Download citation
Download citation
link to html
The title compound, di­ammonium aqua-μ-carbonato-tri-μ-­oxalato-dineodymium(III) hydrate, (NH4)2[Nd2(CO3)(C2O4)3(H2O)]·H2O, involving the two ligands oxalate and carbonate, has been prepared hydro­thermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at ({1 \over 2},{1 \over 2},{1 \over 2}). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102014737/jz1509sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102014737/jz1509Isup2.hkl
Contains datablock I

CCDC reference: 197324

Comment top

Among novel open-framework materials, those of lanthanide oxalates are particularly noteworthy. These oxalates present a layered-honeycomb network (Ollendorf & Weigel, 1969; Hansson, 1970, 1973; Trollet et al., 1997). Some mixed lanthanide-alkali metal (including the ammonium ion) oxalates are also layer structures (McDonald & Spink, 1967; Bataille et al., 2000). However, the main remaining challenge is to connect the layers of these complexes by some ligands in order to preserve the open architecture as far as possible. To this end, carbonate has been used and novel families have been obtained, e.g. [Ln(H2O)]2(C2O4)2(CO3)·2.5H2O with Ln = Ce—Eu (Roméro et al., 1996) or [Ln(H2O)]2(C2O4)(CO3)2 with Ln = Eu—Ho and Y (Roméro et al., 1997; Bataille & Louër, 2000). The latter family provides a good example of an open framework: almost 15% of the unit-cell volume is empty.

Instead of carbonate, oxalate can be used as the additional ligand; [MLn(H2O)n](C2O4)2·H2O with M = Li, Ln = La—Gd and n = 1, or M = Na, Ln = Ce—Nd and n = 2 (Roméro et al., 1995), YK(C2O4)2·4H2O (Bataille et al., 1999), La(C2O4)2·NH4 (Trombe et al., 2001), and (C6N2H16)0.5[Y(H2O)(C2O4)2]·2H2O and (C5N2H12)[Y(C2O4)] (Vaidhyanathan et al., 2001) have been isolated to date.

In view of the limited number of three-dimensional mixed rare earth oxalates with alkali metals (including ammonium and protonated organic amines), we have explored the possibility of synthesizing new examples by the hydrothermal method. Single crystals of a new ammonium-neodymium oxalate-carbonate, (I), have been isolated and its three-dimensional structure is reported here. \sch

The cell formula of (I), 4(NH4)+[Nd2(C2O4)3(CO3)(H2O)]24-·2H2O, is based on two units. The anionic species build up a three-dimensional network, in which the cationic ammonium groups and the solvate water molecule, OW2, are intercalated. The independent atoms are two Nd, Nd1 and Nd2, two water molecules, OW1 and OW2, one carbonate group and four oxalate ligands, abbreviated as Ox1, Ox2, Ox3 and Ox4. Among these oxalate ligands, the first two are in general positions while the latter two are inversion-symmetric.

A main dense unit, based on Nd atoms and the carbonate group, is localized around the symmetry centre (1/2,1/2,1/2). The Nd atoms form a tetranuclear entity that constitutes the main building block of this structure (Fig. 1). One Nd atom, Nd2, and its symmetry equivalent are associated by sharing the O-atom edge O15—O15iv, belonging to the carbonate groups [symmetry code: (iv)]. In addition, because of the multidendate coordination of the carbonate group, atom O14 is common to the coordination spheres of both Nd1 and Nd2. The Nd atoms form a parallelogram, with Nd1—Nd2 4.892 (1) Å and Nd1—Nd2iv 6.427 (1) Å. The shortest Nd—Nd distance is between two Nd2 atoms that share the edge O15—O15iv, with Nd2—Nd2iv 4.187 (1) Å.

Starting from the tetranuclear entity, the oxalate ligands are attached to form a rather open structure. The three-dimensional network can be described in the following general way. Firstly, parallel to [111] and [100], Ox3 and Ox4 groups ensure the link between two Nd1 and two Nd2 atoms, respectively, of successive units, via atoms O9 and O10, and O11 and O12, respectively. Secondly, in a layer parallel to the (122) plane, Ox1 and Ox2 groups connect the different Nd atoms of neighbouring cells, and all the oxalate ligands build up a distorted ladder arrangement, running parallel to [011] (Fig. 2). The successive –Ox1—Nd—Ox2- sequences constitute the two uprights of this ladder, and Ox3 and Ox4 act alternately as rungs. The ladders are connected by atoms O14. Within a ladder, an approximately square eight-membered [Nd(C2O4)]4 ring is encountered. Such rings have been observed many times in mixed ammonium-lanthanide oxalates.

The Nd—Nd distances in (I), from both sides of the oxalate groups, fall roughly into two sets, 6.307 (1) and 6.308 (1) Å, and 6.483 (1) and 6.431 (1) Å for Ox1 to Ox4, respectively. The shorter distances are the consequence of the displacement, in the same direction, of the corresponding Nd atoms from the mean plane of Ox1 and Ox2. This eight-membered ring deviates considerably from planarity; the maximum distance of Nd from the mean plane is 1.41 (2) Å. An ellipsoidal void of roughly 0.8 × 3.6 Å (not including the van der Waals radii) is present within this ring. The ammonium ions and the free water molecule, OW2, are localized above and below the centre of this free aperture.

If the structure of (I) is viewed parallel to [011], the network is depicted as smooth sinusoidal ribbons consisting of the sequence –Ox3-(tetrameric unit)-Ox4- (Fig. 3). Such ribbons are practically opposite in phase, leading to channels with an ellipsoidal shape of roughly 2.8 × 10 Å (not including the van der Waals radii). The ammonium ions and the water molecules, free (OW2) or bound to the Nd (OW1), are localized in these channels.

Both Nd atoms in (I) exhibit a ninefold coordination, but their coordination schemes differ. They are bound to six oxalate O atoms, belonging to Ox1, Ox2 and Ox3 for Nd1, and Ox1, Ox2 and Ox4 for Nd2. Respectively, two carbonate O atoms and one water molecule (OW1), or three carbonate O atoms, complete the Nd1 and Nd2 environments. In both cases, the coordination polyhedron is a distorted monocapped archimedian antiprism. The cap positions correspond to O4ii and O15 for Nd1 and Nd2, respectively [symmetry code: (ii)]. The Nd—O distances are comparable, with a relatively narrow dispersion. Nd1—O distances range from 2.456 (3) to 2.533 (3) Å, with a mean value of 2.492 Å, the shortest distances being to atom O14 (shared with Nd2) and the ligand water molecule OW1 (Table 1). Nd2—O distances range from 2.435 (3) to 2.542 (3) Å, with the same mean value as for Nd1. Note that the Nd2—O14 and Nd1—O14 distances [2.461 (3) and 2.456 (3) Å, respectively] are similar, and that the Nd1—O14—Nd2 angle of 168.3 (2)° is almost linear.

All the oxalate ligands are bis-chelating. Bond distances and angles for such ligands (Table 1) agree well with the values commonly observed for such complexes. The oxalates Ox1 and Ox2, lying on general positions, are almost planar; deviations from the mean planes are smaller than 0.075 (2) and 0.031 (2) Å, respectively.

The carbonate group is bis-chelating to two Nd atoms and monodentate to a third one. The C—O bond lengths are rather scattered, from 1.247 (5) to 1.310 (5) Å, with a mean value of 1.283 Å, consistent with the values commonly observed (Negro et al., 1977; Palmer & Van Eldik, 1983; Roméro et al., 1997; Trombe et al., 1998). Such a scatter could be a consequence of the carbonate coordination scheme. Atoms O14 and O15 are µ2 and they correspond to the longest distances, while atom O13 is µ1 and its C—O distance is smaller. The bond-length scatter also seems to affect the bond angles slightly. However, the carbonate group is planar and the three Nd atoms to which it is bound are all at a distance of less than 0.265 (8) Å from the mean plane.

The ammonium ions in (I) have a close to tetrahedral geometry. As for the free water molecule, OW2, these species present strong hydrogen bonding between themselves, the oxalate O atoms of the framework and the ligand water molecule, OW1. The OW2—H···O bonds range from 2.856 (5) to 2.897 (6) Å, while N—H···O bonds range between 2.859 (6) and 3.103 (7) Å (Table 2). Note that H7 (N1H4)+ and H11 (N2H4)+ are triply and doubly bridging, respectively.

The starting reagents were free of ammonium and carbonate ions. Thus, the formation of these ions must involve the in situ decomposition of the guanidinium species under the synthesis conditions. It is well known that this ion is easily hydrolysable at 423 K-473 K, as observed for some amines (imidazole), resulting in ammonium and carbonate species (Chippindale et al., 1996; Trombe et al., 2001).

Experimental top

Single crystals of (I) were obtained from neodymium(III) oxalate decahydrate (1 mmol), guanidinium oxalate (2 mmol) and water (10 ml). These reactants were sealed in a Teflon-lined steel bomb (autogeneous pressure) and heated at 423 K for 5 d. After cooling, the resulting product was filtered, washed with distilled water and dried at room temperature. The theoretical X-ray powder pattern of the single-crystal is not representative of the bulk material.

Refinement top

The 12 H atoms were found in difference Fourier syntheses and refined freely. However, the distances to their parent atoms were idealized, with constraints of O—H = 0.90 and H···H = 1.55 Å, and N—H = 0.80 and H···H = 1.35 Å. Please clarify - the CIF tables have a range of O—H and especially N—H values. The assignments of N and O atoms were consistent with the H-atom positions and also with the U values.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the tetrameric unit formed by the Nd atoms in (I), with their immediate environment and the carbonate groups. Displacement ellipsoids are drawn at the 50% probability level. For the sake of clarity, the ammonium ions and the solvate water molecule have been omitted [symmetry codes: (i); (ii); (iv)].
[Figure 2] Fig. 2. A view of the motif built up by two ladders sharing atoms O14 of the carbonate ions. The water molecules, the ammonium ions and some parts of the carbonate ligand (atoms O13, O15 and C7) have been omitted [symmetry codes: (i); (ii); (iii); (v); (x) x - 1, 1 + y, z].
[Figure 3] Fig. 3. A representation of the –Ox3-(tetrameric unit)-Ox4- sequence that forms the ribbons in the structure of (I). The ammonium ions and the solvate water molecule are intercalated between these ribbons. For clarity, some parts of the oxalate ligands Ox1 and Ox2 (atoms C1, C2, C3 and C4) have been omitted [symmetry code: (iv)].
Diammonium aqua-µ-carbonato-tri-µ-oxalatodineodymium(III) hydrate top
Crystal data top
(NH4)2[Nd2(C2O4)3(CO3)(H2O)]·H2OZ = 2
Mr = 684.67F(000) = 648
Triclinic, P1Dx = 2.808 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.7065 (10) ÅCell parameters from 4700 reflections
b = 9.530 (1) Åθ = 2.1–29.4°
c = 10.3274 (10) ŵ = 6.44 mm1
α = 73.350 (18)°T = 293 K
β = 86.90 (2)°Plate, pale purple
γ = 80.50 (2)°0.22 × 0.20 × 0.04 mm
V = 809.69 (17) Å3
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
4700 independent reflections
Radiation source: fine-focus sealed tube4053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ψ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1212
Tmin = 0.239, Tmax = 0.789k = 1313
10885 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.039P)2 + 2.1271P] with P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
4700 reflectionsΔρmax = 1.82 e Å3
302 parametersΔρmin = 1.80 e Å3
26 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (5)
Crystal data top
(NH4)2[Nd2(C2O4)3(CO3)(H2O)]·H2Oγ = 80.50 (2)°
Mr = 684.67V = 809.69 (17) Å3
Triclinic, P1Z = 2
a = 8.7065 (10) ÅMo Kα radiation
b = 9.530 (1) ŵ = 6.44 mm1
c = 10.3274 (10) ÅT = 293 K
α = 73.350 (18)°0.22 × 0.20 × 0.04 mm
β = 86.90 (2)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
4700 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
4053 reflections with I > 2σ(I)
Tmin = 0.239, Tmax = 0.789Rint = 0.041
10885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02426 restraints
wR(F2) = 0.058All H-atom parameters refined
S = 1.15Δρmax = 1.82 e Å3
4700 reflectionsΔρmin = 1.80 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.79962 (2)0.19266 (2)0.18191 (2)0.00895 (8)
Nd20.35191 (2)0.40249 (2)0.41108 (2)0.00856 (8)
O10.1750 (4)0.0227 (4)0.5840 (3)0.0168 (6)
O20.2633 (4)0.1635 (4)0.4292 (3)0.0196 (7)
O30.4607 (4)0.1857 (4)0.6082 (3)0.0177 (7)
O40.3991 (4)0.0206 (4)0.7548 (3)0.0168 (6)
O50.2339 (4)0.5473 (4)0.0353 (3)0.0191 (7)
O60.2755 (4)0.4088 (4)0.1790 (3)0.0179 (7)
O70.4067 (4)0.6258 (4)0.2280 (3)0.0158 (6)
O80.3754 (4)0.7562 (4)0.0120 (3)0.0207 (7)
O90.9601 (4)0.1911 (4)0.0298 (3)0.0208 (7)
O101.0875 (4)0.0567 (4)0.1577 (3)0.0186 (7)
O110.1393 (4)0.3544 (4)0.5847 (3)0.0175 (7)
O120.1054 (4)0.4217 (4)0.6438 (3)0.0179 (7)
O130.8315 (4)0.3448 (4)0.3398 (4)0.0191 (7)
O140.5933 (4)0.3108 (4)0.3056 (3)0.0164 (7)
O150.6258 (4)0.4349 (4)0.4493 (3)0.0162 (6)
OW11.0775 (4)0.1795 (5)0.2237 (4)0.0228 (7)
OW20.3415 (5)0.0331 (5)0.0822 (4)0.0277 (8)
C10.2632 (5)0.0726 (5)0.5443 (4)0.0123 (8)
C20.3853 (5)0.0796 (5)0.6453 (4)0.0122 (8)
C30.2819 (5)0.5226 (5)0.0829 (4)0.0120 (8)
C40.3609 (5)0.6458 (5)0.1105 (4)0.0123 (8)
C51.0137 (5)0.0720 (5)0.0540 (4)0.0119 (8)
C60.0103 (5)0.4352 (5)0.5660 (4)0.0127 (8)
C70.6892 (5)0.3645 (5)0.3651 (4)0.0111 (7)
N10.8063 (6)0.1429 (5)0.6535 (5)0.0288 (10)
N20.2714 (6)0.2981 (5)0.8528 (5)0.0249 (9)
H11.129 (7)0.175 (8)0.297 (4)0.04 (2)*
H21.127 (8)0.148 (13)0.156 (6)0.11 (4)*
H30.335 (8)0.011 (8)0.017 (6)0.06 (3)*
H40.434 (4)0.036 (9)0.113 (8)0.06 (3)*
H50.7122 (14)0.165 (6)0.653 (6)0.09 (4)*
H60.838 (7)0.122 (6)0.584 (3)0.04 (2)*
H70.832 (7)0.069 (4)0.719 (4)0.04 (2)*
H80.848 (7)0.211 (4)0.663 (6)0.05 (2)*
H90.354 (3)0.310 (6)0.814 (5)0.028 (18)*
H100.242 (6)0.363 (4)0.890 (5)0.05 (2)*
H110.204 (4)0.298 (6)0.799 (4)0.04 (2)*
H120.282 (7)0.217 (3)0.911 (4)0.08 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01016 (12)0.00908 (12)0.00754 (11)0.00122 (8)0.00085 (8)0.00257 (8)
Nd20.00804 (12)0.00924 (12)0.00802 (12)0.00156 (8)0.00038 (8)0.00180 (8)
O10.0194 (16)0.0177 (15)0.0134 (14)0.0098 (13)0.0028 (12)0.0000 (12)
O20.0297 (19)0.0182 (16)0.0113 (15)0.0118 (14)0.0038 (13)0.0003 (13)
O30.0181 (16)0.0132 (15)0.0202 (16)0.0065 (12)0.0060 (13)0.0013 (13)
O40.0192 (16)0.0154 (15)0.0132 (15)0.0049 (12)0.0037 (12)0.0017 (12)
O50.033 (2)0.0143 (15)0.0112 (15)0.0048 (14)0.0050 (13)0.0032 (12)
O60.0253 (18)0.0151 (15)0.0132 (15)0.0082 (13)0.0036 (13)0.0002 (12)
O70.0198 (16)0.0177 (15)0.0096 (14)0.0073 (13)0.0030 (12)0.0003 (12)
O80.0275 (19)0.0196 (16)0.0124 (15)0.0120 (14)0.0055 (13)0.0052 (13)
O90.0288 (19)0.0147 (15)0.0168 (16)0.0008 (13)0.0104 (14)0.0044 (13)
O100.0277 (18)0.0157 (15)0.0124 (15)0.0047 (13)0.0088 (13)0.0050 (13)
O110.0110 (15)0.0183 (16)0.0174 (15)0.0017 (12)0.0012 (12)0.0014 (13)
O120.0123 (15)0.0204 (16)0.0148 (15)0.0006 (12)0.0042 (12)0.0029 (13)
O130.0088 (15)0.0279 (18)0.0262 (17)0.0021 (13)0.0036 (12)0.0177 (15)
O140.0103 (15)0.0216 (16)0.0210 (17)0.0003 (12)0.0014 (12)0.0129 (14)
O150.0125 (15)0.0223 (16)0.0172 (15)0.0027 (12)0.0025 (12)0.0115 (13)
OW10.0144 (16)0.035 (2)0.0224 (18)0.0058 (15)0.0006 (14)0.0130 (16)
OW20.023 (2)0.031 (2)0.029 (2)0.0029 (16)0.0045 (16)0.0083 (17)
C10.014 (2)0.0111 (18)0.0122 (18)0.0025 (15)0.0019 (15)0.0028 (15)
C20.0127 (19)0.0126 (18)0.0121 (18)0.0027 (15)0.0009 (15)0.0044 (16)
C30.015 (2)0.0100 (18)0.0120 (18)0.0022 (15)0.0016 (15)0.0049 (15)
C40.0126 (19)0.0123 (18)0.0109 (18)0.0026 (15)0.0001 (15)0.0013 (15)
C50.0105 (19)0.0140 (19)0.0114 (18)0.0017 (15)0.0011 (14)0.0043 (16)
C60.0122 (19)0.0123 (19)0.0135 (19)0.0027 (15)0.0007 (15)0.0032 (16)
C70.0127 (19)0.0112 (17)0.0084 (17)0.0008 (15)0.0006 (14)0.0016 (15)
N10.035 (3)0.023 (2)0.027 (2)0.001 (2)0.009 (2)0.006 (2)
N20.028 (2)0.025 (2)0.024 (2)0.0113 (18)0.0013 (19)0.0069 (19)
Geometric parameters (Å, º) top
Nd1—O142.456 (3)O7—C41.250 (5)
Nd1—OW12.457 (4)O8—C41.255 (5)
Nd1—O8i2.469 (3)O9—C51.242 (5)
Nd1—O5i2.485 (3)O10—C51.251 (5)
Nd1—O1ii2.493 (3)O11—C61.243 (5)
Nd1—O10iii2.494 (3)O12—C61.253 (5)
Nd1—O4ii2.512 (3)O13—C71.247 (5)
Nd1—O132.525 (3)O14—C71.310 (5)
Nd1—O92.533 (3)O15—C71.293 (5)
Nd1—C72.871 (4)OW1—H10.891 (10)
Nd2—O15iv2.435 (3)OW1—H20.900 (10)
Nd2—O142.461 (3)OW2—H30.897 (10)
Nd2—O12v2.477 (3)OW2—H40.893 (10)
Nd2—O22.478 (3)C1—C21.551 (6)
Nd2—O72.503 (3)C3—C41.554 (6)
Nd2—O62.504 (3)C5—C5iii1.545 (8)
Nd2—O112.510 (3)C6—C6v1.550 (8)
Nd2—O152.520 (3)N1—H50.812 (9)
Nd2—O32.542 (3)N1—H60.817 (9)
Nd2—C72.929 (4)N1—H70.832 (9)
O1—C11.251 (5)N1—H80.824 (9)
O2—C11.254 (5)N2—H90.812 (9)
O3—C21.252 (5)N2—H100.819 (9)
O4—C21.250 (5)N2—H110.826 (9)
O5—C31.256 (5)N2—H120.830 (9)
O6—C31.250 (5)
O14—Nd1—OW1122.39 (12)O7—Nd2—O3146.56 (11)
O14—Nd1—O8i90.72 (12)O6—Nd2—O3130.56 (11)
OW1—Nd1—O8i138.61 (13)O11—Nd2—O372.09 (11)
O14—Nd1—O5i79.28 (12)O15—Nd2—O372.86 (11)
OW1—Nd1—O5i94.87 (13)O15iv—Nd2—C790.58 (12)
O8i—Nd1—O5i65.35 (11)O14—Nd2—C726.33 (11)
O14—Nd1—O1ii77.21 (11)O12v—Nd2—C7144.49 (11)
OW1—Nd1—O1ii79.04 (12)O2—Nd2—C7108.04 (12)
O8i—Nd1—O1ii136.96 (11)O7—Nd2—C773.16 (11)
O5i—Nd1—O1ii147.21 (11)O6—Nd2—C796.99 (12)
O14—Nd1—O10iii140.56 (11)O11—Nd2—C7145.03 (11)
OW1—Nd1—O10iii77.70 (13)O15—Nd2—C726.09 (11)
O8i—Nd1—O10iii92.19 (13)O3—Nd2—C775.42 (11)
O5i—Nd1—O10iii136.60 (11)C1—O1—Nd1ii119.8 (3)
O1ii—Nd1—O10iii74.05 (11)C1—O2—Nd2117.5 (3)
O14—Nd1—O4ii74.11 (11)C2—O3—Nd2117.0 (3)
OW1—Nd1—O4ii136.78 (12)C2—O4—Nd1ii119.1 (3)
O8i—Nd1—O4ii71.49 (11)C3—O5—Nd1i117.8 (3)
O5i—Nd1—O4ii128.32 (12)C3—O6—Nd2119.8 (3)
O1ii—Nd1—O4ii65.48 (11)C4—O7—Nd2119.8 (3)
O10iii—Nd1—O4ii69.67 (11)C4—O8—Nd1i117.4 (3)
O14—Nd1—O1352.75 (11)C5—O9—Nd1120.4 (3)
OW1—Nd1—O1370.15 (12)C5—O10—Nd1iii121.8 (3)
O8i—Nd1—O13131.05 (12)C6—O11—Nd2120.0 (3)
O5i—Nd1—O1375.54 (11)C6—O12—Nd2v121.0 (3)
O1ii—Nd1—O1372.08 (12)C7—O13—Nd192.8 (3)
O10iii—Nd1—O13136.73 (12)C7—O14—Nd194.4 (2)
O4ii—Nd1—O13117.41 (11)C7—O14—Nd297.2 (2)
O14—Nd1—O9151.31 (11)Nd1—O14—Nd2168.33 (15)
OW1—Nd1—O969.01 (13)C7—O15—Nd2iv148.9 (3)
O8i—Nd1—O970.49 (13)C7—O15—Nd294.9 (3)
O5i—Nd1—O973.26 (11)Nd2iv—O15—Nd2115.31 (12)
O1ii—Nd1—O9131.28 (11)Nd1—OW1—H1132 (4)
O10iii—Nd1—O964.09 (11)Nd1—OW1—H2105 (5)
O4ii—Nd1—O9117.30 (11)H1—OW1—H2120 (2)
O13—Nd1—O9125.23 (12)H3—OW2—H4120 (2)
O14—Nd1—C727.05 (12)O1—C1—O2126.0 (4)
OW1—Nd1—C795.55 (13)O1—C1—C2117.7 (4)
O8i—Nd1—C7112.77 (12)O2—C1—C2116.3 (4)
O5i—Nd1—C776.37 (11)O4—C2—O3126.6 (4)
O1ii—Nd1—C772.27 (12)O4—C2—C1117.2 (4)
O10iii—Nd1—C7146.32 (11)O3—C2—C1116.3 (4)
O4ii—Nd1—C796.26 (12)O6—C3—O5126.9 (4)
O13—Nd1—C725.71 (12)O6—C3—C4117.0 (4)
O9—Nd1—C7144.25 (12)O5—C3—C4116.1 (4)
O15iv—Nd2—O14116.78 (11)O7—C4—O8125.6 (4)
O15iv—Nd2—O12v79.15 (12)O7—C4—C3117.5 (4)
O14—Nd2—O12v141.72 (11)O8—C4—C3116.9 (4)
O15iv—Nd2—O2139.64 (11)O9—C5—O10126.5 (4)
O14—Nd2—O287.96 (12)O9—C5—C5iii117.1 (5)
O12v—Nd2—O2101.38 (12)O10—C5—C5iii116.4 (5)
O15iv—Nd2—O781.38 (11)O11—C6—O12126.1 (4)
O14—Nd2—O776.51 (11)O11—C6—C6v117.1 (5)
O12v—Nd2—O771.73 (11)O12—C6—C6v116.8 (5)
O2—Nd2—O7137.73 (11)O13—C7—O15124.5 (4)
O15iv—Nd2—O6141.59 (11)O13—C7—O14120.0 (4)
O14—Nd2—O674.70 (11)O15—C7—O14115.5 (4)
O12v—Nd2—O672.94 (12)O13—C7—Nd161.5 (2)
O2—Nd2—O672.83 (11)O15—C7—Nd1173.6 (3)
O7—Nd2—O665.23 (11)O14—C7—Nd158.5 (2)
O15iv—Nd2—O1175.71 (11)O13—C7—Nd2176.4 (3)
O14—Nd2—O11149.58 (11)O15—C7—Nd259.0 (2)
O12v—Nd2—O1165.03 (10)O14—C7—Nd256.5 (2)
O2—Nd2—O1168.56 (12)Nd1—C7—Nd2115.02 (15)
O7—Nd2—O11133.90 (11)H5—N1—H6111.4 (15)
O6—Nd2—O11113.84 (12)H5—N1—H7109.0 (15)
O15iv—Nd2—O1564.69 (12)H6—N1—H7108.7 (15)
O14—Nd2—O1552.43 (10)H5—N1—H8110.5 (15)
O12v—Nd2—O15132.96 (11)H6—N1—H8109.7 (15)
O2—Nd2—O15125.63 (12)H7—N1—H8107.4 (15)
O7—Nd2—O1573.91 (11)H9—N2—H10111.1 (15)
O6—Nd2—O15118.95 (11)H9—N2—H11110.5 (15)
O11—Nd2—O15127.18 (11)H10—N2—H11109.1 (15)
O15iv—Nd2—O387.80 (11)H9—N2—H12109.5 (15)
O14—Nd2—O380.47 (11)H10—N2—H12108.8 (15)
O12v—Nd2—O3137.01 (11)H11—N2—H12107.7 (15)
O2—Nd2—O364.12 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···O2vi0.89 (5)1.81 (5)2.692 (5)170 (6)
OW1—H2···OW2vi0.90 (8)2.22 (9)3.018 (6)148 (6)
OW2—H3···O8vii0.90 (7)2.20 (8)2.897 (6)134 (7)
OW2—H4···O4ii0.89 (5)2.01 (6)2.856 (5)159 (7)
N1—H5···O30.81 (2)2.23 (2)3.013 (6)163 (6)
N1—H6···O1ii0.82 (4)2.22 (4)2.976 (6)154 (6)
N1—H7···OW1viii0.83 (4)2.29 (4)2.992 (6)143 (5)
N1—H7···O10ix0.83 (4)2.59 (5)3.067 (6)118 (5)
N1—H7···OW2ii0.83 (4)2.54 (5)3.103 (7)126 (5)
N1—H8···O12vi0.83 (5)2.07 (4)2.859 (6)161 (6)
N2—H9···O7iv0.81 (3)2.25 (3)3.025 (6)159 (5)
N2—H10···O5ix0.82 (4)2.10 (4)2.891 (6)162 (5)
N2—H11···O10x0.83 (4)2.58 (5)3.041 (6)116 (5)
N2—H11···O110.83 (4)2.20 (4)2.927 (6)146 (5)
N2—H12···OW2ix0.83 (4)2.12 (4)2.930 (6)166 (6)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+2, y, z+1; (ix) x, y, z+1; (x) x1, y, z+1.

Experimental details

Crystal data
Chemical formula(NH4)2[Nd2(C2O4)3(CO3)(H2O)]·H2O
Mr684.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7065 (10), 9.530 (1), 10.3274 (10)
α, β, γ (°)73.350 (18), 86.90 (2), 80.50 (2)
V3)809.69 (17)
Z2
Radiation typeMo Kα
µ (mm1)6.44
Crystal size (mm)0.22 × 0.20 × 0.04
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.239, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
10885, 4700, 4053
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.15
No. of reflections4700
No. of parameters302
No. of restraints26
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.82, 1.80

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Nd1—O142.456 (3)O2—C11.254 (5)
Nd1—OW12.457 (4)O3—C21.252 (5)
Nd1—O8i2.469 (3)O4—C21.250 (5)
Nd1—O5i2.485 (3)O5—C31.256 (5)
Nd1—O1ii2.493 (3)O6—C31.250 (5)
Nd1—O10iii2.494 (3)O7—C41.250 (5)
Nd1—O4ii2.512 (3)O8—C41.255 (5)
Nd1—O132.525 (3)O9—C51.242 (5)
Nd1—O92.533 (3)O10—C51.251 (5)
Nd2—O15iv2.435 (3)O11—C61.243 (5)
Nd2—O142.461 (3)O12—C61.253 (5)
Nd2—O12v2.477 (3)O13—C71.247 (5)
Nd2—O22.478 (3)O14—C71.310 (5)
Nd2—O72.503 (3)O15—C71.293 (5)
Nd2—O62.504 (3)C1—C21.551 (6)
Nd2—O112.510 (3)C3—C41.554 (6)
Nd2—O152.520 (3)C5—C5iii1.545 (8)
Nd2—O32.542 (3)C6—C6v1.550 (8)
O1—C11.251 (5)
O1—C1—O2126.0 (4)O8—C4—C3116.9 (4)
O1—C1—C2117.7 (4)O9—C5—O10126.5 (4)
O2—C1—C2116.3 (4)O9—C5—C5iii117.1 (5)
O4—C2—O3126.6 (4)O10—C5—C5iii116.4 (5)
O4—C2—C1117.2 (4)O11—C6—O12126.1 (4)
O3—C2—C1116.3 (4)O11—C6—C6v117.1 (5)
O6—C3—O5126.9 (4)O12—C6—C6v116.8 (5)
O6—C3—C4117.0 (4)O13—C7—O15124.5 (4)
O5—C3—C4116.1 (4)O13—C7—O14120.0 (4)
O7—C4—O8125.6 (4)O15—C7—O14115.5 (4)
O7—C4—C3117.5 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+2, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···O2vi0.89 (5)1.81 (5)2.692 (5)170 (6)
OW1—H2···OW2vi0.90 (8)2.22 (9)3.018 (6)148 (6)
OW2—H3···O8vii0.90 (7)2.20 (8)2.897 (6)134 (7)
OW2—H4···O4ii0.89 (5)2.01 (6)2.856 (5)159 (7)
N1—H5···O30.81 (2)2.23 (2)3.013 (6)163 (6)
N1—H6···O1ii0.82 (4)2.22 (4)2.976 (6)154 (6)
N1—H7···OW1viii0.83 (4)2.29 (4)2.992 (6)143 (5)
N1—H7···O10ix0.83 (4)2.59 (5)3.067 (6)118 (5)
N1—H7···OW2ii0.83 (4)2.54 (5)3.103 (7)126 (5)
N1—H8···O12vi0.83 (5)2.07 (4)2.859 (6)161 (6)
N2—H9···O7iv0.81 (3)2.25 (3)3.025 (6)159 (5)
N2—H10···O5ix0.82 (4)2.10 (4)2.891 (6)162 (5)
N2—H11···O10x0.83 (4)2.58 (5)3.041 (6)116 (5)
N2—H11···O110.83 (4)2.20 (4)2.927 (6)146 (5)
N2—H12···OW2ix0.83 (4)2.12 (4)2.930 (6)166 (6)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+2, y, z+1; (ix) x, y, z+1; (x) x1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds