Download citation
Download citation
link to html
The title compound, (η5-cyclo­penta­dienyl)[(1,2,3,4,5-η)-4-ferro­cenyl-1,2,5,6-tetrakis­(tri­methyl­silyl)­cyclo­hexa-2,4-dien-1-yl]­titanium(II), [TiFe(C5H5)2(C23H42Si4)] or [Ti{η5-C6H2{Fe­(η5-C5H4)(η5-C5H5)}{Si(CH3)3}4}(η5-C5H5)], possesses two directly linked metallocene units that subtend an angle of 52.9 (1)° (defined by the least-squares planes of the directly connected π-ligands) associated with the steric requirements of the bulky tri­methyl­silyl substituents. The cyclo­hexa­dienyl ligand adopts an envelope conformation; the perpendicular distance of its η5-plane to the Ti atom is 1.512 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100010167/jz1420sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100010167/jz1420Isup2.hkl
Contains datablock I

CCDC reference: 152597

Comment top

Multinuclear organometallic compounds having two or more metallic centres bonded by hydrocarbon ligands often exhibit interesting properties that arise from interactions of the metals. As the properties of such complexes change dramatically with the nature of the bridging ligand(s), any structural information is of importance since it provides a possibility of its comparison with indirect, e.g. spectral and electrochemical, data. There are numerous reports on the structures of such compounds available in the literature, including some titanocene–ferrocene complexes (Zakharov et al., 1979; Back et al., 1998; Štěpnička, Gyepes, Císařová, Varga et al., 1999; Štěpnička, Gyepes, Císařová, Kubišta et al., 1999). However, to the best of our knowledge, the title compound, (η5-cyclopentadienyl)[(1,2,3,4,5-η)-4-ferrocenyl-1,2,5,6-tetrakis(trimethyl- silyl)cyclohexa-2,4-dien-1-yl]titanium(II), (I), is the first example of a structurally characterized directly linked metallocene–pseudometallocene complex.

The molecular structure of the complex is depicted in Fig. 1 and selected geometric parameters are given in Table 1. The metallocene units are rotated by 52.9 (1)°, defined by the dihedral angle of the C1–C5 and C12–C16 least-squares ring planes. The ferrocenyl moiety is inclined towards the unsubstituted C3 atom. Such a deviation of the directly linked π-ligands from a coplanar arrangement is probably a result of steric constraints imposed by the bulky trimethylsilyl groups and prevents conjugation of the metallocene units. The Ti···Fe distance of 5.1562 (2) Å also excludes any direct interaction between the metal centres.

The ferrocene framework does not exhibit unexpected features: the Fe–centroid distances are 1.651 (1) (ring C12–C16) and 1.653 (1) Å (ring C17–C21), and the mean Fe—C and C—C distances are 2.047 (9) and 1.42 (1) Å, respectively. Ferrocene cyclopentadienyls are nearly parallel [dihedral angle of the least-squares cyclopentadienyl planes 1.7 (2)°] and adopt a conformation between staggered and eclipsed, as demonstrated by the torsion angle C12—Cg(C12–C16)—Cg(C17–C21)—C17 10.6 (2)°, where Cg represents a ring centroid.

Similarly, the η5-ligand planes within the pseudotitanocene moiety are tilted only slightly [dihedral angle 2.9 (2)°]. The mean Ti—CCp and C—CCp distances are 2.36 (2) and 1.406 (6) Å, respectively, while the corresponding Ti–centroid distance is 2.032 (1) Å. For the cyclohexadienyl ligand, the perpendicular distance of the Ti atom from the least-squares C1–C5 plane is 1.512 (1) Å, with the respective Ti—C distances varying in the range 2.064 (2)–2.230 (2) Å [cf. Ti—C6 2.412 (2) Å]. The η5-cyclohexadienyl moiety is slipped by as much as 0.51 Å, the corresponding angle between the Ti—Cp vector and the normal from the Ti atom to the least-squares plane being 19° (note that the pseudotitanocene cyclopentadienyl is slipped by only ca 0.06 Å).

The conformation of the cyclohexadienyl ring is best described as a regular envelope, with ring-puckering coordinates Q = 0.465 (3) Å, θ = 59.9 (2)° and φ = 299.1 (4)° (Cremer & Pople, 1975). All π-coordinated C atoms of the dienyl moiety (C1–C5) are sp2 hybridized, nearly coplanar (sum of angles close to 360°) and their bonding distances are in the range 1.428 (3)–1.485 (3) Å. The sp3-hybridized C6 atom is disposed above the η5-plane by 0.643 (3) Å and its adjacent Si4 atom is bonded to the dienyl ring in an axial position (contrary to the structure predicted earlier by ZINDO calculations). The other atoms bonded to the plane of the π-donor are bent towards the Ti centre, their perpendicular distances from the least-squares plane being between 0.001 (3) for Si2 and 0.285 (4) Å for Si3.

The overall arrangement of the pseudotitanocene unit resembles the structure of an analogous compound bearing a trimethylsilyl substituent in place of the ferrocenyl group: cf. Ti—Cp 2.047 (9) Å, dihedral angle of the ligand planes 4.9° and cyclohexadienyl C5-ring slippage of 0.51 Å (or 19°) but a slightly longer Ti—Cp distance of 1.582 (4) Å (Varga et al., 1996).

The molecule of the title complex displays planar chirality, but the compound crystallizes as a racemic mixture. No intermolecular distances shorter than van der Waals contacts were detected.

Experimental top

The complex was obtained as the only pseudotitanocene compound via a cyclohexadienyl ring-forming reaction from [(η5-C5H5)Ti(µ-η5:η5-Me3SiC CSiMe3)2Mg(η5-C5H5)] and ethynylferrocene as described previously by Štěpnička, Podlaha et al. (1999). Extremely air-sensitive brown prismatic crystals suitable for X-ray analysis were obtained by very slow evaporation of a hexane solution on a vacuum line. The selected crystal was inserted into a Lindemann glass capillary under a nitrogen atmosphere, fixed with wax and sealed (in a glove box).

Refinement top

The H atoms except H3 and H6, which were identified on difference electron-density maps and refined isotropically, were refined in fixed positions with C—H 0.96 (methyl) and 0.93 Å (aromatic) and assigned Uiso(H) = 1.2Ueq(C).

Structure description top

Multinuclear organometallic compounds having two or more metallic centres bonded by hydrocarbon ligands often exhibit interesting properties that arise from interactions of the metals. As the properties of such complexes change dramatically with the nature of the bridging ligand(s), any structural information is of importance since it provides a possibility of its comparison with indirect, e.g. spectral and electrochemical, data. There are numerous reports on the structures of such compounds available in the literature, including some titanocene–ferrocene complexes (Zakharov et al., 1979; Back et al., 1998; Štěpnička, Gyepes, Císařová, Varga et al., 1999; Štěpnička, Gyepes, Císařová, Kubišta et al., 1999). However, to the best of our knowledge, the title compound, (η5-cyclopentadienyl)[(1,2,3,4,5-η)-4-ferrocenyl-1,2,5,6-tetrakis(trimethyl- silyl)cyclohexa-2,4-dien-1-yl]titanium(II), (I), is the first example of a structurally characterized directly linked metallocene–pseudometallocene complex.

The molecular structure of the complex is depicted in Fig. 1 and selected geometric parameters are given in Table 1. The metallocene units are rotated by 52.9 (1)°, defined by the dihedral angle of the C1–C5 and C12–C16 least-squares ring planes. The ferrocenyl moiety is inclined towards the unsubstituted C3 atom. Such a deviation of the directly linked π-ligands from a coplanar arrangement is probably a result of steric constraints imposed by the bulky trimethylsilyl groups and prevents conjugation of the metallocene units. The Ti···Fe distance of 5.1562 (2) Å also excludes any direct interaction between the metal centres.

The ferrocene framework does not exhibit unexpected features: the Fe–centroid distances are 1.651 (1) (ring C12–C16) and 1.653 (1) Å (ring C17–C21), and the mean Fe—C and C—C distances are 2.047 (9) and 1.42 (1) Å, respectively. Ferrocene cyclopentadienyls are nearly parallel [dihedral angle of the least-squares cyclopentadienyl planes 1.7 (2)°] and adopt a conformation between staggered and eclipsed, as demonstrated by the torsion angle C12—Cg(C12–C16)—Cg(C17–C21)—C17 10.6 (2)°, where Cg represents a ring centroid.

Similarly, the η5-ligand planes within the pseudotitanocene moiety are tilted only slightly [dihedral angle 2.9 (2)°]. The mean Ti—CCp and C—CCp distances are 2.36 (2) and 1.406 (6) Å, respectively, while the corresponding Ti–centroid distance is 2.032 (1) Å. For the cyclohexadienyl ligand, the perpendicular distance of the Ti atom from the least-squares C1–C5 plane is 1.512 (1) Å, with the respective Ti—C distances varying in the range 2.064 (2)–2.230 (2) Å [cf. Ti—C6 2.412 (2) Å]. The η5-cyclohexadienyl moiety is slipped by as much as 0.51 Å, the corresponding angle between the Ti—Cp vector and the normal from the Ti atom to the least-squares plane being 19° (note that the pseudotitanocene cyclopentadienyl is slipped by only ca 0.06 Å).

The conformation of the cyclohexadienyl ring is best described as a regular envelope, with ring-puckering coordinates Q = 0.465 (3) Å, θ = 59.9 (2)° and φ = 299.1 (4)° (Cremer & Pople, 1975). All π-coordinated C atoms of the dienyl moiety (C1–C5) are sp2 hybridized, nearly coplanar (sum of angles close to 360°) and their bonding distances are in the range 1.428 (3)–1.485 (3) Å. The sp3-hybridized C6 atom is disposed above the η5-plane by 0.643 (3) Å and its adjacent Si4 atom is bonded to the dienyl ring in an axial position (contrary to the structure predicted earlier by ZINDO calculations). The other atoms bonded to the plane of the π-donor are bent towards the Ti centre, their perpendicular distances from the least-squares plane being between 0.001 (3) for Si2 and 0.285 (4) Å for Si3.

The overall arrangement of the pseudotitanocene unit resembles the structure of an analogous compound bearing a trimethylsilyl substituent in place of the ferrocenyl group: cf. Ti—Cp 2.047 (9) Å, dihedral angle of the ligand planes 4.9° and cyclohexadienyl C5-ring slippage of 0.51 Å (or 19°) but a slightly longer Ti—Cp distance of 1.582 (4) Å (Varga et al., 1996).

The molecule of the title complex displays planar chirality, but the compound crystallizes as a racemic mixture. No intermolecular distances shorter than van der Waals contacts were detected.

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Methyl and cyclopentadienyl H atoms have been omitted for clarity.
η(1–5)–4-ferrocenyl-1,2,5,6-tetrakis(trimethylsilyl)cyclohexa-2,4-dien-1-yl- (η5-cyclopentadienyl)titanium(II) top
Crystal data top
[TiFe(C5H5)2(C23H42Si4)]Z = 2
Mr = 664.86F(000) = 708
Triclinic, P1Dx = 1.275 Mg m3
a = 10.1311 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2128 (4) ÅCell parameters from 51022 reflections
c = 14.3972 (5) Åθ = 1.0–27.5°
α = 82.423 (2)°µ = 0.81 mm1
β = 80.855 (3)°T = 150 K
γ = 82.344 (2)°Prism, dark brown
V = 1731.85 (10) Å30.33 × 0.25 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
6660 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.044
Graphite monochromatorθmax = 27.6°, θmin = 2.8°
Detector resolution: 0.110 pixels mm-1h = 013
(rotation scans: 343 images collected using ω scans, rotation per image 2°, 60 s exposure, crystal–to–detector distance 35 mm)k = 1515
66966 measured reflectionsl = 1818
7859 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0392P)2 + 2.8301P],
where P = (Fo2 + 2Fc2)/3
7859 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[TiFe(C5H5)2(C23H42Si4)]γ = 82.344 (2)°
Mr = 664.86V = 1731.85 (10) Å3
Triclinic, P1Z = 2
a = 10.1311 (3) ÅMo Kα radiation
b = 12.2128 (4) ŵ = 0.81 mm1
c = 14.3972 (5) ÅT = 150 K
α = 82.423 (2)°0.33 × 0.25 × 0.18 mm
β = 80.855 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6660 reflections with I > 2σ(I)
66966 measured reflectionsRint = 0.044
7859 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.15 e Å3
7859 reflectionsΔρmin = 0.60 e Å3
360 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 8.6061 (0.0075) x - 0.0024 (0.0170) y + 5.5153 (0.0186) z = 2.5075 (0.0089) * 0.0001 (0.0017) C7 * -0.0008 (0.0017) C8 * 0.0012 (0.0017) C9 * -0.0011 (0.0017) C10 * 0.0006 (0.0017) C11 - 2.0320 (0.0013) Ti Rms deviation of fitted atoms = 0.0009

8.3702 (0.0058) x - 0.4640 (0.0124) y - 6.0217 (0.0139) z = 0.7186 (0.0056) A ngle to previous plane (with approximate e.s.d.) = 2.91 (0.17) * 0.0099 (0.0012) C1 * -0.0277 (0.0016) C2 * 0.0351 (0.0016) C3 * -0.0229 (0.0016) C4 * 0.0056 (0.0012) C5 0.6434 (0.0033) C6 - 1.5116 (0.0013) Ti Rms deviation of fitted atoms = 0.0230

4.1158 (0.0129) x + 8.2469 (0.0127) y - 7.4538 (0.0172) z = 1.5523 (0.0034) A ngle to previous plane (with approximate e.s.d.) = 52.90 (0.11) * -0.0046 (0.0016) C12 * 0.0042 (0.0017) C13 * -0.0021 (0.0018) C14 * -0.0008 (0.0018) C15 * 0.0033 (0.0018) C16 1.6505 (0.0013) Fe Rms deviation of fitted atoms = 0.0033

4.1596 (0.0140) x + 7.9663 (0.0142) y - 7.7511 (0.0184) z = 4.7940 (0.0039) A ngle to previous plane (with approximate e.s.d.) = 1.76 (0.24) * 0.0004 (0.0018) C17 * 0.0002 (0.0018) C18 * -0.0007 (0.0019) C19 * 0.0009 (0.0020) C20 * -0.0008 (0.0019) C21 - 1.6529 (0.0013) Fe Rms deviation of fitted atoms = 0.0007

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.14511 (4)0.28230 (3)0.03723 (3)0.02379 (10)
Ti0.15141 (4)0.25389 (4)0.32259 (3)0.01988 (11)
Si10.23909 (7)0.01216 (5)0.25845 (5)0.02212 (15)
Si20.29817 (7)0.52845 (6)0.25463 (5)0.02294 (16)
Si30.39285 (7)0.29434 (6)0.45134 (5)0.02224 (15)
Si40.54741 (7)0.17441 (6)0.20397 (5)0.02360 (16)
C10.2684 (2)0.13677 (19)0.24157 (17)0.0182 (5)
C20.2206 (2)0.22693 (19)0.17436 (17)0.0182 (5)
C30.2414 (2)0.3379 (2)0.18442 (17)0.0187 (5)
C40.2923 (2)0.37379 (19)0.26202 (17)0.0191 (5)
C50.3424 (2)0.28751 (19)0.33351 (17)0.0190 (5)
C60.3818 (2)0.1719 (2)0.29128 (18)0.0199 (5)
C70.0747 (3)0.3415 (3)0.3383 (2)0.0356 (7)
H70.10270.39950.29460.043*
C80.0220 (3)0.3525 (3)0.4204 (2)0.0344 (7)
H80.00890.41900.44060.041*
C90.0078 (3)0.2452 (3)0.4671 (2)0.0354 (7)
H90.04370.22820.52360.042*
C100.0269 (3)0.1681 (2)0.4126 (2)0.0343 (7)
H100.01760.09110.42670.041*
C110.0779 (3)0.2282 (3)0.3333 (2)0.0336 (6)
H110.10850.19800.28580.040*
C120.1433 (2)0.2066 (2)0.10011 (18)0.0214 (5)
C130.0120 (3)0.2590 (2)0.08440 (19)0.0264 (6)
H130.03810.31480.11740.032*
C140.0286 (3)0.2114 (3)0.0101 (2)0.0352 (7)
H140.11000.23010.01350.042*
C150.0765 (3)0.1303 (2)0.0217 (2)0.0376 (7)
H150.07630.08660.06990.045*
C160.1827 (3)0.1275 (2)0.0332 (2)0.0286 (6)
H160.26390.08180.02660.034*
C170.2955 (3)0.3838 (2)0.0656 (2)0.0335 (6)
H170.35810.38950.02620.040*
C180.1694 (3)0.4482 (2)0.0670 (2)0.0322 (6)
H180.13440.50380.02860.039*
C190.1053 (3)0.4136 (3)0.1368 (2)0.0379 (7)
H190.02090.44250.15220.045*
C200.1917 (4)0.3277 (3)0.1790 (2)0.0438 (8)
H200.17460.29000.22710.053*
C210.3100 (3)0.3090 (3)0.1344 (2)0.0435 (8)
H210.38380.25680.14830.052*
C220.2621 (3)0.0696 (2)0.3831 (2)0.0322 (6)
H22A0.24740.14660.39330.039*
H22B0.19870.02890.42660.039*
H22C0.35190.06270.39310.039*
C230.0671 (3)0.0350 (2)0.2381 (2)0.0354 (7)
H23A0.05840.11310.24790.042*
H23B0.05440.00630.17440.042*
H23C0.00040.00290.28170.042*
C240.3647 (3)0.1026 (2)0.1832 (2)0.0393 (7)
H24A0.34330.17790.19570.047*
H24B0.45330.09970.19790.047*
H24C0.36190.07660.11760.047*
C250.1421 (3)0.6045 (2)0.3159 (2)0.0361 (7)
H25A0.06480.58790.29180.043*
H25B0.14780.68310.30440.043*
H25C0.13380.58150.38270.043*
C260.3169 (3)0.5852 (2)0.1261 (2)0.0321 (6)
H26A0.24250.56890.09850.038*
H26B0.39940.55150.09370.038*
H26C0.31840.66430.12030.038*
C270.4458 (3)0.5632 (2)0.3035 (2)0.0303 (6)
H27A0.52700.52510.27310.036*
H27B0.43610.54040.37040.036*
H27C0.45010.64200.29200.036*
C280.3690 (3)0.1573 (2)0.5252 (2)0.0342 (6)
H28A0.39440.15880.58640.041*
H28B0.42410.09850.49440.041*
H28C0.27620.14460.53230.041*
C290.5747 (3)0.3108 (2)0.4495 (2)0.0325 (6)
H29A0.59150.31350.51290.039*
H29B0.59570.37840.41120.039*
H29C0.63000.24880.42350.039*
C300.2851 (3)0.4033 (2)0.5190 (2)0.0307 (6)
H30A0.31570.40300.57890.037*
H30B0.19320.38760.52950.037*
H30C0.29140.47510.48330.037*
C310.6677 (3)0.0615 (3)0.2554 (2)0.0376 (7)
H31A0.63030.00790.26330.045*
H31B0.68300.07860.31570.045*
H31C0.75140.05600.21340.045*
C320.5340 (3)0.1444 (3)0.0821 (2)0.0353 (7)
H32A0.49650.07550.08580.042*
H32B0.62190.13880.04530.042*
H32C0.47680.20340.05270.042*
C330.6208 (3)0.3087 (2)0.1885 (2)0.0331 (6)
H33A0.63010.32840.24940.040*
H33B0.56250.36580.15790.040*
H33C0.70760.30120.15040.040*
H30.198 (3)0.397 (2)0.141 (2)0.021 (7)*
H60.399 (3)0.112 (2)0.341 (2)0.023 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02389 (19)0.02537 (19)0.0222 (2)0.00249 (14)0.00561 (15)0.00053 (15)
Ti0.0156 (2)0.0209 (2)0.0224 (2)0.00196 (16)0.00007 (17)0.00297 (17)
Si10.0231 (3)0.0164 (3)0.0273 (4)0.0030 (3)0.0055 (3)0.0012 (3)
Si20.0276 (4)0.0172 (3)0.0252 (4)0.0037 (3)0.0057 (3)0.0029 (3)
Si30.0227 (3)0.0234 (3)0.0215 (3)0.0023 (3)0.0056 (3)0.0034 (3)
Si40.0169 (3)0.0257 (4)0.0273 (4)0.0010 (3)0.0012 (3)0.0038 (3)
C10.0166 (11)0.0165 (11)0.0212 (12)0.0013 (9)0.0036 (9)0.0007 (9)
C20.0154 (11)0.0197 (11)0.0196 (12)0.0013 (9)0.0021 (9)0.0036 (9)
C30.0174 (11)0.0188 (11)0.0191 (12)0.0007 (9)0.0017 (9)0.0013 (9)
C40.0167 (11)0.0184 (11)0.0223 (12)0.0035 (9)0.0016 (9)0.0030 (9)
C50.0167 (11)0.0175 (11)0.0229 (12)0.0015 (9)0.0038 (9)0.0027 (9)
C60.0180 (11)0.0189 (11)0.0227 (12)0.0012 (9)0.0037 (9)0.0014 (10)
C70.0181 (13)0.0386 (16)0.0450 (18)0.0043 (11)0.0006 (12)0.0001 (13)
C80.0246 (14)0.0362 (15)0.0398 (17)0.0007 (11)0.0079 (12)0.0131 (13)
C90.0277 (14)0.0494 (18)0.0255 (14)0.0027 (13)0.0065 (11)0.0051 (13)
C100.0227 (13)0.0344 (15)0.0404 (17)0.0065 (11)0.0103 (12)0.0006 (13)
C110.0178 (12)0.0414 (16)0.0406 (17)0.0057 (11)0.0011 (11)0.0056 (13)
C120.0226 (12)0.0204 (11)0.0223 (12)0.0056 (9)0.0062 (10)0.0004 (10)
C130.0214 (12)0.0319 (14)0.0261 (14)0.0077 (10)0.0043 (10)0.0019 (11)
C140.0290 (14)0.0441 (17)0.0367 (16)0.0163 (13)0.0159 (12)0.0062 (13)
C150.0541 (19)0.0327 (15)0.0328 (16)0.0160 (14)0.0183 (14)0.0028 (12)
C160.0368 (15)0.0218 (12)0.0292 (14)0.0016 (11)0.0113 (12)0.0040 (11)
C170.0272 (14)0.0364 (15)0.0352 (16)0.0083 (12)0.0029 (12)0.0042 (12)
C180.0345 (15)0.0258 (13)0.0321 (15)0.0034 (11)0.0003 (12)0.0056 (11)
C190.0388 (16)0.0417 (17)0.0299 (16)0.0040 (13)0.0098 (13)0.0133 (13)
C200.059 (2)0.0508 (19)0.0208 (15)0.0106 (16)0.0022 (14)0.0012 (13)
C210.0334 (16)0.0454 (18)0.0429 (19)0.0009 (14)0.0106 (14)0.0031 (15)
C220.0337 (15)0.0275 (14)0.0346 (16)0.0082 (11)0.0071 (12)0.0069 (12)
C230.0342 (15)0.0271 (14)0.0490 (19)0.0118 (12)0.0162 (14)0.0006 (13)
C240.0475 (18)0.0229 (14)0.0454 (18)0.0006 (12)0.0014 (15)0.0076 (13)
C250.0404 (16)0.0259 (14)0.0412 (17)0.0039 (12)0.0048 (13)0.0097 (12)
C260.0442 (17)0.0223 (13)0.0319 (15)0.0106 (12)0.0107 (13)0.0019 (11)
C270.0382 (15)0.0220 (13)0.0335 (15)0.0101 (11)0.0104 (12)0.0007 (11)
C280.0443 (17)0.0334 (15)0.0244 (14)0.0037 (13)0.0090 (12)0.0029 (12)
C290.0274 (14)0.0375 (15)0.0358 (16)0.0039 (12)0.0124 (12)0.0059 (13)
C300.0335 (15)0.0324 (14)0.0279 (14)0.0028 (11)0.0048 (12)0.0097 (12)
C310.0246 (14)0.0385 (16)0.0470 (19)0.0038 (12)0.0040 (13)0.0042 (14)
C320.0280 (14)0.0452 (17)0.0312 (15)0.0054 (12)0.0049 (12)0.0090 (13)
C330.0229 (13)0.0360 (15)0.0394 (17)0.0094 (11)0.0022 (12)0.0030 (13)
Geometric parameters (Å, º) top
Fe—C212.034 (3)C12—C161.429 (4)
Fe—C202.040 (3)C12—C131.435 (4)
Fe—C152.040 (3)C13—C141.422 (4)
Fe—C162.043 (3)C13—H130.9300
Fe—C142.045 (3)C14—C151.416 (5)
Fe—C132.046 (3)C14—H140.9300
Fe—C192.048 (3)C15—C161.428 (4)
Fe—C172.048 (3)C15—H150.9300
Fe—C182.054 (3)C16—H160.9300
Fe—C122.068 (2)C17—C181.410 (4)
Ti—C12.088 (2)C17—C211.413 (5)
Ti—C22.191 (2)C17—H170.9300
Ti—C32.230 (2)C18—C191.415 (4)
Ti—C42.183 (2)C18—H180.9300
Ti—C62.412 (2)C19—C201.411 (5)
Ti—C52.064 (2)C19—H190.9300
Ti—C72.385 (3)C20—C211.425 (5)
Ti—C82.370 (3)C20—H200.9300
Ti—C92.341 (3)C21—H210.9300
Ti—C102.333 (3)C22—H22A0.9600
Ti—C112.363 (3)C22—H22B0.9600
Si1—C11.860 (2)C22—H22C0.9600
Si1—C231.874 (3)C23—H23A0.9600
Si1—C241.875 (3)C23—H23B0.9600
Si1—C221.877 (3)C23—H23C0.9600
Si2—C271.869 (3)C24—H24A0.9600
Si2—C251.877 (3)C24—H24B0.9600
Si2—C261.878 (3)C24—H24C0.9600
Si2—C41.886 (2)C25—H25A0.9600
Si3—C51.863 (3)C25—H25B0.9600
Si3—C291.875 (3)C25—H25C0.9600
Si3—C301.879 (3)C26—H26A0.9600
Si3—C281.883 (3)C26—H26B0.9600
Si4—C331.863 (3)C26—H26C0.9600
Si4—C321.868 (3)C27—H27A0.9600
Si4—C311.872 (3)C27—H27B0.9600
Si4—C61.931 (3)C27—H27C0.9600
C1—C21.452 (3)C28—H28A0.9600
C1—C61.578 (3)C28—H28B0.9600
C2—C31.428 (3)C28—H28C0.9600
C2—C121.485 (3)C29—H29A0.9600
C3—C41.442 (3)C29—H29B0.9600
C3—H31.00 (3)C29—H29C0.9600
C4—C51.471 (3)C30—H30A0.9600
C5—C61.588 (3)C30—H30B0.9600
C6—H60.97 (3)C30—H30C0.9600
C7—C111.400 (4)C31—H31A0.9600
C7—C81.400 (5)C31—H31B0.9600
C7—H70.9300C31—H31C0.9600
C8—C91.410 (4)C32—H32A0.9600
C8—H80.9300C32—H32B0.9600
C9—C101.413 (4)C32—H32C0.9600
C9—H90.9300C33—H33A0.9600
C10—C111.405 (4)C33—H33B0.9600
C10—H100.9300C33—H33C0.9600
C11—H110.9300
C21—Fe—C2040.96 (14)Ti—C6—H6109.3 (17)
C21—Fe—C15118.13 (14)C11—C7—C8108.3 (3)
C20—Fe—C15107.08 (13)C11—C7—Ti72.02 (16)
C21—Fe—C16107.18 (13)C8—C7—Ti72.28 (16)
C20—Fe—C16126.75 (13)C11—C7—H7125.8
C15—Fe—C1640.93 (11)C8—C7—H7125.8
C21—Fe—C14152.31 (14)Ti—C7—H7121.6
C20—Fe—C14118.33 (13)C7—C8—C9108.1 (3)
C15—Fe—C1440.57 (13)C7—C8—Ti73.46 (16)
C16—Fe—C1468.52 (12)C9—C8—Ti71.46 (16)
C21—Fe—C13165.30 (13)C7—C8—H8126.0
C20—Fe—C13152.82 (13)C9—C8—H8126.0
C15—Fe—C1368.38 (12)Ti—C8—H8120.9
C16—Fe—C1368.38 (11)C8—C9—C10107.6 (3)
C14—Fe—C1340.68 (11)C8—C9—Ti73.71 (16)
C21—Fe—C1968.20 (13)C10—C9—Ti72.09 (16)
C20—Fe—C1940.39 (14)C8—C9—H9126.2
C15—Fe—C19127.13 (13)C10—C9—H9126.2
C16—Fe—C19164.74 (12)Ti—C9—H9119.8
C14—Fe—C19108.37 (12)C11—C10—C9107.9 (3)
C13—Fe—C19119.71 (12)C11—C10—Ti73.79 (16)
C21—Fe—C1740.49 (14)C9—C10—Ti72.70 (16)
C20—Fe—C1768.36 (13)C11—C10—H10126.1
C15—Fe—C17152.49 (13)C9—C10—H10126.1
C16—Fe—C17118.70 (12)Ti—C10—H10119.3
C14—Fe—C17165.90 (13)C7—C11—C10108.1 (3)
C13—Fe—C17128.15 (12)C7—C11—Ti73.69 (16)
C19—Fe—C1767.95 (12)C10—C11—Ti71.40 (15)
C21—Fe—C1867.89 (13)C7—C11—H11125.9
C20—Fe—C1867.99 (13)C10—C11—H11125.9
C15—Fe—C18165.35 (12)Ti—C11—H11120.7
C16—Fe—C18153.00 (11)C16—C12—C13106.7 (2)
C14—Fe—C18128.35 (12)C16—C12—C2126.6 (2)
C13—Fe—C18109.28 (12)C13—C12—C2126.7 (2)
C19—Fe—C1840.36 (12)C16—C12—Fe68.74 (15)
C17—Fe—C1840.20 (11)C13—C12—Fe68.77 (14)
C21—Fe—C12126.84 (12)C2—C12—Fe129.45 (17)
C20—Fe—C12164.72 (13)C14—C13—C12108.7 (2)
C15—Fe—C1268.75 (11)C14—C13—Fe69.64 (16)
C16—Fe—C1240.68 (10)C12—C13—Fe70.40 (15)
C14—Fe—C1268.73 (11)C14—C13—H13125.6
C13—Fe—C1240.83 (10)C12—C13—H13125.6
C19—Fe—C12153.60 (12)Fe—C13—H13125.9
C17—Fe—C12108.13 (11)C15—C14—C13108.0 (2)
C18—Fe—C12119.64 (11)C15—C14—Fe69.53 (17)
C5—Ti—C179.35 (9)C13—C14—Fe69.68 (15)
C5—Ti—C440.40 (9)C15—C14—H14126.0
C1—Ti—C488.94 (9)C13—C14—H14126.0
C5—Ti—C289.02 (9)Fe—C14—H14126.4
C1—Ti—C239.59 (9)C14—C15—C16108.0 (3)
C4—Ti—C271.76 (9)C14—C15—Fe69.90 (16)
C5—Ti—C370.83 (9)C16—C15—Fe69.63 (16)
C1—Ti—C369.96 (9)C14—C15—H15126.0
C4—Ti—C338.11 (9)C16—C15—H15126.0
C2—Ti—C337.67 (9)Fe—C15—H15126.1
C5—Ti—C10139.98 (11)C15—C16—C12108.6 (3)
C1—Ti—C10107.67 (10)C15—C16—Fe69.44 (16)
C4—Ti—C10163.35 (10)C12—C16—Fe70.59 (14)
C2—Ti—C10121.99 (10)C15—C16—H16125.7
C3—Ti—C10149.11 (10)C12—C16—H16125.7
C5—Ti—C9113.47 (11)Fe—C16—H16125.8
C1—Ti—C9134.96 (10)C18—C17—C21108.0 (3)
C4—Ti—C9129.69 (10)C18—C17—Fe70.13 (16)
C2—Ti—C9156.57 (10)C21—C17—Fe69.22 (17)
C3—Ti—C9154.60 (10)C18—C17—H17126.0
C10—Ti—C935.21 (11)C21—C17—H17126.0
C5—Ti—C11170.73 (10)Fe—C17—H17126.2
C1—Ti—C11109.08 (10)C17—C18—C19108.3 (3)
C4—Ti—C11140.83 (10)C17—C18—Fe69.68 (16)
C2—Ti—C1199.95 (10)C19—C18—Fe69.59 (17)
C3—Ti—C11115.19 (10)C17—C18—H18125.9
C10—Ti—C1134.81 (11)C19—C18—H18125.9
C9—Ti—C1157.94 (11)Fe—C18—H18126.4
C5—Ti—C8113.84 (10)C20—C19—C18108.2 (3)
C1—Ti—C8165.11 (10)C20—C19—Fe69.49 (17)
C4—Ti—C8105.58 (10)C18—C19—Fe70.05 (16)
C2—Ti—C8141.97 (10)C20—C19—H19125.9
C3—Ti—C8119.81 (10)C18—C19—H19125.9
C10—Ti—C857.93 (10)Fe—C19—H19126.1
C9—Ti—C834.83 (11)C19—C20—C21107.6 (3)
C11—Ti—C857.32 (11)C19—C20—Fe70.13 (17)
C5—Ti—C7139.78 (10)C21—C20—Fe69.31 (18)
C1—Ti—C7137.03 (10)C19—C20—H20126.2
C4—Ti—C7110.87 (10)C21—C20—H20126.2
C2—Ti—C7109.55 (10)Fe—C20—H20125.9
C3—Ti—C7102.14 (10)C17—C21—C20108.0 (3)
C10—Ti—C757.54 (10)C17—C21—Fe70.29 (17)
C9—Ti—C757.54 (11)C20—C21—Fe69.73 (18)
C11—Ti—C734.29 (10)C17—C21—H21126.0
C8—Ti—C734.26 (11)C20—C21—H21126.0
C5—Ti—C640.64 (9)Fe—C21—H21125.6
C1—Ti—C640.25 (8)Si1—C22—H22A109.5
C4—Ti—C666.19 (8)Si1—C22—H22B109.5
C2—Ti—C665.51 (9)H22A—C22—H22B109.5
C3—Ti—C672.76 (9)Si1—C22—H22C109.5
C10—Ti—C6126.33 (9)H22A—C22—H22C109.5
C9—Ti—C6127.78 (10)H22B—C22—H22C109.5
C11—Ti—C6146.32 (10)Si1—C23—H23A109.5
C8—Ti—C6149.83 (10)Si1—C23—H23B109.5
C7—Ti—C6174.67 (10)H23A—C23—H23B109.5
C1—Si1—C23113.57 (12)Si1—C23—H23C109.5
C1—Si1—C24114.17 (13)H23A—C23—H23C109.5
C23—Si1—C24107.57 (15)H23B—C23—H23C109.5
C1—Si1—C22108.11 (12)Si1—C24—H24A109.5
C23—Si1—C22108.70 (14)Si1—C24—H24B109.5
C24—Si1—C22104.20 (14)H24A—C24—H24B109.5
C27—Si2—C25108.04 (14)Si1—C24—H24C109.5
C27—Si2—C26107.10 (13)H24A—C24—H24C109.5
C25—Si2—C26107.59 (14)H24B—C24—H24C109.5
C27—Si2—C4112.44 (12)Si2—C25—H25A109.5
C25—Si2—C4113.62 (12)Si2—C25—H25B109.5
C26—Si2—C4107.74 (12)H25A—C25—H25B109.5
C5—Si3—C29115.20 (12)Si2—C25—H25C109.5
C5—Si3—C30113.19 (12)H25A—C25—H25C109.5
C29—Si3—C30109.24 (13)H25B—C25—H25C109.5
C5—Si3—C28107.95 (12)Si2—C26—H26A109.5
C29—Si3—C28104.44 (14)Si2—C26—H26B109.5
C30—Si3—C28106.04 (13)H26A—C26—H26B109.5
C33—Si4—C32105.85 (14)Si2—C26—H26C109.5
C33—Si4—C31109.20 (14)H26A—C26—H26C109.5
C32—Si4—C31107.73 (15)H26B—C26—H26C109.5
C33—Si4—C6114.06 (12)Si2—C27—H27A109.5
C32—Si4—C6114.51 (12)Si2—C27—H27B109.5
C31—Si4—C6105.29 (13)H27A—C27—H27B109.5
C2—C1—C6110.94 (19)Si2—C27—H27C109.5
C2—C1—Si1129.70 (18)H27A—C27—H27C109.5
C6—C1—Si1118.26 (16)H27B—C27—H27C109.5
C2—C1—Ti74.04 (13)Si3—C28—H28A109.5
C6—C1—Ti80.98 (13)Si3—C28—H28B109.5
Si1—C1—Ti122.21 (12)H28A—C28—H28B109.5
C1—C2—C3118.7 (2)Si3—C28—H28C109.5
C3—C2—C12119.8 (2)H28A—C28—H28C109.5
C1—C2—C12121.3 (2)H28B—C28—H28C109.5
C3—C2—Ti72.66 (14)Si3—C29—H29A109.5
C1—C2—Ti66.37 (13)Si3—C29—H29B109.5
C12—C2—Ti129.93 (17)H29A—C29—H29B109.5
C2—C3—C4126.6 (2)Si3—C29—H29C109.5
C2—C3—Ti69.68 (13)H29A—C29—H29C109.5
C4—C3—Ti69.18 (13)H29B—C29—H29C109.5
C2—C3—H3115.2 (16)Si3—C30—H30A109.5
C4—C3—H3116.7 (16)Si3—C30—H30B109.5
Ti—C3—H3128.6 (16)H30A—C30—H30B109.5
C3—C4—C5117.7 (2)Si3—C30—H30C109.5
C3—C4—Si2114.96 (17)H30A—C30—H30C109.5
C5—C4—Si2127.22 (18)H30B—C30—H30C109.5
C3—C4—Ti72.71 (13)Si4—C31—H31A109.5
C5—C4—Ti65.45 (12)Si4—C31—H31B109.5
Si2—C4—Ti137.65 (13)H31A—C31—H31B109.5
C4—C5—C6110.6 (2)Si4—C31—H31C109.5
C4—C5—Si3132.37 (18)H31A—C31—H31C109.5
C6—C5—Si3116.08 (16)H31B—C31—H31C109.5
C4—C5—Ti74.15 (13)Si4—C32—H32A109.5
C6—C5—Ti81.51 (13)Si4—C32—H32B109.5
Si3—C5—Ti120.77 (12)H32A—C32—H32B109.5
C1—C6—C5113.72 (19)Si4—C32—H32C109.5
C1—C6—Si4109.86 (16)H32A—C32—H32C109.5
C5—C6—Si4110.33 (16)H32B—C32—H32C109.5
C1—C6—Ti58.77 (11)Si4—C33—H33A109.5
C5—C6—Ti57.85 (11)Si4—C33—H33B109.5
Si4—C6—Ti144.99 (13)H33A—C33—H33B109.5
C1—C6—H6105.6 (17)Si4—C33—H33C109.5
C5—C6—H6111.3 (17)H33A—C33—H33C109.5
Si4—C6—H6105.7 (17)H33B—C33—H33C109.5
C23—Si1—C1—C235.5 (3)C7—C8—C9—Ti64.83 (19)
C24—Si1—C1—C288.3 (3)C5—Ti—C9—C898.49 (19)
C22—Si1—C1—C2156.2 (2)C1—Ti—C9—C8162.96 (17)
C23—Si1—C1—C6157.63 (19)C4—Ti—C9—C854.4 (2)
C24—Si1—C1—C678.5 (2)C2—Ti—C9—C898.7 (3)
C22—Si1—C1—C636.9 (2)C3—Ti—C9—C83.9 (3)
C23—Si1—C1—Ti60.25 (19)C10—Ti—C9—C8115.1 (3)
C24—Si1—C1—Ti175.91 (15)C11—Ti—C9—C877.57 (19)
C22—Si1—C1—Ti60.47 (17)C7—Ti—C9—C836.78 (18)
C5—Ti—C1—C2101.55 (14)C6—Ti—C9—C8143.25 (17)
C4—Ti—C1—C262.04 (14)C5—Ti—C9—C10146.39 (17)
C3—Ti—C1—C228.23 (13)C1—Ti—C9—C1047.8 (2)
C10—Ti—C1—C2119.17 (14)C4—Ti—C9—C10169.55 (16)
C9—Ti—C1—C2145.82 (15)C2—Ti—C9—C1016.4 (4)
C11—Ti—C1—C282.45 (15)C3—Ti—C9—C10119.0 (2)
C8—Ti—C1—C2105.2 (4)C11—Ti—C9—C1037.56 (17)
C7—Ti—C1—C258.15 (19)C8—Ti—C9—C10115.1 (3)
C6—Ti—C1—C2114.95 (18)C7—Ti—C9—C1078.35 (19)
C5—Ti—C1—C613.40 (13)C6—Ti—C9—C10101.63 (19)
C4—Ti—C1—C652.91 (13)C8—C9—C10—C110.2 (3)
C2—Ti—C1—C6114.95 (18)Ti—C9—C10—C1165.93 (19)
C3—Ti—C1—C686.72 (14)C8—C9—C10—Ti65.71 (19)
C10—Ti—C1—C6125.88 (14)C5—Ti—C10—C11167.34 (17)
C9—Ti—C1—C699.23 (17)C1—Ti—C10—C1198.21 (18)
C11—Ti—C1—C6162.59 (13)C4—Ti—C10—C1186.0 (4)
C8—Ti—C1—C6139.9 (4)C2—Ti—C10—C1157.2 (2)
C7—Ti—C1—C6173.10 (15)C3—Ti—C10—C1117.9 (3)
C5—Ti—C1—Si1131.21 (15)C9—Ti—C10—C11115.2 (3)
C4—Ti—C1—Si1170.72 (14)C8—Ti—C10—C1177.59 (19)
C2—Ti—C1—Si1127.2 (2)C7—Ti—C10—C1136.82 (18)
C3—Ti—C1—Si1155.47 (16)C6—Ti—C10—C11138.74 (17)
C10—Ti—C1—Si18.06 (17)C5—Ti—C10—C952.2 (2)
C9—Ti—C1—Si118.6 (2)C1—Ti—C10—C9146.60 (17)
C11—Ti—C1—Si144.78 (17)C4—Ti—C10—C929.2 (4)
C8—Ti—C1—Si122.0 (5)C2—Ti—C10—C9172.39 (17)
C7—Ti—C1—Si169.1 (2)C3—Ti—C10—C9133.1 (2)
C6—Ti—C1—Si1117.8 (2)C11—Ti—C10—C9115.2 (3)
C6—C1—C2—C321.2 (3)C8—Ti—C10—C937.60 (18)
Si1—C1—C2—C3171.23 (18)C7—Ti—C10—C978.4 (2)
Ti—C1—C2—C352.3 (2)C6—Ti—C10—C9106.08 (19)
C6—C1—C2—C12162.9 (2)C8—C7—C11—C100.0 (3)
Si1—C1—C2—C124.7 (3)Ti—C7—C11—C1063.55 (19)
Ti—C1—C2—C12123.6 (2)C8—C7—C11—Ti63.60 (19)
C6—C1—C2—Ti73.50 (16)C9—C10—C11—C70.2 (3)
Si1—C1—C2—Ti118.9 (2)Ti—C10—C11—C765.04 (19)
C5—Ti—C2—C358.98 (14)C9—C10—C11—Ti65.21 (19)
C1—Ti—C2—C3133.3 (2)C5—Ti—C11—C755.1 (7)
C4—Ti—C2—C321.76 (13)C1—Ti—C11—C7150.13 (18)
C10—Ti—C2—C3147.84 (14)C4—Ti—C11—C737.0 (3)
C9—Ti—C2—C3136.8 (2)C2—Ti—C11—C7110.23 (19)
C11—Ti—C2—C3118.68 (15)C3—Ti—C11—C773.9 (2)
C8—Ti—C2—C370.4 (2)C10—Ti—C11—C7116.1 (3)
C7—Ti—C2—C384.56 (15)C9—Ti—C11—C778.1 (2)
C6—Ti—C2—C393.28 (14)C8—Ti—C11—C736.65 (18)
C5—Ti—C2—C174.37 (14)C6—Ti—C11—C7170.52 (18)
C4—Ti—C2—C1111.59 (14)C5—Ti—C11—C1061.0 (7)
C3—Ti—C2—C1133.3 (2)C1—Ti—C11—C1093.73 (19)
C10—Ti—C2—C178.82 (16)C4—Ti—C11—C10153.09 (18)
C9—Ti—C2—C189.9 (3)C2—Ti—C11—C10133.63 (18)
C11—Ti—C2—C1107.97 (14)C3—Ti—C11—C10169.96 (17)
C8—Ti—C2—C1156.26 (16)C9—Ti—C11—C1038.00 (18)
C7—Ti—C2—C1142.09 (14)C8—Ti—C11—C1079.5 (2)
C6—Ti—C2—C140.07 (13)C7—Ti—C11—C10116.1 (3)
C5—Ti—C2—C12173.7 (2)C6—Ti—C11—C1073.3 (3)
C1—Ti—C2—C12112.0 (3)C3—C2—C12—C16130.8 (3)
C4—Ti—C2—C12136.5 (2)C1—C2—C12—C1653.3 (4)
C3—Ti—C2—C12114.7 (3)Ti—C2—C12—C16137.4 (2)
C10—Ti—C2—C1233.1 (3)C3—C2—C12—C1352.3 (4)
C9—Ti—C2—C1222.1 (4)C1—C2—C12—C13123.7 (3)
C11—Ti—C2—C124.0 (2)Ti—C2—C12—C1339.5 (4)
C8—Ti—C2—C1244.3 (3)C3—C2—C12—Fe39.3 (3)
C7—Ti—C2—C1230.1 (2)C1—C2—C12—Fe144.7 (2)
C6—Ti—C2—C12152.0 (2)Ti—C2—C12—Fe131.15 (18)
C1—C2—C3—C47.8 (4)C21—Fe—C12—C1672.2 (2)
C12—C2—C3—C4168.2 (2)C20—Fe—C12—C1639.1 (5)
Ti—C2—C3—C441.6 (2)C15—Fe—C12—C1637.70 (17)
C1—C2—C3—Ti49.45 (19)C14—Fe—C12—C1681.38 (18)
C12—C2—C3—Ti126.6 (2)C13—Fe—C12—C16118.8 (2)
C5—Ti—C3—C2114.88 (15)C19—Fe—C12—C16170.0 (2)
C1—Ti—C3—C229.56 (13)C17—Fe—C12—C16113.22 (17)
C4—Ti—C3—C2145.2 (2)C18—Fe—C12—C16155.62 (16)
C10—Ti—C3—C261.6 (2)C21—Fe—C12—C13168.98 (18)
C9—Ti—C3—C2140.6 (2)C20—Fe—C12—C13157.9 (4)
C11—Ti—C3—C272.73 (16)C15—Fe—C12—C1381.11 (17)
C8—Ti—C3—C2138.02 (14)C16—Fe—C12—C13118.8 (2)
C7—Ti—C3—C2106.35 (15)C14—Fe—C12—C1337.42 (16)
C6—Ti—C3—C272.04 (14)C19—Fe—C12—C1351.2 (3)
C5—Ti—C3—C430.34 (13)C17—Fe—C12—C13127.97 (16)
C1—Ti—C3—C4115.66 (15)C18—Fe—C12—C1385.57 (18)
C2—Ti—C3—C4145.2 (2)C21—Fe—C12—C248.3 (3)
C10—Ti—C3—C4153.22 (19)C20—Fe—C12—C281.4 (5)
C9—Ti—C3—C474.2 (3)C15—Fe—C12—C2158.2 (3)
C11—Ti—C3—C4142.04 (14)C16—Fe—C12—C2120.5 (3)
C8—Ti—C3—C476.76 (16)C14—Fe—C12—C2158.1 (3)
C7—Ti—C3—C4108.43 (15)C13—Fe—C12—C2120.7 (3)
C6—Ti—C3—C473.18 (14)C19—Fe—C12—C269.5 (4)
C2—C3—C4—C57.3 (4)C17—Fe—C12—C27.3 (3)
Ti—C3—C4—C549.11 (18)C18—Fe—C12—C235.1 (3)
C2—C3—C4—Si2176.94 (19)C16—C12—C13—C140.8 (3)
Ti—C3—C4—Si2135.14 (15)C2—C12—C13—C14176.6 (2)
C2—C3—C4—Ti41.8 (2)Fe—C12—C13—C1459.31 (19)
C27—Si2—C4—C3145.08 (18)C16—C12—C13—Fe58.49 (18)
C25—Si2—C4—C391.8 (2)C2—C12—C13—Fe124.1 (2)
C26—Si2—C4—C327.3 (2)C21—Fe—C13—C14156.8 (5)
C27—Si2—C4—C530.2 (3)C20—Fe—C13—C1447.8 (3)
C25—Si2—C4—C592.9 (2)C15—Fe—C13—C1437.59 (18)
C26—Si2—C4—C5148.0 (2)C16—Fe—C13—C1481.78 (18)
C27—Si2—C4—Ti123.55 (19)C19—Fe—C13—C1483.8 (2)
C25—Si2—C4—Ti0.4 (2)C17—Fe—C13—C14168.01 (18)
C26—Si2—C4—Ti118.7 (2)C18—Fe—C13—C14126.97 (18)
C5—Ti—C4—C3132.6 (2)C12—Fe—C13—C14119.7 (2)
C1—Ti—C4—C357.88 (14)C21—Fe—C13—C1237.1 (5)
C2—Ti—C4—C321.53 (13)C20—Fe—C13—C12167.5 (3)
C10—Ti—C4—C3126.2 (4)C15—Fe—C13—C1282.09 (17)
C9—Ti—C4—C3147.57 (15)C16—Fe—C13—C1237.90 (15)
C11—Ti—C4—C361.8 (2)C14—Fe—C13—C12119.7 (2)
C8—Ti—C4—C3118.74 (15)C19—Fe—C13—C12156.48 (16)
C7—Ti—C4—C383.03 (16)C17—Fe—C13—C1272.31 (19)
C6—Ti—C4—C392.16 (14)C18—Fe—C13—C12113.35 (16)
C1—Ti—C4—C574.72 (14)C12—C13—C14—C150.6 (3)
C2—Ti—C4—C5111.07 (15)Fe—C13—C14—C1559.2 (2)
C3—Ti—C4—C5132.6 (2)C12—C13—C14—Fe59.78 (18)
C10—Ti—C4—C5101.2 (4)C21—Fe—C14—C1548.3 (3)
C9—Ti—C4—C579.83 (17)C20—Fe—C14—C1583.3 (2)
C11—Ti—C4—C5165.62 (16)C16—Fe—C14—C1537.93 (17)
C8—Ti—C4—C5108.66 (15)C13—Fe—C14—C15119.3 (2)
C7—Ti—C4—C5144.37 (15)C19—Fe—C14—C15126.17 (18)
C6—Ti—C4—C540.43 (13)C17—Fe—C14—C15161.4 (4)
C5—Ti—C4—Si2119.1 (3)C18—Fe—C14—C15166.61 (17)
C1—Ti—C4—Si2166.2 (2)C12—Fe—C14—C1581.76 (18)
C2—Ti—C4—Si2129.9 (2)C21—Fe—C14—C13167.6 (2)
C3—Ti—C4—Si2108.3 (2)C20—Fe—C14—C13157.40 (18)
C10—Ti—C4—Si217.8 (5)C15—Fe—C14—C13119.3 (2)
C9—Ti—C4—Si239.2 (3)C16—Fe—C14—C1381.38 (17)
C11—Ti—C4—Si246.5 (3)C19—Fe—C14—C13114.51 (18)
C8—Ti—C4—Si210.4 (2)C17—Fe—C14—C1342.1 (5)
C7—Ti—C4—Si225.3 (2)C18—Fe—C14—C1374.1 (2)
C6—Ti—C4—Si2159.5 (2)C12—Fe—C14—C1337.56 (16)
C3—C4—C5—C621.8 (3)C13—C14—C15—C160.1 (3)
Si2—C4—C5—C6153.38 (18)Fe—C14—C15—C1659.4 (2)
Ti—C4—C5—C674.29 (16)C13—C14—C15—Fe59.28 (19)
C3—C4—C5—Si3169.97 (18)C21—Fe—C15—C14156.85 (18)
Si2—C4—C5—Si314.9 (3)C20—Fe—C15—C14113.87 (19)
Ti—C4—C5—Si3117.4 (2)C16—Fe—C15—C14119.2 (3)
C3—C4—C5—Ti52.52 (19)C13—Fe—C15—C1437.69 (17)
Si2—C4—C5—Ti132.32 (19)C19—Fe—C15—C1473.9 (2)
C29—Si3—C5—C489.7 (3)C17—Fe—C15—C14170.3 (2)
C30—Si3—C5—C437.1 (3)C18—Fe—C15—C1445.9 (6)
C28—Si3—C5—C4154.1 (2)C12—Fe—C15—C1481.71 (18)
C29—Si3—C5—C678.1 (2)C21—Fe—C15—C1684.0 (2)
C30—Si3—C5—C6155.19 (17)C20—Fe—C15—C16126.95 (19)
C28—Si3—C5—C638.1 (2)C14—Fe—C15—C16119.2 (3)
C29—Si3—C5—Ti173.85 (13)C13—Fe—C15—C1681.49 (18)
C30—Si3—C5—Ti59.44 (17)C19—Fe—C15—C16166.88 (18)
C28—Si3—C5—Ti57.61 (17)C17—Fe—C15—C1651.1 (3)
C1—Ti—C5—C4101.07 (14)C18—Fe—C15—C16165.1 (4)
C2—Ti—C5—C462.42 (14)C12—Fe—C15—C1637.48 (17)
C3—Ti—C5—C428.75 (13)C14—C15—C16—C120.4 (3)
C10—Ti—C5—C4154.09 (16)Fe—C15—C16—C1259.96 (19)
C9—Ti—C5—C4124.33 (15)C14—C15—C16—Fe59.6 (2)
C11—Ti—C5—C4103.1 (6)C13—C12—C16—C150.7 (3)
C8—Ti—C5—C486.20 (16)C2—C12—C16—C15176.7 (2)
C7—Ti—C5—C457.5 (2)Fe—C12—C16—C1559.2 (2)
C6—Ti—C5—C4114.36 (19)C13—C12—C16—Fe58.50 (17)
C1—Ti—C5—C613.29 (13)C2—C12—C16—Fe124.1 (2)
C4—Ti—C5—C6114.36 (19)C21—Fe—C16—C15113.4 (2)
C2—Ti—C5—C651.93 (14)C20—Fe—C16—C1572.4 (2)
C3—Ti—C5—C685.60 (14)C14—Fe—C16—C1537.60 (19)
C10—Ti—C5—C691.55 (19)C13—Fe—C16—C1581.50 (19)
C9—Ti—C5—C6121.31 (14)C19—Fe—C16—C1543.4 (5)
C11—Ti—C5—C6142.5 (6)C17—Fe—C16—C15155.79 (19)
C8—Ti—C5—C6159.45 (14)C18—Fe—C16—C15171.8 (2)
C7—Ti—C5—C6171.81 (15)C12—Fe—C16—C15119.5 (2)
C1—Ti—C5—Si3128.66 (15)C21—Fe—C16—C12127.09 (17)
C4—Ti—C5—Si3130.3 (2)C20—Fe—C16—C12168.02 (17)
C2—Ti—C5—Si3167.31 (14)C15—Fe—C16—C12119.5 (2)
C3—Ti—C5—Si3159.02 (16)C14—Fe—C16—C1281.93 (17)
C10—Ti—C5—Si323.8 (2)C13—Fe—C16—C1238.04 (15)
C9—Ti—C5—Si35.94 (17)C19—Fe—C16—C12163.0 (4)
C11—Ti—C5—Si327.1 (7)C17—Fe—C16—C1284.67 (18)
C8—Ti—C5—Si344.07 (17)C18—Fe—C16—C1252.2 (3)
C7—Ti—C5—Si372.8 (2)C21—Fe—C17—C18119.2 (3)
C6—Ti—C5—Si3115.37 (19)C20—Fe—C17—C1881.1 (2)
C4—C5—C6—C150.4 (3)C15—Fe—C17—C18166.6 (2)
C5—C6—C1—C250.1 (3)C16—Fe—C17—C18157.82 (17)
Si1—C1—C6—C5140.70 (18)C14—Fe—C17—C1840.0 (6)
Ti—C1—C6—C518.87 (18)C13—Fe—C17—C1873.8 (2)
C2—C1—C6—Si474.1 (2)C19—Fe—C17—C1837.41 (18)
Si1—C1—C6—Si495.09 (18)C12—Fe—C17—C18114.75 (18)
Ti—C1—C6—Si4143.08 (13)C20—Fe—C17—C2138.1 (2)
C2—C1—C6—Ti68.97 (16)C15—Fe—C17—C2147.4 (3)
Si1—C1—C6—Ti121.83 (17)C16—Fe—C17—C2183.0 (2)
Si3—C5—C6—C1139.25 (17)C14—Fe—C17—C21159.3 (4)
Ti—C5—C6—C119.06 (18)C13—Fe—C17—C21166.98 (18)
C4—C5—C6—Si473.6 (2)C19—Fe—C17—C2181.8 (2)
Si3—C5—C6—Si496.79 (17)C18—Fe—C17—C21119.2 (3)
Ti—C5—C6—Si4143.01 (13)C12—Fe—C17—C21126.03 (19)
C4—C5—C6—Ti69.44 (16)C21—C17—C18—C190.0 (3)
Si3—C5—C6—Ti120.19 (16)Fe—C17—C18—C1959.1 (2)
C33—Si4—C6—C1125.64 (17)C21—C17—C18—Fe59.1 (2)
C32—Si4—C6—C13.5 (2)C21—Fe—C18—C1737.71 (19)
C31—Si4—C6—C1114.66 (18)C20—Fe—C18—C1782.1 (2)
C33—Si4—C6—C50.5 (2)C15—Fe—C18—C17155.0 (5)
C32—Si4—C6—C5122.67 (18)C16—Fe—C18—C1746.8 (3)
C31—Si4—C6—C5119.19 (18)C14—Fe—C18—C17168.47 (18)
C33—Si4—C6—Ti62.1 (3)C13—Fe—C18—C17126.86 (18)
C32—Si4—C6—Ti60.1 (3)C19—Fe—C18—C17119.6 (3)
C31—Si4—C6—Ti178.2 (2)C12—Fe—C18—C1783.2 (2)
C5—Ti—C6—C1159.5 (2)C21—Fe—C18—C1981.9 (2)
C4—Ti—C6—C1119.34 (15)C20—Fe—C18—C1937.53 (19)
C2—Ti—C6—C139.41 (13)C15—Fe—C18—C1935.4 (6)
C3—Ti—C6—C179.11 (14)C16—Fe—C18—C19166.5 (2)
C10—Ti—C6—C173.40 (17)C14—Fe—C18—C1971.9 (2)
C9—Ti—C6—C1117.90 (16)C13—Fe—C18—C19113.53 (18)
C11—Ti—C6—C130.6 (2)C17—Fe—C18—C19119.6 (3)
C8—Ti—C6—C1160.75 (19)C12—Fe—C18—C19157.21 (17)
C7—Ti—C6—C161.9 (11)C17—C18—C19—C200.1 (3)
C1—Ti—C6—C5159.5 (2)Fe—C18—C19—C2059.2 (2)
C4—Ti—C6—C540.19 (14)C17—C18—C19—Fe59.1 (2)
C2—Ti—C6—C5120.12 (15)C21—Fe—C19—C2038.3 (2)
C3—Ti—C6—C580.42 (14)C15—Fe—C19—C2071.2 (2)
C10—Ti—C6—C5127.07 (16)C16—Fe—C19—C2036.8 (5)
C9—Ti—C6—C582.56 (17)C14—Fe—C19—C20112.4 (2)
C11—Ti—C6—C5169.82 (18)C13—Fe—C19—C20155.50 (19)
C8—Ti—C6—C539.7 (2)C17—Fe—C19—C2082.1 (2)
C7—Ti—C6—C597.6 (11)C18—Fe—C19—C20119.3 (3)
C5—Ti—C6—Si479.5 (2)C12—Fe—C19—C20168.6 (2)
C1—Ti—C6—Si480.0 (2)C21—Fe—C19—C1881.1 (2)
C4—Ti—C6—Si439.3 (2)C20—Fe—C19—C18119.3 (3)
C2—Ti—C6—Si440.6 (2)C15—Fe—C19—C18169.42 (18)
C3—Ti—C6—Si40.9 (2)C16—Fe—C19—C18156.2 (4)
C10—Ti—C6—Si4153.4 (2)C14—Fe—C19—C18128.23 (18)
C9—Ti—C6—Si4162.1 (2)C13—Fe—C19—C1885.16 (19)
C11—Ti—C6—Si4110.7 (2)C17—Fe—C19—C1837.26 (18)
C8—Ti—C6—Si4119.2 (2)C12—Fe—C19—C1849.2 (3)
C7—Ti—C6—Si418.1 (12)C18—C19—C20—C210.2 (3)
C5—Ti—C7—C11168.20 (18)Fe—C19—C20—C2159.4 (2)
C1—Ti—C7—C1143.7 (2)C18—C19—C20—Fe59.6 (2)
C4—Ti—C7—C11156.02 (18)C21—Fe—C20—C19118.7 (3)
C2—Ti—C7—C1178.7 (2)C15—Fe—C20—C19127.8 (2)
C3—Ti—C7—C11117.21 (19)C16—Fe—C20—C19168.65 (18)
C10—Ti—C7—C1137.40 (18)C14—Fe—C20—C1985.3 (2)
C9—Ti—C7—C1179.4 (2)C13—Fe—C20—C1952.1 (4)
C8—Ti—C7—C11116.8 (3)C17—Fe—C20—C1981.0 (2)
C6—Ti—C7—C11100.4 (10)C18—Fe—C20—C1937.51 (19)
C5—Ti—C7—C851.4 (2)C12—Fe—C20—C19160.5 (4)
C1—Ti—C7—C8160.48 (17)C15—Fe—C20—C21113.5 (2)
C4—Ti—C7—C887.17 (19)C16—Fe—C20—C2172.7 (2)
C2—Ti—C7—C8164.46 (17)C14—Fe—C20—C21156.0 (2)
C3—Ti—C7—C8125.98 (18)C13—Fe—C20—C21170.7 (2)
C10—Ti—C7—C879.4 (2)C19—Fe—C20—C21118.7 (3)
C9—Ti—C7—C837.40 (18)C17—Fe—C20—C2137.7 (2)
C11—Ti—C7—C8116.8 (3)C18—Fe—C20—C2181.2 (2)
C6—Ti—C7—C8142.8 (10)C12—Fe—C20—C2141.8 (5)
C11—C7—C8—C90.1 (3)C18—C17—C21—C200.1 (3)
Ti—C7—C8—C963.52 (19)Fe—C17—C21—C2059.8 (2)
C11—C7—C8—Ti63.43 (19)C18—C17—C21—Fe59.6 (2)
C5—Ti—C8—C7146.52 (17)C19—C20—C21—C170.2 (4)
C1—Ti—C8—C762.4 (5)Fe—C20—C21—C1760.1 (2)
C4—Ti—C8—C7104.34 (18)C19—C20—C21—Fe59.9 (2)
C2—Ti—C8—C724.2 (3)C20—Fe—C21—C17118.9 (3)
C3—Ti—C8—C765.8 (2)C15—Fe—C21—C17157.32 (17)
C10—Ti—C8—C778.2 (2)C16—Fe—C21—C17114.32 (18)
C9—Ti—C8—C7116.2 (3)C14—Fe—C21—C17169.3 (2)
C11—Ti—C8—C736.68 (18)C13—Fe—C21—C1744.3 (6)
C6—Ti—C8—C7173.59 (18)C19—Fe—C21—C1781.1 (2)
C5—Ti—C8—C997.31 (19)C18—Fe—C21—C1737.45 (18)
C1—Ti—C8—C953.8 (5)C12—Fe—C21—C1773.8 (2)
C4—Ti—C8—C9139.48 (18)C15—Fe—C21—C2083.8 (2)
C2—Ti—C8—C9140.37 (19)C16—Fe—C21—C20126.8 (2)
C3—Ti—C8—C9178.07 (17)C14—Fe—C21—C2050.4 (4)
C10—Ti—C8—C938.02 (18)C13—Fe—C21—C20163.2 (4)
C11—Ti—C8—C979.5 (2)C19—Fe—C21—C2037.8 (2)
C7—Ti—C8—C9116.2 (3)C17—Fe—C21—C20118.9 (3)
C6—Ti—C8—C970.2 (3)C18—Fe—C21—C2081.4 (2)
C7—C8—C9—C100.2 (3)C12—Fe—C21—C20167.32 (18)
Ti—C8—C9—C1064.63 (19)

Experimental details

Crystal data
Chemical formula[TiFe(C5H5)2(C23H42Si4)]
Mr664.86
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.1311 (3), 12.2128 (4), 14.3972 (5)
α, β, γ (°)82.423 (2), 80.855 (3), 82.344 (2)
V3)1731.85 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.33 × 0.25 × 0.18
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
66966, 7859, 6660
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.07
No. of reflections7859
No. of parameters360
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.15, 0.60

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97 and PLATON.

Selected geometric parameters (Å, º) top
Ti—C12.088 (2)Ti—C102.333 (3)
Ti—C22.191 (2)Ti—C112.363 (3)
Ti—C32.230 (2)C1—C21.452 (3)
Ti—C42.183 (2)C1—C61.578 (3)
Ti—C62.412 (2)C2—C31.428 (3)
Ti—C52.064 (2)C2—C121.485 (3)
Ti—C72.385 (3)C3—C41.442 (3)
Ti—C82.370 (3)C4—C51.471 (3)
Ti—C92.341 (3)C5—C61.588 (3)
C2—C1—C6110.94 (19)C4—C5—C6110.6 (2)
C1—C2—C3118.7 (2)C1—C6—C5113.72 (19)
C2—C3—C4126.6 (2)C1—C6—Si4109.86 (16)
C3—C4—C5117.7 (2)C5—C6—Si4110.33 (16)
C6—C1—C2—C321.2 (3)C3—C4—C5—C621.8 (3)
Ti—C2—C3—C441.6 (2)C4—C5—C6—C150.4 (3)
C2—C3—C4—C57.3 (4)C5—C6—C1—C250.1 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds