allen, 2002), revealed neither the structure of the title ligand nor that of any corresponding metal complex. There have been only a few structural reports of complexes of the form [ZnX2L2] (where X is Cl, Br or I) with L = 2-NH2-ta (ta is thiazole) and 2-NH2-bta (bta is benzothiazole) (Macíček & Davarski, 1993; Davarski et al., 1996), namely [ZnCl2(2-NH2-ta)2], [ZnBr2(2-NH2-ta)2], [ZnBr2(2-NH2-bta)2] and [ZnI2(2-NH2-ta)2], all containing a distorted tetrahedral [ZnN2X2] moiety. In this context, the title complex, (I), was prepared and its crystal structure is presented here. \sch

In the structure of (I), the tetrahedral Zn coordination sphere is built up of two Cl ligands and the N atoms from two neutral monodentate 7-NH2-bta ligands (Fig. 1). The ZnCl2 moiety is preserved within the complex [Zn—Cl1 2.2285 (6) and Zn—Cl2 2.2235 (7) Å], accompanied by a Cl1—Zn—Cl2 angle of 116.81 (3)°. In [ZnCl2(2-NH2-ta)2] (Macíček & Davarski, 1993), the corresponding Zn—Cl bond distances are slightly longer [2.2548 (8) and 2.2386 (8) Å] and the Cl—Zn—Cl' bond angle is smaller [113.47 (3)°]. The Zn—N bond lengths in (I) are 2.081 (2) and 2.041 (2) Å for Zn—N1 and Zn—N3, respectively, somewhat longer than in [ZnCl2(2-NH2-ta)2] [2.024 (2) and 2.011 (2) Å]. Such trends in Zn—Cl and Zn—N bond distances in [ZnCl2(2-NH2-ta)2] and (I) are influenced by the more pronounced delocalization in the benzothiazole fragment of (I) than in the thiazole fragment of [ZnCl2(2-NH2-ta)2]. The strength of the Zn—N bonds in (I) is consistent with valence-shell electron-pair repulsion considerations, reflected in the smallest bond angle in the Zn coordination sphere being 103.30 (7)° for N1—Zn—N3. A similar trend is found in the [ZnBr2(2-NH2-ta)2] and [ZnI2(2-NH2-ta)2] complexes [106.0 (2) and 104.6 (1)°, respectively], but not in the [ZnBr2(2-NH2-bta)2] complex, where the N—Zn—N angle amounts to 116.1 (3)° (Davarski et al., 1996). The reason for this exception is not clear.

The ligand geometry in (I) is normal (Allen et al., 1987). The S1—C1 [1.709 (2) Å] and S2—C14 [1.707 (2) Å] bonds are slightly shorter than S1—C7 [1.736 (2) Å] and S2—C13 [1.734 (2) Å], due to the pronounced delocalization in the –S—CN– fragment of the thiazole ring [N1—C1 1.303 (3) and N3—C14 1.297 (3) Å, versus N1—C2 1.399 (3) and N3—C8 1.400 (2) Å]. The bond angles around the endocyclic S atoms are in agreement with the literature values (Reference?) for the geometry around an endocyclic S atom [C1—S1—C7 89.31 (10) and C13—S2—C14 89.21 (10)°]. The ligands are planar, with the angles between the best planes calculated through the five- and six-membered rings of each ligand being 3.26 (10) and 1.14 (10)°. The ligands are mutually almost perpendicular, with an interplanar angle between the two ligands of 79.32 (6)°.

There are no intramolecular hydrogen bonds in the structure of (I). The NH2 groups participate in hydrogen bonds with atoms Cl1 and Cl2, although the H···Cl distances are long. Atom H1N4 forms a three-centre hydrogen bond to two different Cl1 atoms, whereas the other three amine H atoms form normal two-centre hydrogen bonds. Four of these five interactions link the molecules into sheets parallel to the ac plane (Table 2 and Fig. 2). Atom Cl2 acts as a triple H-atom acceptor, forming two N—H···Cl and one C—H···Cl hydrogen bonds.

The solid-state IR spectrum of (I) in the region of 4000–450 cm−1 is in agreement with the X-ray diffraction data with respect to the mode of coordination. Generally, the absorption bands in the spectrum of (I) were shifted towards lower wavelengths upon coordination, by approx. 10–20 cm−1 with respect to the bands in the spectrum of the free ligand. The shift of ν(C—S) toward higher frequencies (from 627 to 653 cm−1) implies an increased dπ–pπ contribution between S and the ring π system. The two shortest wavelength bands in the UV-VIS spectrum of the free ligand, characterized by high molecular absorption coefficients, can be attributed to the ππ* transition. The longest wavelength band, characterized by less strong absorption coefficients, is generally mixed in character and contains ππ* and n–π* transitions, due to the presence of the N lone electron pair.

Experimental top

7-Amino-1,3-benzothiazole was prepared according to the procedure of Ward & Williams (1965). Spectroscopic analysis: IR (ν, cm−1): 3389 (s), 3304 (s, br), 3200 (s-v s, br), 3073 (s), 1904 (w-m), 1640 (s), 1572 (v s), 1532 (m), 1480 (s-v s), 1462 (v s), 1407 (s-v s), 1336 (s), 1303 (s-v s), 1280 (s), 1232 (m), 1221 (m), 1137 (m), 1099 (m), 1045 (s), 1007 (s), 953 (w-m), 870 (v s), 854 (v s), 840 (v s), 781 (v s), 730 (s), 718 (v s), 671 (s), 627 (s), 537 (m), 484 (m); UV-vis [λmax (εmax × 10−3)]: 318 (2.7), 270 (3.8), 205 (234); 1H NMR (DMSO-d6, δ, p.p.m.): 9.26 (s, 1H, H2), 7.34 (d, 1H, J4,5 = 7.9 Hz, H4), 7.25 (dd, 1H, J5,6 = 7.7 Hz, J5,4 = 7.9 Hz, H5), 6.70 (d, 1H, J6,5 = 7.7 Hz, H6), 5.68 (s, 2H, H—NH2); 13C NMR (DMSO-d6, δ, p.p.m.): 154.4 (s), 154.4 (d), 143.4 (s), 127.0 (d), 119.0 (s), 110.9 (d), 108.6 (d). Zinc(II) chloride (0.15 g; 1 mmol) was dissolved in ethanol (30 ml). Into this solution, an ethanol solution of 7-amino-1,3-benzothiazole (0.33 g, 2.2 mmol in 20 ml) was added slowly. The reaction mixture was left to crystallize in a cool place. The crystals of (I) were filtered off, washed with ethanol and dried [yield 67%; m.p. 547–549 K (decomposition)]. Analysis calculated for C14H12Cl2N4S2Zn: C 38.51, H 2.77, N 12.83, S 14.68, Zn 14.97%; found: C 38.67, H 2.98, N 12.67, S 14.47, Zn 15.02%. Spectroscopic analysis: IR (ν, cm−1): 3410 (s), 3390 (s), 3340 (s), 3323 (s), 3228 (m), 3066 (m-s), 3030 (m-s), 1900 (vw), 1631 (s), 1582 (s-v s), 1488 (m-s), 1458 (v s), 1407 (m-s), 1339 (w), 1317 (m), 1291 (m), 1251 (m), 1231 (m), 1139 (m), 1048 (m), 1013 (m), 955 (w-m), 886 (s), 868 (m), 785 (s), 775 (s), 723 (m), 712 (s), 653 (m, br). The melting point was determined on a Kofler block apparatus and is uncorrected. The IR spectra were recorded with a Nicolet Magna 760 IR spectrophotometer in KBr pellets. 1H NMR and 13C NMR spectral data were determined with a Brucker Avance DPX 300 MHz NMR spectrometer with tetramethylsilane as the internal standard. The UV-VIS spectra were taken on a Perkin Elmer UV-vis spectrometer Lambda 20 using 10−5 M methanol solutions at room temperature. Please confirm that this has been rearranged correctly, and the NMR and UV-vis data refer to the 7-amino-1,3-benzothiazole and not (I).

Refinement top

H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å. The H atoms of the NH2 groups from both 7-aminobenzothiazole ligands were found in electron-density difference Fourier maps at the final stages of the refinement procedure and were refined freely.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1995); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 1998) and XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary ardii.
[Figure 2] Fig. 2. A packing diagram for (I). This view shows a layer parallel to the ac plane (see text); the view direction is parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.
Bis(7-amino-1,3-benzothiazole-κN3)dichlorozinc(II) top
Crystal data top
[ZnCl2(C7H6N2S)2]F(000) = 880
Mr = 436.67Dx = 1.753 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5620 (7) ÅCell parameters from 60 reflections
b = 11.4321 (18) Åθ = 10–18°
c = 13.7109 (13) ŵ = 2.06 mm1
β = 91.587 (9)°T = 293 K
V = 1654.9 (3) Å3Prism, green-grey
Z = 40.55 × 0.30 × 0.18 mm
Data collection top
Philips PW 1100 (upgraded by Stoe)
diffractometer
3220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 3.0°
θ/2θ scansh = 1414
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1995)
k = 516
Tmin = 0.486, Tmax = 0.690l = 019
7185 measured reflections5 standard reflections every 120 min
4795 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: geom and difmap
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
4795 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[ZnCl2(C7H6N2S)2]V = 1654.9 (3) Å3
Mr = 436.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5620 (7) ŵ = 2.06 mm1
b = 11.4321 (18) ÅT = 293 K
c = 13.7109 (13) Å0.55 × 0.30 × 0.18 mm
β = 91.587 (9)°
Data collection top
Philips PW 1100 (upgraded by Stoe)
diffractometer
3220 reflections with I > 2σ(I)
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1995)
Rint = 0.023
Tmin = 0.486, Tmax = 0.6905 standard reflections every 120 min
7185 measured reflections intensity decay: 5%
4795 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
4795 reflectionsΔρmin = 0.62 e Å3
224 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.31079 (2)0.97158 (2)0.229511 (17)0.03043 (7)
Cl10.46237 (5)1.03226 (6)0.13158 (4)0.04539 (15)
Cl20.30617 (5)0.78150 (5)0.26358 (5)0.04334 (14)
S10.48206 (5)1.18441 (5)0.48233 (4)0.03663 (13)
S20.00187 (5)1.21301 (5)0.12331 (5)0.03987 (14)
N10.35334 (16)1.06073 (16)0.35860 (12)0.0302 (4)
N20.3768 (2)1.1500 (2)0.69936 (16)0.0430 (5)
H1N20.445 (3)1.180 (3)0.686 (2)0.071 (11)*
H2N20.374 (4)1.113 (3)0.751 (3)0.090 (13)*
N30.14292 (15)1.04391 (15)0.18348 (12)0.0293 (4)
N40.25644 (19)1.1182 (2)0.02752 (17)0.0443 (5)
H1N40.326 (4)1.092 (3)0.015 (3)0.079 (11)*
H2N40.264 (3)1.178 (3)0.055 (2)0.047 (9)*
C10.4496 (2)1.13145 (19)0.36779 (16)0.0342 (5)
H10.49811.15200.31490.041*
C20.29699 (19)1.04249 (18)0.44853 (15)0.0299 (4)
C30.1946 (2)0.9692 (2)0.46457 (18)0.0420 (5)
H30.15340.93010.41330.050*
C40.1565 (3)0.9567 (2)0.55931 (19)0.0513 (7)
H40.08800.90840.57190.062*
C50.2177 (2)1.0143 (2)0.63705 (18)0.0472 (6)
H50.18991.00230.70000.057*
C60.3191 (2)1.0894 (2)0.62253 (15)0.0335 (5)
C70.35661 (18)1.10309 (18)0.52547 (15)0.0290 (4)
C80.03073 (18)0.99127 (18)0.14892 (14)0.0279 (4)
C90.0047 (2)0.8715 (2)0.14695 (16)0.0368 (5)
H90.06280.81680.17100.044*
C100.1116 (2)0.8383 (2)0.10742 (17)0.0416 (5)
H100.13200.75910.10550.050*
C110.1995 (2)0.9187 (2)0.07029 (16)0.0385 (5)
H110.27650.89160.04460.046*
C120.17579 (18)1.0375 (2)0.07057 (15)0.0327 (5)
C130.05774 (17)1.0722 (2)0.11214 (14)0.0290 (4)
C140.1381 (2)1.1568 (2)0.17413 (17)0.0361 (5)
H140.20531.20450.19410.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02579 (11)0.03740 (15)0.02792 (12)0.00088 (10)0.00259 (8)0.00064 (11)
Cl10.0342 (3)0.0698 (4)0.0323 (3)0.0089 (3)0.0045 (2)0.0013 (3)
Cl20.0408 (3)0.0363 (3)0.0530 (3)0.0049 (2)0.0009 (2)0.0044 (3)
S10.0333 (3)0.0383 (3)0.0380 (3)0.0077 (2)0.0041 (2)0.0043 (2)
S20.0338 (3)0.0335 (3)0.0517 (3)0.0047 (2)0.0099 (2)0.0049 (3)
N10.0301 (8)0.0335 (9)0.0267 (8)0.0016 (7)0.0029 (7)0.0009 (7)
N20.0475 (12)0.0512 (14)0.0300 (10)0.0061 (11)0.0060 (9)0.0056 (10)
N30.0244 (7)0.0331 (10)0.0300 (8)0.0007 (7)0.0035 (6)0.0015 (7)
N40.0285 (10)0.0534 (14)0.0503 (12)0.0062 (10)0.0103 (9)0.0071 (11)
C10.0335 (10)0.0365 (12)0.0324 (10)0.0048 (9)0.0000 (9)0.0039 (9)
C20.0286 (9)0.0311 (11)0.0297 (9)0.0001 (8)0.0014 (8)0.0010 (8)
C30.0408 (12)0.0459 (14)0.0394 (12)0.0135 (11)0.0020 (9)0.0075 (11)
C40.0505 (14)0.0576 (17)0.0465 (14)0.0195 (13)0.0125 (11)0.0001 (12)
C50.0528 (14)0.0541 (16)0.0353 (12)0.0002 (12)0.0100 (11)0.0034 (11)
C60.0354 (10)0.0342 (12)0.0307 (10)0.0083 (9)0.0017 (8)0.0010 (9)
C70.0275 (9)0.0282 (10)0.0310 (10)0.0026 (8)0.0040 (8)0.0004 (8)
C80.0260 (9)0.0340 (11)0.0236 (9)0.0022 (8)0.0019 (7)0.0008 (8)
C90.0374 (11)0.0359 (12)0.0366 (11)0.0014 (9)0.0061 (9)0.0049 (10)
C100.0409 (12)0.0404 (13)0.0432 (13)0.0118 (11)0.0037 (10)0.0028 (11)
C110.0281 (10)0.0523 (14)0.0348 (11)0.0111 (10)0.0042 (8)0.0010 (11)
C120.0233 (9)0.0485 (13)0.0264 (9)0.0010 (9)0.0004 (7)0.0021 (10)
C130.0228 (9)0.0366 (11)0.0274 (9)0.0002 (8)0.0011 (7)0.0042 (9)
C140.0287 (9)0.0370 (12)0.0422 (12)0.0026 (9)0.0073 (9)0.0045 (10)
Geometric parameters (Å, º) top
Zn1—N32.0405 (16)C2—C31.391 (3)
Zn1—N12.0807 (17)C2—C71.397 (3)
Zn1—Cl22.2235 (7)C3—C41.378 (3)
Zn1—Cl12.2285 (6)C3—H30.9300
S1—C11.709 (2)C4—C51.397 (4)
S1—C71.736 (2)C4—H40.9300
S2—C141.707 (2)C5—C61.391 (3)
S2—C131.734 (2)C5—H50.9300
N1—C11.303 (3)C6—C71.408 (3)
N1—C21.399 (3)C8—C91.397 (3)
N2—C61.387 (3)C8—C131.399 (3)
N2—H1N20.82 (4)C9—C101.382 (3)
N2—H2N20.83 (4)C9—H90.9300
N3—C141.297 (3)C10—C111.393 (3)
N3—C81.400 (2)C10—H100.9300
N4—C121.377 (3)C11—C121.382 (3)
N4—H1N40.81 (4)C11—H110.9300
N4—H2N40.78 (3)C12—C131.413 (3)
C1—H10.9300C14—H140.9300
N3—Zn1—N1103.30 (7)C5—C4—H4119.0
N3—Zn1—Cl2115.92 (5)C6—C5—C4121.6 (2)
N1—Zn1—Cl2107.79 (5)C6—C5—H5119.2
N3—Zn1—Cl1108.67 (5)C4—C5—H5119.2
N1—Zn1—Cl1102.60 (5)N2—C6—C5121.5 (2)
Cl2—Zn1—Cl1116.81 (3)N2—C6—C7122.2 (2)
C1—S1—C789.31 (10)C5—C6—C7116.2 (2)
C14—S2—C1389.21 (10)C2—C7—C6121.72 (19)
C1—N1—C2110.93 (18)C2—C7—S1109.91 (15)
C1—N1—Zn1122.41 (15)C6—C7—S1128.26 (16)
C2—N1—Zn1126.11 (14)C9—C8—C13120.82 (19)
C6—N2—H1N2114 (2)C9—C8—N3126.32 (19)
C6—N2—H2N2111 (3)C13—C8—N3112.85 (18)
H1N2—N2—H2N2117 (4)C10—C9—C8116.7 (2)
C14—N3—C8111.33 (17)C10—C9—H9121.7
C14—N3—Zn1117.69 (14)C8—C9—H9121.7
C8—N3—Zn1130.59 (14)C9—C10—C11122.6 (2)
C12—N4—H1N4113 (3)C9—C10—H10118.7
C12—N4—H2N4117 (2)C11—C10—H10118.7
H1N4—N4—H2N4108 (3)C12—C11—C10121.9 (2)
N1—C1—S1116.42 (17)C12—C11—H11119.0
N1—C1—H1121.8C10—C11—H11119.0
S1—C1—H1121.8N4—C12—C11123.2 (2)
C3—C2—C7121.0 (2)N4—C12—C13120.9 (2)
C3—C2—N1125.50 (19)C11—C12—C13115.8 (2)
C7—C2—N1113.42 (18)C8—C13—C12122.2 (2)
C4—C3—C2117.4 (2)C8—C13—S2110.18 (14)
C4—C3—H3121.3C12—C13—S2127.61 (17)
C2—C3—H3121.3N3—C14—S2116.43 (16)
C3—C4—C5122.0 (2)N3—C14—H14121.8
C3—C4—H4119.0S2—C14—H14121.8
N3—Zn1—N1—C1113.26 (18)N2—C6—C7—C2179.3 (2)
Cl2—Zn1—N1—C1123.54 (17)C5—C6—C7—C21.4 (3)
Cl1—Zn1—N1—C10.32 (18)N2—C6—C7—S14.9 (3)
N3—Zn1—N1—C276.03 (17)C5—C6—C7—S1177.19 (18)
Cl2—Zn1—N1—C247.16 (17)C1—S1—C7—C21.08 (16)
Cl1—Zn1—N1—C2171.02 (15)C1—S1—C7—C6175.1 (2)
N1—Zn1—N3—C1454.29 (17)C14—N3—C8—C9179.2 (2)
Cl2—Zn1—N3—C14171.92 (15)Zn1—N3—C8—C96.7 (3)
Cl1—Zn1—N3—C1454.17 (17)C14—N3—C8—C130.6 (2)
N1—Zn1—N3—C8133.61 (17)Zn1—N3—C8—C13171.85 (14)
Cl2—Zn1—N3—C815.97 (18)C13—C8—C9—C100.1 (3)
Cl1—Zn1—N3—C8117.94 (16)N3—C8—C9—C10178.5 (2)
C2—N1—C1—S10.7 (2)C8—C9—C10—C110.5 (3)
Zn1—N1—C1—S1172.66 (10)C9—C10—C11—C120.1 (4)
C7—S1—C1—N11.05 (19)C10—C11—C12—N4174.7 (2)
C1—N1—C2—C3178.0 (2)C10—C11—C12—C130.9 (3)
Zn1—N1—C2—C36.4 (3)C9—C8—C13—C120.8 (3)
C1—N1—C2—C70.2 (3)N3—C8—C13—C12177.83 (18)
Zn1—N1—C2—C7171.40 (14)C9—C8—C13—S2179.30 (17)
C7—C2—C3—C41.5 (4)N3—C8—C13—S20.7 (2)
N1—C2—C3—C4176.2 (2)N4—C12—C13—C8174.4 (2)
C2—C3—C4—C50.3 (4)C11—C12—C13—C81.3 (3)
C3—C4—C5—C61.2 (4)N4—C12—C13—S23.8 (3)
C4—C5—C6—N2177.6 (2)C11—C12—C13—S2179.53 (16)
C4—C5—C6—C70.3 (4)C14—S2—C13—C80.45 (16)
C3—C2—C7—C62.4 (3)C14—S2—C13—C12178.0 (2)
N1—C2—C7—C6175.50 (19)C8—N3—C14—S20.3 (2)
C3—C2—C7—S1178.89 (18)Zn1—N3—C14—S2173.27 (10)
N1—C2—C7—S11.0 (2)C13—S2—C14—N30.09 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl2i0.82 (3)2.73 (3)3.463 (2)148 (3)
N2—H2N2···Cl1i0.83 (3)2.86 (3)3.519 (2)138 (3)
N4—H1N4···Cl1ii0.81 (4)2.82 (4)3.491 (2)141 (4)
N4—H2N4···Cl2iii0.79 (3)2.80 (3)3.471 (2)144 (3)
N4—H1N4···Cl1iv0.81 (4)2.87 (4)3.472 (2)134 (4)
C1—H1···Cl2v0.932.783.619 (2)150
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C7H6N2S)2]
Mr436.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.5620 (7), 11.4321 (18), 13.7109 (13)
β (°) 91.587 (9)
V3)1654.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.55 × 0.30 × 0.18
Data collection
DiffractometerPhilips PW 1100 (upgraded by Stoe)
diffractometer
Absorption correctionψ scan
(X-RED; Stoe & Cie, 1995)
Tmin, Tmax0.486, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
7185, 4795, 3220
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.02
No. of reflections4795
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.62

Computer programs: STADI4 (Stoe & Cie, 1995), STADI4, X-RED (Stoe & Cie, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON98 (Spek, 1998) and XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—N32.0405 (16)S2—C131.734 (2)
Zn1—N12.0807 (17)N1—C11.303 (3)
Zn1—Cl22.2235 (7)N1—C21.399 (3)
Zn1—Cl12.2285 (6)N2—C61.387 (3)
S1—C11.709 (2)N3—C141.297 (3)
S1—C71.736 (2)N3—C81.400 (2)
S2—C141.707 (2)N4—C121.377 (3)
N3—Zn1—N1103.30 (7)C14—S2—C1389.21 (10)
N3—Zn1—Cl2115.92 (5)C1—N1—C2110.93 (18)
N1—Zn1—Cl2107.79 (5)C1—N1—Zn1122.41 (15)
N3—Zn1—Cl1108.67 (5)C2—N1—Zn1126.11 (14)
N1—Zn1—Cl1102.60 (5)C14—N3—C8111.33 (17)
Cl2—Zn1—Cl1116.81 (3)C14—N3—Zn1117.69 (14)
C1—S1—C789.31 (10)C8—N3—Zn1130.59 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl2i0.82 (3)2.73 (3)3.463 (2)148 (3)
N2—H2N2···Cl1i0.83 (3)2.86 (3)3.519 (2)138 (3)
N4—H1N4···Cl1ii0.81 (4)2.82 (4)3.491 (2)141 (4)
N4—H2N4···Cl2iii0.79 (3)2.80 (3)3.471 (2)144 (3)
N4—H1N4···Cl1iv0.81 (4)2.87 (4)3.472 (2)134 (4)
C1—H1···Cl2v0.932.783.619 (2)150
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds