Download citation
Download citation
link to html
The two new gem-dihalogeno­cyclo­propanes (1'S,3R)-3-(2',2'-di­chloro-1'-methyl­cyclo­propyl)-6-oxoheptanoic acid, C11H16­Cl2O3, (2), and (1'S,3R)-3-(2',2'-di­bromo-1'-methyl­cyclo­propyl)-6-oxoheptanoic acid, C11H16Br2O3, (3), are isostructural. Both present two stereogenic centers at C1' and C3. The absolute configuration was determined by X-ray methods. The cyclo­propyl rings are unsymmetrical, the shortest bond being distal with respect to the alkyl-substituted C atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019680/jz1483sup1.cif
Contains datablocks global, 2, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019680/jz14832sup2.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019680/jz14833sup3.hkl
Contains datablock 3

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270101019680/jz1483sup4.pdf
Supplementary material

CCDC references: 182027; 182028

Comment top

Despite their high ring strain, cyclopropanes are commonly encountered among both naturally occurring and synthetic compounds. In addition, diastereoselectively substituted cyclopropanes have attracted attention as useful precursors of highly strained molecules (Boche et al., 1990; Tanabe et al., 1996) and biologically active pyrethroids (Hirota et al., 1996; Kunzer et al., 1996). Thus, promise of their usefulness as synthetic intermediates is growing rapidly. Here we describe the structure of two new polyfunctionalized dichloro and dibromo cyclopropanes 2 and 3, which could be valuable synthons for pyrethroid derivatives.

These two compounds were prepared from (R)-limonene oxide 1 by dihalocyclopropanation of the C7=C8 double bond followed by oxidation of oxirane ring under Sharpless conditions (see Experimental). In order to confirm the structure assignments and establish the absolute stereochemistry, single X-ray studies were carried out on both compounds. The two derivatives crystallize isotypically; only the chloro compound 2 is illustrated in Fig. 1 (a view of molecule 3 is given in the supplementary material). Identical numbering schemes have been employed in both molecules. The absolute configuration (1'S,3R) has been unambiguously determined by refinement of the Flack (1983) parameter. Examination of the cyclopropyl moieties indicates that the rings are unsymmetrical, with unequal C—C bond lengths (Tables 1 & 3). The C(3)—C(4) bond length in the chloro derivative is 1.479 (2) Å while the bonds adjacent to the methyl and the polyfonctional substituents are longer, C(2)—C(4) 1.504 (3) Å and C(2)—C(3) 1.525 (3) Å. The same trend persists in the bromo derivative with identical C—C distances within experimental error. The bond angles within the three-membered ring reflect the difference observed between bond lengths with the smallest angle at C(2), C(3)—C(2)—C(4) 58.42 (12)° (59.1 (4)° for 3). The Cambridge Structural Database (CSD; Allen & Kennard, 1993) has been searched for related dihalogenocyclopropane structures having CH2 and CR2 groups(scheme 2). The search was limited to independent alkyl substuents R1 and R2 and excludes structures with interconnected R1 and R2 for which additional strain might influence the distances within the ring. The geometry of these cyclopropane rings (Table 5) shows the same tendancy observed for 2 and 3 with a shortening of the distal bond opposite the alkyl-substituted carbon and a lengthening of the vicinal bonds linking the alkyl and H substituted carbon atoms with respect to the mean C—C(ring) length of 1.509 (2)%A (Allen, 1980). These results are in agreement with a previous report (Allen, 1980). The C—Cl bond lengths average 1.762 (2) Å and the C—Br 1.918 (6) Å and are in good agreement with related gem-dihalogenocyclopropanes, as are the X—C—X angles of 109.8 (1)° for 2 and 110.1 (3)° for 3.

The 3-oxobutyl chain has an extended configuration with torsion angles C1—C11—C12—C13 - 180.0 (2)° [-179.0 (6) for 3] and C11—C12—C13—C14 166.2 (2)° [166.3 (6) for 3](Table 1 and 3). The substituents at C1, the carboxyl group and the cyclopropane ring are anti with respect to the oxobutyl chain. The orientations of the carboxyl group and the cyclopropane ring are influenced by intramolecular contacts C—H···O and C—H···Cl (or Br) that could be classified as hydrogen bonds. An interaction between an H atom of the cyclopropane carbon C3 and the O1 of the carboxyl (Table 2 and 4) results in a twisted conformation of the carboxyl group C17/O1/O2 with respect to the C1/C16/C17 plane [dihedral angle 23.1 (2)° for 2 and 24.2° for 3]. A further interaction occurs between Cl1 and the H at C1 (Table 2 and 4).

Fig. 2 illustrates the packing of 2 (the packing of 3 is shown in a supplementary file) in the cell, with extracellular molecules included to show the single-strand hydrogen-bonded catemers. The chain proceeds from the carboxyl of one molecule to the remote ketone (O2) of a neighbour (Table 4). Among hydrogen bonding catemers, the observed prevalence of subtypes, describing the relation of adjacent molecules, is screw > translation > glide, with the chains often following a cell axis(Brunskill et al., 2001). Here, the components of the chain are related by a translation along b. It is noteworthy that there are also short halogen···O1 contacts (3.056 (1) Å for the Cl and 3.020 (4) Å for the Br derivative) which connect the H bonded catemers.

Experimental top

(R)-limonene oxide 1 was treated, in phase transfer catalysis conditions, with dichloro (or dibromo) carbene (Tobey et al., 1964) generated in situ from the reaction of chloroform (or bromoform) with sodium hydroxide (Scheme 1). The resulting product was oxidized under Sharpless conditions (Carlson et al., 1981) leading to a diastereoisomeric mixture of 3-(2',2'-dihalo-1'-methylcyclopropyl)-6-oxo-heptanoic acid. Crystals of 2 and 3 were obtained from the corresponding mixture by fractional crystallization from chloroform.

Refinement top

The crystal of 3 was found to be twinned. However the two domains could be indexed and the two orientation matrices were used in the integration process (Stoe,1996) to produce a set of non-overlapped reflections for each domain. Only the data from the domain with the strongest intensities were retained. As the results were satisfactory, no search for untwinned crystal was undertaken.

In both compounds, all H atoms were introduced at calculated positions as riding atoms (C—H= 0.97–0.98 Å, OH= 0.82 Å), using AFIX 37 for CH3 and AFIX 87 for hydroxyl groups, with a displacement parameter equal to 1.2 (CH, CH2) or 1.5(CH3,OH) times that of the parent atom. On the basis of 2006 and 1972 Friedel pairs for compounds 2 and 3 respectively, final refinement allowed the fraction contribution of the inverted enantiomer to vary (Bernardinelli & Flack, 1985; Flack, 1983), the absolute structure parameter quoted being the refined value of this contribution.

Computing details top

For both compounds, data collection: IPDS Software (Stoe, 1996); cell refinement: IPDS Software (Stoe, 1996); data reduction: X-RED (Stoe, 1.08, 1996); program(s) used to solve structure: SIR97 (Altomare, et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: ORTEPIII( Burnett and Johnson,1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of molecule 2 (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Part of the structure of 2 showing the formation of the chain parallel to b axes. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted. Symmetry codes: (i) x, y - 1,z; (ii) x, y + 1, z.
(2) top
Crystal data top
C11H16Cl2O3F(000) = 560
Mr = 267.14Dx = 1.414 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 7.2419 (5) Åθ = 2.3–26.0°
b = 9.7619 (8) ŵ = 0.51 mm1
c = 17.7469 (16) ÅT = 180 K
V = 1254.61 (18) Å3Parallelepiped, colorless
Z = 40.42 × 0.40 × 0.13 mm
Data collection top
Stoe IPDS
diffractometer
2207 reflections with I > 2σ(I)
ϕ scansRint = 0.034
Absorption correction: multi-scan
SORTAV, Blessing (1995)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.788, Tmax = 0.913h = 88
9901 measured reflectionsk = 1212
2418 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.0454P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2418 reflectionsΔρmax = 0.22 e Å3
148 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (5)
Crystal data top
C11H16Cl2O3V = 1254.61 (18) Å3
Mr = 267.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2419 (5) ŵ = 0.51 mm1
b = 9.7619 (8) ÅT = 180 K
c = 17.7469 (16) Å0.42 × 0.40 × 0.13 mm
Data collection top
Stoe IPDS
diffractometer
2418 independent reflections
Absorption correction: multi-scan
SORTAV, Blessing (1995)
2207 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.913Rint = 0.034
9901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.24 e Å3
2418 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
148 parametersAbsolute structure parameter: 0.00 (5)
0 restraints
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS) equipped with an Oxford Cryosystems cooler device. The crystal-to-detector distance was 70 mm. 143 frames (3 min per frame) were obtained with 0 < ϕ < 200.2° and with the crystals rotated through 1.4° in ϕ.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35355 (6)0.88785 (5)0.40672 (3)0.03284 (12)
Cl20.29567 (7)0.85649 (5)0.24692 (3)0.04162 (14)
O10.75687 (18)0.50736 (11)0.43588 (7)0.0284 (3)
O21.02114 (19)0.46852 (12)0.37546 (8)0.0309 (3)
H21.00030.38930.38830.046*
O30.9563 (2)1.20229 (11)0.39783 (7)0.0312 (3)
C10.7519 (2)0.78833 (14)0.38088 (9)0.0193 (3)
H10.68510.77350.42820.023*
C20.6208 (2)0.75365 (15)0.31616 (9)0.0209 (3)
C30.4663 (3)0.65102 (17)0.33088 (9)0.0253 (4)
H3A0.42890.59200.28960.030*
H3B0.46010.60920.38040.030*
C40.4233 (3)0.79866 (17)0.32490 (9)0.0244 (4)
C110.8099 (2)0.94040 (15)0.37805 (9)0.0205 (3)
H11A0.91470.95030.34440.025*
H11B0.70900.99430.35770.025*
C120.8612 (3)0.99546 (16)0.45525 (9)0.0230 (3)
H12A0.75610.98430.48860.028*
H12B0.96140.94050.47530.028*
C130.9190 (2)1.14322 (16)0.45630 (9)0.0215 (3)
C140.9290 (3)1.21279 (17)0.53099 (10)0.0289 (4)
H14A0.95081.30890.52370.043*
H14B1.02811.17410.56000.043*
H14C0.81461.20010.55740.043*
C160.9230 (3)0.69706 (15)0.38193 (10)0.0250 (4)
H16A0.98180.70180.33290.030*
H16B1.00940.73360.41850.030*
C170.8874 (2)0.54926 (15)0.40043 (9)0.0211 (3)
C210.7050 (3)0.7567 (2)0.23829 (10)0.0353 (4)
H21A0.80640.69340.23610.053*
H21B0.74880.84740.22750.053*
H21C0.61350.73120.20180.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0219 (2)0.0366 (2)0.0401 (2)0.00046 (18)0.00227 (18)0.01009 (19)
Cl20.0409 (3)0.0428 (3)0.0411 (3)0.0065 (2)0.0194 (2)0.0139 (2)
O10.0276 (8)0.0197 (5)0.0379 (7)0.0034 (5)0.0046 (5)0.0052 (5)
O20.0324 (8)0.0154 (5)0.0450 (7)0.0020 (5)0.0078 (6)0.0020 (5)
O30.0442 (8)0.0163 (5)0.0332 (7)0.0041 (5)0.0025 (6)0.0000 (5)
C10.0196 (9)0.0158 (7)0.0224 (7)0.0032 (6)0.0010 (6)0.0018 (6)
C20.0238 (10)0.0154 (7)0.0234 (8)0.0038 (6)0.0006 (7)0.0003 (6)
C30.0281 (11)0.0215 (8)0.0262 (8)0.0074 (7)0.0027 (7)0.0003 (7)
C40.0251 (10)0.0238 (8)0.0244 (8)0.0043 (7)0.0042 (7)0.0009 (6)
C110.0211 (9)0.0143 (6)0.0259 (7)0.0018 (6)0.0008 (7)0.0009 (6)
C120.0257 (10)0.0172 (7)0.0260 (8)0.0018 (7)0.0005 (7)0.0011 (6)
C130.0167 (9)0.0188 (8)0.0292 (8)0.0034 (6)0.0009 (6)0.0007 (6)
C140.0299 (10)0.0227 (8)0.0341 (9)0.0020 (7)0.0046 (8)0.0053 (7)
C160.0204 (9)0.0157 (7)0.0389 (9)0.0027 (7)0.0021 (7)0.0030 (7)
C170.0235 (10)0.0151 (7)0.0246 (8)0.0017 (6)0.0060 (7)0.0004 (6)
C210.0426 (12)0.0364 (9)0.0270 (9)0.0079 (8)0.0089 (9)0.0041 (7)
Geometric parameters (Å, º) top
Cl1—C41.7668 (17)C11—C121.518 (2)
Cl2—C41.7572 (17)C11—H11A0.9700
O1—C171.207 (2)C11—H11B0.9700
O2—C171.325 (2)C12—C131.502 (2)
O2—H20.8200C12—H12A0.9700
O3—C131.2175 (19)C12—H12B0.9700
C1—C161.526 (2)C13—C141.491 (2)
C1—C21.528 (2)C14—H14A0.9600
C1—C111.5436 (19)C14—H14B0.9600
C1—H10.9800C14—H14C0.9600
C2—C41.505 (3)C16—C171.502 (2)
C2—C211.511 (2)C16—H16A0.9700
C2—C31.524 (2)C16—H16B0.9700
C3—C41.478 (2)C21—H21A0.9600
C3—H3A0.9700C21—H21B0.9600
C3—H3B0.9700C21—H21C0.9600
C17—O2—H2109.5C13—C12—C11114.80 (13)
C16—C1—C2112.60 (13)C13—C12—H12A108.6
C16—C1—C11109.92 (13)C11—C12—H12A108.6
C2—C1—C11110.96 (13)C13—C12—H12B108.6
C16—C1—H1107.7C11—C12—H12B108.6
C2—C1—H1107.7H12A—C12—H12B107.5
C11—C1—H1107.7O3—C13—C14122.08 (14)
C4—C2—C21118.20 (15)O3—C13—C12120.41 (13)
C4—C2—C358.42 (11)C14—C13—C12117.51 (14)
C21—C2—C3117.78 (14)C13—C14—H14A109.5
C4—C2—C1116.65 (14)C13—C14—H14B109.5
C21—C2—C1115.61 (16)H14A—C14—H14B109.5
C3—C2—C1118.21 (13)C13—C14—H14C109.5
C4—C3—C260.11 (12)H14A—C14—H14C109.5
C4—C3—H3A117.8H14B—C14—H14C109.5
C2—C3—H3A117.8C17—C16—C1115.08 (15)
C4—C3—H3B117.8C17—C16—H16A108.5
C2—C3—H3B117.8C1—C16—H16A108.5
H3A—C3—H3B114.9C17—C16—H16B108.5
C3—C4—C261.46 (11)C1—C16—H16B108.5
C3—C4—Cl2118.73 (12)H16A—C16—H16B107.5
C2—C4—Cl2120.84 (13)O1—C17—O2123.05 (14)
C3—C4—Cl1118.80 (12)O1—C17—C16125.03 (15)
C2—C4—Cl1120.02 (12)O2—C17—C16111.88 (15)
Cl2—C4—Cl1109.80 (10)C2—C21—H21A109.5
C12—C11—C1112.20 (13)C2—C21—H21B109.5
C12—C11—H11A109.2H21A—C21—H21B109.5
C1—C11—H11A109.2C2—C21—H21C109.5
C12—C11—H11B109.2H21A—C21—H21C109.5
C1—C11—H11B109.2H21B—C21—H21C109.5
H11A—C11—H11B107.9
C16—C1—C2—C4158.71 (14)C1—C2—C4—Cl2143.58 (12)
C11—C1—C2—C477.61 (17)C21—C2—C4—Cl1144.47 (14)
C16—C1—C2—C2155.52 (18)C3—C2—C4—Cl1108.60 (15)
C11—C1—C2—C2168.17 (19)C1—C2—C4—Cl10.4 (2)
C16—C1—C2—C392.01 (17)C16—C1—C11—C1281.29 (17)
C11—C1—C2—C3144.30 (14)C2—C1—C11—C12153.51 (15)
C21—C2—C3—C4107.65 (17)C1—C11—C12—C13179.97 (15)
C1—C2—C3—C4105.53 (16)C11—C12—C13—O314.1 (2)
C2—C3—C4—Cl2111.55 (16)C11—C12—C13—C14166.17 (16)
C2—C3—C4—Cl1110.55 (15)C2—C1—C16—C1767.65 (18)
C21—C2—C4—C3106.93 (16)C11—C1—C16—C17168.09 (14)
C1—C2—C4—C3108.20 (15)C1—C16—C17—O124.4 (2)
C21—C2—C4—Cl21.3 (2)C1—C16—C17—O2157.88 (14)
C3—C2—C4—Cl2108.21 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.671 (2)169
C3—H3B···O10.982.563.141 (2)118
C1—H1···Cl10.982.673.078 (2)105
Symmetry code: (i) x, y1, z.
(3) top
Crystal data top
C11H16Br2O3F(000) = 704
Mr = 356.06Dx = 1.819 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 7.4006 (5) Åθ = 2.3–26.0°
b = 9.7511 (10) ŵ = 6.23 mm1
c = 18.0171 (13) ÅT = 180 K
V = 1300.19 (19) Å3Parallelepiped, colorless
Z = 40.3 × 0.28 × 0.18 mm
Data collection top
Stoe IPDS
diffractometer
2070 reflections with I > 2σ(I)
ϕ scansRint = 0.074
Absorption correction: multi-scan
SORTAV, Blessing (1995)
θmax = 26.1°, θmin = 2.3°
Tmin = 0.162, Tmax = 0.348h = 88
9311 measured reflectionsk = 1111
2376 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1506P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.016
2376 reflectionsΔρmax = 0.51 e Å3
148 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
C11H16Br2O3V = 1300.19 (19) Å3
Mr = 356.06Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4006 (5) ŵ = 6.23 mm1
b = 9.7511 (10) ÅT = 180 K
c = 18.0171 (13) Å0.3 × 0.28 × 0.18 mm
Data collection top
Stoe IPDS
diffractometer
2376 independent reflections
Absorption correction: multi-scan
SORTAV, Blessing (1995)
2070 reflections with I > 2σ(I)
Tmin = 0.162, Tmax = 0.348Rint = 0.074
9311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.51 e Å3
S = 1.09Δρmin = 0.56 e Å3
2376 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
148 parametersAbsolute structure parameter: 0.03 (2)
0 restraints
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS) equipped with an Oxford Cryosystems cooler device. The crystal-to-detector distance was 70 mm. 143 frames (4 min per frame) were obtained with 0 < ϕ < 200.2° and with the crystals rotated through 1.4° in ϕ.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35714 (9)0.88593 (6)0.41179 (3)0.03788 (17)
Br20.29276 (10)0.83970 (7)0.24107 (3)0.0465 (2)
O10.7668 (6)0.4995 (4)0.4370 (2)0.0347 (10)
O21.0233 (7)0.4611 (4)0.3769 (3)0.0399 (10)
H21.00290.38180.38960.060*
O30.9632 (7)1.1939 (4)0.4001 (2)0.0405 (11)
C10.7587 (8)0.7810 (5)0.3802 (3)0.0270 (12)
H10.69280.76640.42670.032*
C20.6291 (9)0.7452 (5)0.3164 (3)0.0263 (11)
C30.4830 (8)0.6403 (5)0.3326 (3)0.0304 (12)
H3A0.44730.57920.29270.036*
H3B0.47990.60000.38180.036*
C40.4359 (9)0.7880 (6)0.3254 (3)0.0339 (13)
C110.8158 (8)0.9331 (5)0.3781 (3)0.0282 (13)
H11A0.92060.94290.34630.034*
H11B0.71850.98710.35690.034*
C120.8607 (10)0.9880 (5)0.4550 (3)0.0336 (13)
H12A0.75470.97810.48620.040*
H12B0.95550.93150.47610.040*
C130.9207 (8)1.1353 (5)0.4574 (3)0.0316 (13)
C140.9257 (10)1.2040 (6)0.5312 (3)0.0388 (15)
H14A0.93401.30140.52450.058*
H14B1.02891.17220.55860.058*
H14C0.81751.18250.55820.058*
C160.9263 (9)0.6900 (5)0.3825 (3)0.0321 (13)
H16A0.98500.69420.33440.039*
H16B1.00960.72760.41870.039*
C170.8928 (8)0.5417 (5)0.4014 (3)0.0293 (13)
C210.7122 (10)0.7487 (6)0.2392 (3)0.0428 (15)
H21A0.81160.68560.23700.064*
H21B0.75470.83970.22880.064*
H21C0.62270.72310.20320.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0343 (3)0.0354 (3)0.0439 (3)0.0003 (2)0.0014 (3)0.0071 (2)
Br20.0482 (4)0.0462 (4)0.0450 (4)0.0071 (3)0.0144 (3)0.0133 (3)
O10.038 (3)0.0238 (19)0.042 (2)0.0044 (17)0.0003 (18)0.0040 (15)
O20.041 (3)0.0186 (19)0.061 (3)0.0012 (18)0.008 (2)0.0009 (17)
O30.061 (3)0.021 (2)0.039 (2)0.0048 (18)0.004 (2)0.0004 (15)
C10.031 (4)0.016 (2)0.034 (3)0.002 (2)0.000 (2)0.0023 (18)
C20.033 (3)0.018 (2)0.028 (3)0.000 (2)0.001 (2)0.0009 (17)
C30.035 (4)0.021 (3)0.035 (3)0.007 (2)0.002 (2)0.000 (2)
C40.040 (4)0.025 (3)0.036 (3)0.008 (2)0.003 (2)0.002 (2)
C110.032 (4)0.018 (2)0.035 (3)0.003 (2)0.002 (2)0.0010 (18)
C120.041 (4)0.024 (3)0.035 (3)0.001 (3)0.000 (3)0.001 (2)
C130.033 (4)0.024 (3)0.038 (3)0.002 (2)0.001 (2)0.000 (2)
C140.040 (4)0.033 (3)0.043 (3)0.002 (3)0.005 (3)0.008 (2)
C160.038 (4)0.019 (3)0.040 (3)0.000 (2)0.003 (2)0.001 (2)
C170.033 (4)0.020 (3)0.035 (3)0.001 (2)0.005 (2)0.001 (2)
C210.054 (4)0.041 (3)0.033 (3)0.001 (3)0.008 (3)0.002 (2)
Geometric parameters (Å, º) top
Br1—C41.917 (6)C11—C121.521 (7)
Br2—C41.919 (6)C11—H11A0.9700
O1—C171.204 (7)C11—H11B0.9700
O2—C171.321 (7)C12—C131.504 (8)
O2—H20.8200C12—H12A0.9700
O3—C131.220 (7)C12—H12B0.9700
C1—C161.525 (8)C13—C141.490 (8)
C1—C21.537 (8)C14—H14A0.9600
C1—C111.543 (7)C14—H14B0.9600
C1—H10.9800C14—H14C0.9600
C2—C41.499 (9)C16—C171.506 (7)
C2—C31.517 (8)C16—H16A0.9700
C2—C211.520 (8)C16—H16B0.9700
C3—C41.488 (8)C21—H21A0.9600
C3—H3A0.9700C21—H21B0.9600
C3—H3B0.9700C21—H21C0.9600
C17—O2—H2109.5C13—C12—C11115.3 (4)
C16—C1—C2113.3 (4)C13—C12—H12A108.5
C16—C1—C11109.7 (5)C11—C12—H12A108.5
C2—C1—C11111.8 (4)C13—C12—H12B108.5
C16—C1—H1107.3C11—C12—H12B108.5
C2—C1—H1107.3H12A—C12—H12B107.5
C11—C1—H1107.3O3—C13—C14122.6 (5)
C4—C2—C359.1 (4)O3—C13—C12119.9 (5)
C4—C2—C21118.6 (5)C14—C13—C12117.5 (5)
C3—C2—C21118.7 (5)C13—C14—H14A109.5
C4—C2—C1116.8 (5)C13—C14—H14B109.5
C3—C2—C1117.0 (4)H14A—C14—H14B109.5
C21—C2—C1115.3 (6)C13—C14—H14C109.5
C4—C3—C259.9 (4)H14A—C14—H14C109.5
C4—C3—H3A117.8H14B—C14—H14C109.5
C2—C3—H3A117.8C17—C16—C1115.5 (5)
C4—C3—H3B117.8C17—C16—H16A108.4
C2—C3—H3B117.8C1—C16—H16A108.4
H3A—C3—H3B114.9C17—C16—H16B108.4
C3—C4—C261.0 (4)C1—C16—H16B108.4
C3—C4—Br1118.9 (4)H16A—C16—H16B107.5
C2—C4—Br1121.1 (4)O1—C17—O2122.7 (5)
C3—C4—Br2116.9 (4)O1—C17—C16125.1 (5)
C2—C4—Br2121.0 (4)O2—C17—C16112.1 (5)
Br1—C4—Br2110.1 (3)C2—C21—H21A109.5
C12—C11—C1112.1 (4)C2—C21—H21B109.5
C12—C11—H11A109.2H21A—C21—H21B109.5
C1—C11—H11A109.2C2—C21—H21C109.5
C12—C11—H11B109.2H21A—C21—H21C109.5
C1—C11—H11B109.2H21B—C21—H21C109.5
H11A—C11—H11B107.9
C16—C1—C2—C4157.4 (5)C1—C2—C4—Br11.2 (6)
C11—C1—C2—C478.1 (6)C3—C2—C4—Br2105.8 (5)
C16—C1—C2—C390.2 (6)C21—C2—C4—Br22.3 (7)
C11—C1—C2—C3145.2 (5)C1—C2—C4—Br2147.4 (4)
C16—C1—C2—C2156.4 (6)C16—C1—C11—C1281.8 (6)
C11—C1—C2—C2168.1 (6)C2—C1—C11—C12151.7 (5)
C21—C2—C3—C4108.0 (6)C1—C11—C12—C13179.0 (6)
C1—C2—C3—C4106.6 (5)C11—C12—C13—O313.8 (9)
C2—C3—C4—Br1111.7 (5)C11—C12—C13—C14166.3 (6)
C2—C3—C4—Br2112.2 (5)C2—C1—C16—C1767.1 (6)
C21—C2—C4—C3108.1 (5)C11—C1—C16—C17167.2 (4)
C1—C2—C4—C3106.9 (5)C1—C16—C17—O125.8 (8)
C3—C2—C4—Br1108.1 (5)C1—C16—C17—O2157.0 (5)
C21—C2—C4—Br1143.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.872.676 (5)170
C3—H3B···O10.972.543.136 (7)120
C1—H1···Br10.982.763.194 (6)108
Symmetry code: (i) x, y1, z.

Experimental details

(2)(3)
Crystal data
Chemical formulaC11H16Cl2O3C11H16Br2O3
Mr267.14356.06
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)180180
a, b, c (Å)7.2419 (5), 9.7619 (8), 17.7469 (16)7.4006 (5), 9.7511 (10), 18.0171 (13)
V3)1254.61 (18)1300.19 (19)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.516.23
Crystal size (mm)0.42 × 0.40 × 0.130.3 × 0.28 × 0.18
Data collection
DiffractometerStoe IPDS
diffractometer
Stoe IPDS
diffractometer
Absorption correctionMulti-scan
SORTAV, Blessing (1995)
Multi-scan
SORTAV, Blessing (1995)
Tmin, Tmax0.788, 0.9130.162, 0.348
No. of measured, independent and
observed [I > 2σ(I)] reflections
9901, 2418, 2207 9311, 2376, 2070
Rint0.0340.074
(sin θ/λ)max1)0.6170.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04 0.037, 0.096, 1.09
No. of reflections24182376
No. of parameters148148
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.240.51, 0.56
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.00 (5)0.03 (2)

Computer programs: IPDS Software (Stoe, 1996), X-RED (Stoe, 1.08, 1996), SIR97 (Altomare, et al.,1999), SHELXL97 (Sheldrick, 1998), ORTEPIII( Burnett and Johnson,1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (2) top
Cl1—C41.7668 (17)C1—C21.528 (2)
Cl2—C41.7572 (17)C2—C41.505 (3)
O1—C171.207 (2)C2—C211.511 (2)
O2—C171.325 (2)C2—C31.524 (2)
O3—C131.2175 (19)C3—C41.478 (2)
C4—C2—C21118.20 (15)C3—C4—Cl2118.73 (12)
C4—C2—C358.42 (11)C2—C4—Cl2120.84 (13)
C21—C2—C3117.78 (14)C3—C4—Cl1118.80 (12)
C4—C2—C1116.65 (14)C2—C4—Cl1120.02 (12)
C21—C2—C1115.61 (16)Cl2—C4—Cl1109.80 (10)
C3—C2—C1118.21 (13)O1—C17—O2123.05 (14)
C4—C3—C260.11 (12)O1—C17—C16125.03 (15)
C3—C4—C261.46 (11)O2—C17—C16111.88 (15)
C16—C1—C11—C1281.29 (17)C2—C1—C16—C1767.65 (18)
C2—C1—C11—C12153.51 (15)C11—C1—C16—C17168.09 (14)
C1—C11—C12—C13179.97 (15)C1—C16—C17—O124.4 (2)
C11—C12—C13—O314.1 (2)C1—C16—C17—O2157.88 (14)
C11—C12—C13—C14166.17 (16)
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.862.671 (2)169
C3—H3B···O10.982.563.141 (2)118.0
C1—H1···Cl10.982.673.078 (2)105.0
Symmetry code: (i) x, y1, z.
Selected geometric parameters (Å, º) for (3) top
Br1—C41.917 (6)C1—C21.537 (8)
Br2—C41.919 (6)C2—C41.499 (9)
O1—C171.204 (7)C2—C31.517 (8)
O2—C171.321 (7)C2—C211.520 (8)
O3—C131.220 (7)C3—C41.488 (8)
C4—C2—C359.1 (4)C3—C4—Br1118.9 (4)
C4—C2—C21118.6 (5)C2—C4—Br1121.1 (4)
C3—C2—C21118.7 (5)C3—C4—Br2116.9 (4)
C4—C2—C1116.8 (5)C2—C4—Br2121.0 (4)
C3—C2—C1117.0 (4)Br1—C4—Br2110.1 (3)
C21—C2—C1115.3 (6)O1—C17—O2122.7 (5)
C4—C3—C259.9 (4)O1—C17—C16125.1 (5)
C3—C4—C261.0 (4)O2—C17—C16112.1 (5)
C16—C1—C11—C1281.8 (6)C2—C1—C16—C1767.1 (6)
C2—C1—C11—C12151.7 (5)C11—C1—C16—C17167.2 (4)
C1—C11—C12—C13179.0 (6)C1—C16—C17—O125.8 (8)
C11—C12—C13—O313.8 (9)C1—C16—C17—O2157.0 (5)
C11—C12—C13—C14166.3 (6)
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.872.676 (5)169.5
C3—H3B···O10.972.543.136 (7)119.6
C1—H1···Br10.982.763.194 (6)107.6
Symmetry code: (i) x, y1, z.
Comparison of C-C distances in some related dihalogenocyclopropanes top
CompoundXR1R2C2-C3(Å)C2-C4(Å)C3-C4(Å)
C11H16Cl2O3aClMeC7H11O31.524 (2)1.505 (3)1.478 (2)
C11H16Br2O3aBrMeC7H11O31.517 (8)1.499 (9)1.488 (8)
C12H14Cl4ObClMeC8H9Cl2O1.5141.4881.464
C12H14Cl4ObClMeC8H9Cl2O1.4921.5161.459
C15H10Cl4cClC6H4ClC6H4Cl1.4841.4721.473
ClC6H4ClC6H4Cl1.5171.5431.546
C15H12Cl2dClPhPh1.5291.5201.490
C15H12Br2dBrPhPh1.5081.5091.477
C13H16Cl4eClCO2C6H4OEt1.5191.5171.486
C5H6Cl2O2fClMeCO21.5231.5231.481
ClMeCO21.5201.5201.483
C5H6Br2O2fBrMeCO21.5181.5191.497
C5H6Cl2O2fClMeCH2CO21.5311.5091.497
C18H14Cl4gClPhC3H2PhCl21.5201.5051.472
ClPhC3H2PhCl21.5251.5081.472
ClPhC3H2PhCl21.5271.5351.469
ClPhC3H2PhCl21.5161.5331.477
C18H14Cl4gClPhC3H2PhCl21.5181.5161.476
ClPhC3H2PhCl21.5271.5401.475
C18H14Br4gBrPhC3H2PhBr21.5441.5141.488
BrPhC3H2PhBr21.5281.5371.484
C11H10Cl2O2hClPhCH2CO21.5181.5151.489
C11H10Br2O2hBrPhCH2CO21.5181.4951.487
C10H9BrCl2hClPhCH2Br1.5081.5071.493
C17H13Cl2NO4hClPhCO2CPhNO21.5201.5121.483
C5H7Br2NOiBrCH3CONH21.5291.5091.508
BrCH3CONH21.5321.4931.490
C12H13Cl2OjClCH3CHOC6H4Me1.5291.5081.497
ClCH3CHOC6H4Me1.5341.5091.489
References: a) This study; b) Zukerman-Schpector et al. (1984); c) DeLacy & Kennard (1972); d) Lauher & Ibers (1975); e) Poppleton (1986); f) Romming & Sydnes (1987); g) Lam et al. (1997); h) Sydnes et al. (1991); i) Baird et al. (1999); j) Tanabe et al. (1999)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds