Download citation
Download citation
link to html
Developing the structures of organic materials that rely on the hydro­gen bonding of multifunctional substrates is often complicated due to a competition between various possible motifs. In this context, the illustrative case of the carbamoyl­cyano­nitro­somethanide anion, [ONC(CN)–C(O)NH2], suggests sufficient control over the crystal lattice with a set of supra­molecular synthons, which are specific to all the present nitroso, carbamoyl and cyano groups. The structures of the carbamoyl­cyano­nitro­somethanide salts of ethane-1,2-di­am­monium, C2H10N22+·2C3H2N3O2, (1), piperazine-1,4-diium, C4H12N22+·2C3H2N3O2, (2), butane-1,4-di­ammonium, C4H14N22+·2C3H2N3O2, (3), and hexane-1,6-di­ammonium, C6H18N22+·2C3H2N3O2, (4), reveal two- and three-dimensional hydro­gen-bonded frameworks governed by a set of site-selective inter­actions. The strongest N—H...O hydro­gen bonds [N...O = 2.6842 (17)–2.8718 (17) Å, mean 2.776 (2) Å] are associated with the polarized ammonium N—H donors and nitroso O-atom acceptors, which sustain invariant motifs in the form of nitroso/ammonium dimers. Subtle structural changes within this series of compounds concern the rupture of some weaker inter­actions, i.e. mutual hydrogen bonds of the carbamoyl groups in (1)–(3) [N...O = 2.910 (2)–2.9909 (18) Å; mean 2.950 (2) Å] and carbamo­yl/nitrile hydrogen bonds in (1), (2) and (4) [N...N = 2.936 (2)–3.003 (3) Å, mean 2.977 (2) Å], providing a gradual evolution of the hydro­gen-bonding pattern. A hierarchy of the synthons involving three different groups could be applicable to supra­molecular synthesis with polyfunctional methanide species, suggesting also a degree of control over layered and inter­penetrated hydro­gen-bonded networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623002747/jx3077sup1.cif
Contains datablocks global, 1, 2, 3, 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623002747/jx30771sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623002747/jx30772sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623002747/jx30772sup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623002747/jx30773sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623002747/jx30774sup5.hkl
Contains datablock 4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623002747/jx30771sup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623002747/jx30773sup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623002747/jx30774sup9.cml
Supplementary material

CCDC references: 2251085; 2251084; 2251083; 2251082

Computing details top

For all structures, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Ethane-1,2-bis(aminium) bis(nitrosocarbamoylcyanomethanide) (1) top
Crystal data top
C2H10N22+·2C3H2N3O2Z = 1
Mr = 286.27F(000) = 150
Triclinic, P1Dx = 1.483 Mg m3
a = 7.1203 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2221 (10) ÅCell parameters from 2089 reflections
c = 7.3808 (9) Åθ = 3.0–29.0°
α = 96.813 (8)°µ = 0.12 mm1
β = 106.031 (7)°T = 173 K
γ = 114.329 (8)°Prism, orange
V = 320.47 (7) Å30.26 × 0.24 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1318 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 29.0°, θmin = 3.0°
φ and ω scansh = 99
2089 measured reflectionsk = 99
1697 independent reflectionsl = 105
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.136All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.0936P]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1110 (2)0.51496 (18)0.23969 (16)0.0448 (3)
O20.47120 (18)0.73718 (16)0.90503 (15)0.0395 (3)
N10.1997 (2)0.4770 (2)0.40196 (18)0.0368 (3)
N20.2682 (4)0.9747 (3)0.5574 (3)0.0702 (6)
N30.3719 (3)0.4045 (2)0.7449 (2)0.0415 (3)
N40.1503 (2)0.8405 (2)0.05417 (19)0.0350 (3)
C10.2849 (2)0.6277 (2)0.56269 (19)0.0312 (3)
C20.2787 (3)0.8230 (2)0.5641 (2)0.0406 (4)
C30.3837 (2)0.5932 (2)0.7510 (2)0.0299 (3)
C40.0343 (3)0.9628 (2)0.0889 (2)0.0346 (3)
H10.434 (3)0.370 (3)0.862 (3)0.044 (5)*
H20.305 (4)0.314 (4)0.635 (3)0.052 (6)*
H30.173 (4)0.777 (4)0.156 (4)0.059 (6)*
H40.075 (4)0.744 (4)0.039 (4)0.057 (6)*
H50.280 (4)0.929 (3)0.045 (3)0.047 (5)*
H4A0.095 (3)0.871 (3)0.117 (3)0.045 (5)*
H4B0.152 (4)1.082 (4)0.202 (3)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0588 (7)0.0387 (6)0.0305 (5)0.0240 (5)0.0053 (5)0.0077 (4)
O20.0451 (6)0.0322 (5)0.0293 (5)0.0151 (4)0.0026 (4)0.0038 (4)
N10.0429 (7)0.0353 (6)0.0301 (6)0.0186 (5)0.0098 (5)0.0076 (5)
N20.1054 (16)0.0465 (9)0.0604 (11)0.0464 (10)0.0154 (10)0.0129 (8)
N30.0552 (8)0.0338 (7)0.0358 (7)0.0237 (6)0.0117 (6)0.0105 (5)
N40.0406 (7)0.0323 (6)0.0283 (6)0.0180 (5)0.0065 (5)0.0055 (5)
C10.0333 (7)0.0285 (6)0.0279 (7)0.0132 (5)0.0079 (5)0.0065 (5)
C20.0519 (9)0.0353 (7)0.0302 (7)0.0221 (7)0.0065 (6)0.0061 (5)
C30.0283 (6)0.0291 (6)0.0298 (6)0.0120 (5)0.0091 (5)0.0080 (5)
C40.0431 (8)0.0362 (7)0.0282 (7)0.0212 (6)0.0131 (6)0.0109 (5)
Geometric parameters (Å, º) top
O1—N11.3081 (17)N4—H30.93 (2)
O2—C31.2479 (17)N4—H40.79 (3)
N1—C11.3084 (18)N4—H50.91 (2)
N2—C21.134 (2)C1—C21.428 (2)
N3—C31.3250 (19)C1—C31.4747 (19)
N3—H10.96 (2)C4—C4i1.510 (3)
N3—H20.85 (2)C4—H4A0.98 (2)
N4—C41.4806 (19)C4—H4B0.99 (2)
O1—N1—C1116.64 (12)C2—C1—C3118.33 (12)
C3—N3—H1121.3 (12)N2—C2—C1177.23 (18)
C3—N3—H2117.4 (15)O2—C3—N3123.44 (13)
H1—N3—H2121 (2)O2—C3—C1120.14 (12)
C4—N4—H3109.6 (15)N3—C3—C1116.42 (13)
C4—N4—H4110.6 (18)N4—C4—C4i109.82 (15)
H3—N4—H4104 (2)N4—C4—H4A107.7 (12)
C4—N4—H5108.6 (13)C4i—C4—H4A111.1 (12)
H3—N4—H5112 (2)N4—C4—H4B101.4 (13)
H4—N4—H5113 (2)C4i—C4—H4B111.7 (13)
N1—C1—C2122.37 (13)H4A—C4—H4B114.5 (18)
N1—C1—C3119.26 (13)
O1—N1—C1—C21.3 (2)C2—C1—C3—O24.3 (2)
O1—N1—C1—C3178.86 (12)N1—C1—C3—N32.4 (2)
N1—C1—C3—O2177.99 (14)C2—C1—C3—N3175.29 (15)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3···O10.93 (2)1.98 (2)2.8134 (18)148 (2)
N4—H4···O1ii0.79 (3)1.91 (3)2.6966 (18)172 (2)
N4—H5···O2iii0.91 (2)2.24 (2)3.0358 (19)146.8 (18)
N4—H5···O2iv0.91 (2)2.61 (2)3.0964 (18)114.2 (16)
N3—H1···O2v0.96 (2)2.03 (2)2.9909 (18)172.8 (18)
N3—H2···N2vi0.85 (2)2.34 (2)2.936 (2)128.2 (19)
C4—H4A···O2vii0.98 (2)2.73 (2)3.415 (2)127.2 (15)
C4—H4A···N3viii0.98 (2)2.69 (2)3.649 (2)165.3 (16)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y, z1; (v) x+1, y+1, z+2; (vi) x, y1, z; (vii) x1, y, z1; (viii) x, y+1, z+1.
Piperazine-1,4-diium bis(nitrosocarbamoylcyanomethanide) (2) top
Crystal data top
C4H12N22+·2C3H2N3O2F(000) = 656
Mr = 312.31Dx = 1.467 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.5686 (7) ÅCell parameters from 13353 reflections
b = 7.1704 (4) Åθ = 3.0–28.3°
c = 13.9658 (6) ŵ = 0.12 mm1
β = 104.209 (3)°T = 173 K
V = 1414.27 (12) Å3Prism, orange
Z = 40.35 × 0.32 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1311 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 28.3°, θmin = 3.0°
φ and ω scansh = 1919
13353 measured reflectionsk = 99
1760 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.133All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.1651P]
where P = (Fo2 + 2Fc2)/3
1760 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11405 (8)0.53298 (16)0.24632 (8)0.0281 (3)
O20.43535 (8)0.46166 (16)0.34798 (8)0.0272 (3)
N10.19508 (9)0.51702 (17)0.22185 (9)0.0236 (3)
N20.25522 (11)0.4914 (2)0.47511 (10)0.0419 (5)
N30.37210 (11)0.4857 (2)0.18332 (10)0.0287 (4)
N40.03233 (10)0.54442 (19)0.41360 (9)0.0227 (3)
C10.27036 (11)0.49663 (19)0.29527 (11)0.0209 (4)
C20.26370 (11)0.4928 (2)0.39552 (12)0.0265 (4)
C30.36579 (11)0.4794 (2)0.27681 (11)0.0214 (4)
C40.04769 (11)0.6751 (2)0.49884 (11)0.0237 (4)
C50.02980 (11)0.3488 (2)0.44759 (12)0.0256 (4)
H10.4296 (15)0.478 (2)0.1731 (14)0.028 (5)*
H20.3215 (14)0.502 (2)0.1392 (13)0.025 (5)*
H30.0794 (13)0.554 (2)0.3812 (13)0.028 (5)*
H40.0239 (14)0.565 (2)0.3662 (14)0.030 (5)*
H4A0.0498 (12)0.798 (2)0.4761 (12)0.025 (4)*
H4B0.1081 (11)0.646 (2)0.5396 (11)0.022 (4)*
H5A0.0170 (13)0.269 (3)0.3890 (14)0.039 (5)*
H5B0.0907 (12)0.319 (2)0.4907 (12)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (6)0.0430 (7)0.0222 (6)0.0025 (5)0.0038 (4)0.0012 (5)
O20.0184 (6)0.0428 (7)0.0184 (6)0.0003 (4)0.0007 (4)0.0005 (4)
N10.0190 (7)0.0284 (7)0.0229 (7)0.0010 (5)0.0042 (5)0.0004 (5)
N20.0240 (8)0.0792 (13)0.0217 (8)0.0012 (7)0.0039 (6)0.0016 (7)
N30.0194 (8)0.0489 (10)0.0173 (7)0.0004 (6)0.0039 (6)0.0039 (6)
N40.0160 (7)0.0349 (8)0.0167 (7)0.0010 (5)0.0028 (5)0.0013 (5)
C10.0180 (8)0.0247 (8)0.0192 (8)0.0017 (6)0.0030 (6)0.0004 (6)
C20.0144 (8)0.0392 (10)0.0242 (9)0.0007 (6)0.0018 (6)0.0006 (6)
C30.0194 (8)0.0231 (8)0.0203 (8)0.0023 (6)0.0023 (6)0.0007 (6)
C40.0223 (8)0.0231 (9)0.0230 (8)0.0026 (6)0.0007 (6)0.0010 (6)
C50.0227 (8)0.0274 (9)0.0257 (8)0.0023 (6)0.0039 (6)0.0043 (7)
Geometric parameters (Å, º) top
O1—N11.3120 (16)N4—H40.93 (2)
O2—C31.2396 (19)C1—C21.427 (2)
N1—C11.3129 (19)C1—C31.480 (2)
N2—C21.148 (2)C4—C5i1.509 (2)
N3—C31.332 (2)C4—H4A0.937 (17)
N3—H10.89 (2)C4—H4B0.947 (16)
N3—H20.84 (2)C5—C4i1.509 (2)
N4—C51.484 (2)C5—H5A0.978 (19)
N4—C41.488 (2)C5—H5B0.966 (17)
N4—H30.91 (2)
O1—N1—C1116.02 (12)O2—C3—C1119.13 (14)
C3—N3—H1116.9 (12)N3—C3—C1117.49 (14)
C3—N3—H2117.6 (12)N4—C4—C5i109.94 (12)
H1—N3—H2125.5 (17)N4—C4—H4A109.3 (10)
C5—N4—C4110.49 (12)C5i—C4—H4A111.4 (10)
C5—N4—H3108.3 (10)N4—C4—H4B105.9 (9)
C4—N4—H3111.3 (11)C5i—C4—H4B112.0 (9)
C5—N4—H4106.8 (11)H4A—C4—H4B108.0 (14)
C4—N4—H4113.8 (11)N4—C5—C4i110.27 (13)
H3—N4—H4105.8 (15)N4—C5—H5A107.5 (10)
N1—C1—C2121.57 (14)C4i—C5—H5A109.6 (10)
N1—C1—C3120.90 (14)N4—C5—H5B108.5 (10)
C2—C1—C3117.53 (13)C4i—C5—H5B110.5 (9)
N2—C2—C1177.70 (17)H5A—C5—H5B110.5 (14)
O2—C3—N3123.37 (15)
O1—N1—C1—C20.2 (2)N1—C1—C3—N30.1 (2)
O1—N1—C1—C3179.32 (12)C2—C1—C3—N3179.04 (14)
N1—C1—C3—O2179.48 (13)C5—N4—C4—C5i58.06 (17)
C2—C1—C3—O20.3 (2)C4—N4—C5—C4i58.26 (17)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3···O10.91 (2)2.072 (19)2.8719 (17)145.7 (16)
N4—H4···O1ii0.93 (2)1.80 (2)2.6842 (17)158.3 (16)
N3—H1···O2iii0.89 (2)2.06 (2)2.9483 (19)178.8 (18)
N3—H2···N2iv0.84 (2)2.258 (18)2.992 (2)145.4 (16)
C4—H4A···O2v0.937 (17)2.429 (17)3.1056 (19)129.0 (13)
C5—H5A···O2vi0.978 (19)2.503 (18)3.255 (2)133.6 (13)
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y+1, z1/2; (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z.
Butane-1,4-bis(aminium) bis(nitrosocarbamoylcyanomethanide) (3) top
Crystal data top
C4H14N22+·2C3H2N3O2F(000) = 664
Mr = 314.32Dx = 1.412 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.4095 (5) ÅCell parameters from 14141 reflections
b = 6.7848 (3) Åθ = 2.8–28.2°
c = 14.8471 (5) ŵ = 0.11 mm1
β = 116.556 (3)°T = 173 K
V = 1478.61 (10) Å3Prism, yellow
Z = 40.46 × 0.37 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.2°, θmin = 2.8°
φ and ω scansh = 2121
14141 measured reflectionsk = 88
1816 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.166All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0832P)2 + 2.1745P]
where P = (Fo2 + 2Fc2)/3
1816 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.71 e Å3
7 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24644 (10)0.2413 (2)0.12285 (10)0.0336 (4)
O20.15729 (10)0.2978 (2)0.37397 (11)0.0331 (4)
N10.26504 (11)0.2326 (2)0.21751 (12)0.0267 (4)
N20.03694 (12)0.3635 (3)0.10843 (14)0.0369 (5)
N30.30566 (12)0.2324 (3)0.41567 (14)0.0327 (4)
C10.19907 (12)0.2707 (3)0.24185 (14)0.0233 (4)
C20.10856 (13)0.3224 (3)0.16912 (14)0.0258 (4)
C30.21926 (13)0.2679 (3)0.34960 (15)0.0260 (4)
N40.38707 (11)0.1879 (3)0.07040 (13)0.0279 (4)
C40.44979 (15)0.3611 (4)0.10384 (16)0.0365 (5)
C50.52132 (15)0.3459 (4)0.21378 (17)0.0387 (5)
H10.3189 (18)0.231 (4)0.4773 (18)0.039 (7)*
H20.3399 (18)0.210 (4)0.390 (2)0.042 (7)*
H30.344 (2)0.188 (4)0.097 (2)0.044 (7)*
H40.3537 (16)0.188 (4)0.004 (2)0.030 (6)*
H50.4172 (19)0.065 (5)0.087 (2)0.047 (7)*
H4A0.4095 (17)0.485 (3)0.089 (2)0.047 (7)*
H4B0.4828 (17)0.362 (4)0.0571 (18)0.048 (7)*
H5A0.5592 (18)0.214 (3)0.227 (2)0.047 (8)*
H5B0.569 (2)0.463 (4)0.236 (3)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (8)0.0512 (10)0.0242 (7)0.0071 (6)0.0165 (6)0.0040 (6)
O20.0308 (7)0.0456 (9)0.0290 (7)0.0050 (6)0.0190 (6)0.0014 (6)
N10.0266 (8)0.0301 (9)0.0259 (8)0.0013 (6)0.0140 (7)0.0017 (6)
N20.0313 (9)0.0485 (12)0.0342 (9)0.0062 (8)0.0177 (8)0.0068 (8)
N30.0291 (9)0.0466 (11)0.0252 (8)0.0054 (8)0.0146 (7)0.0011 (8)
C10.0244 (9)0.0239 (9)0.0246 (9)0.0015 (7)0.0137 (7)0.0007 (7)
C20.0294 (9)0.0277 (10)0.0276 (9)0.0018 (7)0.0193 (8)0.0021 (7)
C30.0293 (9)0.0253 (10)0.0277 (9)0.0002 (7)0.0166 (8)0.0001 (7)
N40.0240 (8)0.0377 (10)0.0241 (8)0.0032 (7)0.0125 (7)0.0015 (7)
C40.0398 (11)0.0415 (13)0.0271 (10)0.0058 (9)0.0139 (9)0.0004 (9)
C50.0353 (11)0.0472 (14)0.0338 (11)0.0078 (10)0.0155 (9)0.0015 (10)
Geometric parameters (Å, º) top
O1—N11.299 (2)N4—H30.95 (3)
O2—C31.239 (2)N4—H40.89 (3)
N1—C11.311 (2)N4—H50.94 (3)
N2—C21.151 (3)C4—C51.530 (3)
N3—C31.337 (3)C4—H4A1.033 (19)
N3—H10.84 (2)C4—H4B1.055 (19)
N3—H20.82 (2)C5—C5i1.523 (5)
C1—C21.436 (3)C5—H5A1.054 (19)
C1—C31.482 (3)C5—H5B1.06 (2)
N4—C41.493 (3)
O1—N1—C1117.74 (16)H3—N4—H5107 (2)
C3—N3—H1118.4 (19)H4—N4—H5106 (2)
C3—N3—H2115 (2)N4—C4—C5112.84 (18)
H1—N3—H2127 (3)N4—C4—H4A106.9 (15)
N1—C1—C2123.02 (17)C5—C4—H4A113.0 (15)
N1—C1—C3118.77 (17)N4—C4—H4B105.3 (16)
C2—C1—C3118.17 (16)C5—C4—H4B109.1 (15)
N2—C2—C1177.8 (2)H4A—C4—H4B109 (2)
O2—C3—N3123.71 (19)C5i—C5—C4112.2 (2)
O2—C3—C1119.78 (17)C5i—C5—H5A106.6 (16)
N3—C3—C1116.52 (17)C4—C5—H5A111.4 (16)
C4—N4—H3112.9 (17)C5i—C5—H5B106.9 (19)
C4—N4—H4111.0 (16)C4—C5—H5B112.9 (19)
H3—N4—H4105 (2)H5A—C5—H5B107 (3)
C4—N4—H5113.9 (17)
O1—N1—C1—C20.5 (3)N1—C1—C3—N32.2 (3)
O1—N1—C1—C3178.10 (17)C2—C1—C3—N3175.57 (18)
N1—C1—C3—O2177.87 (18)N4—C4—C5—C5i63.72 (19)
C2—C1—C3—O24.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3···O10.95 (3)1.84 (3)2.770 (2)164 (2)
N4—H4···O1ii0.89 (3)1.92 (3)2.765 (2)156 (2)
N4—H5···N2iii0.94 (3)2.29 (3)3.157 (3)152 (2)
N4—H5···O2iv0.94 (3)2.40 (3)2.959 (2)118 (2)
N3—H1···O2v0.84 (2)2.07 (2)2.910 (2)174 (3)
C4—H4A···O2vi1.03 (2)2.55 (2)3.535 (3)158 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1/2.
Hexane-1,6-bis(aminium) bis(nitrosocarbamoylcyanomethanide) (4) top
Crystal data top
C6H18N22+·2C3H2N3O2F(000) = 364
Mr = 342.37Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.6121 (2) ÅCell parameters from 10650 reflections
b = 16.8608 (7) Åθ = 3.1–27.9°
c = 10.7931 (7) ŵ = 0.11 mm1
β = 93.853 (3)°T = 173 K
V = 837.41 (7) Å3Prism, yellow
Z = 20.36 × 0.22 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1426 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 27.9°, θmin = 3.1°
φ and ω scansh = 66
10650 measured reflectionsk = 2122
1986 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.121All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1378P]
where P = (Fo2 + 2Fc2)/3
1986 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7069 (3)0.07305 (7)0.55695 (11)0.0277 (3)
O20.4448 (3)0.29146 (7)0.77739 (12)0.0294 (3)
N10.5527 (3)0.10502 (8)0.64100 (13)0.0238 (3)
N20.9065 (4)0.26530 (10)0.52539 (16)0.0379 (4)
N30.2353 (4)0.17321 (10)0.81457 (16)0.0331 (4)
C10.5723 (4)0.18219 (9)0.65637 (15)0.0205 (4)
C20.7544 (4)0.22996 (10)0.58450 (16)0.0241 (4)
C30.4106 (4)0.22024 (10)0.75425 (16)0.0229 (4)
N41.1324 (3)0.08464 (9)0.38570 (14)0.0207 (3)
C40.9393 (4)0.06561 (11)0.27341 (16)0.0229 (4)
C51.1114 (4)0.03861 (11)0.16663 (16)0.0225 (4)
C60.9178 (4)0.01911 (10)0.05096 (15)0.0224 (4)
H10.137 (5)0.1922 (14)0.877 (3)0.058 (7)*
H20.223 (4)0.1257 (14)0.791 (2)0.041 (6)*
H31.016 (4)0.0986 (11)0.4508 (19)0.029 (5)*
H41.230 (5)0.0398 (13)0.4093 (18)0.035 (5)*
H51.247 (4)0.1238 (12)0.3683 (19)0.031 (5)*
H4A0.808 (4)0.0237 (10)0.2982 (16)0.023 (5)*
H4B0.827 (4)0.1103 (11)0.2539 (17)0.023 (5)*
H5A1.230 (4)0.0060 (11)0.1934 (17)0.028 (5)*
H5B1.238 (4)0.0800 (12)0.1474 (19)0.033 (5)*
H6A0.823 (4)0.0668 (10)0.0210 (16)0.017 (4)*
H6B0.767 (4)0.0159 (11)0.0700 (17)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (7)0.0256 (6)0.0259 (7)0.0020 (5)0.0096 (6)0.0039 (5)
O20.0338 (7)0.0212 (6)0.0346 (7)0.0008 (5)0.0114 (6)0.0059 (5)
N10.0233 (8)0.0257 (7)0.0225 (8)0.0033 (6)0.0030 (6)0.0017 (6)
N20.0450 (10)0.0360 (9)0.0344 (10)0.0035 (8)0.0159 (8)0.0006 (7)
N30.0426 (10)0.0236 (8)0.0355 (10)0.0030 (7)0.0198 (8)0.0037 (7)
C10.0214 (9)0.0196 (8)0.0207 (9)0.0005 (6)0.0029 (7)0.0006 (6)
C20.0285 (9)0.0212 (8)0.0230 (9)0.0037 (7)0.0060 (8)0.0042 (7)
C30.0223 (9)0.0242 (9)0.0224 (9)0.0013 (7)0.0034 (7)0.0012 (7)
N40.0253 (8)0.0186 (7)0.0189 (8)0.0004 (6)0.0063 (6)0.0013 (6)
C40.0219 (9)0.0244 (9)0.0224 (9)0.0012 (7)0.0019 (7)0.0020 (7)
C50.0233 (9)0.0247 (9)0.0196 (9)0.0010 (7)0.0014 (7)0.0021 (7)
C60.0243 (9)0.0226 (9)0.0202 (9)0.0007 (7)0.0004 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—N11.3061 (18)N4—H40.91 (2)
O2—C31.234 (2)N4—H50.87 (2)
N1—C11.314 (2)C4—C51.513 (2)
N2—C21.147 (2)C4—H4A0.980 (19)
N3—C31.333 (2)C4—H4B0.932 (18)
N3—H10.90 (3)C5—C61.521 (2)
N3—H20.84 (2)C5—H5A0.963 (19)
C1—C21.429 (2)C5—H5B0.94 (2)
C1—C31.480 (2)C6—C6i1.521 (3)
N4—C41.490 (2)C6—H6A0.961 (17)
N4—H30.94 (2)C6—H6B0.94 (2)
O1—N1—C1117.41 (14)N4—C4—H4A106.3 (10)
C3—N3—H1120.6 (16)C5—C4—H4A111.0 (10)
C3—N3—H2116.9 (15)N4—C4—H4B107.7 (11)
H1—N3—H2123 (2)C5—C4—H4B112.6 (11)
N1—C1—C2121.83 (15)H4A—C4—H4B107.3 (15)
N1—C1—C3119.07 (14)C4—C5—C6112.40 (15)
C2—C1—C3119.06 (14)C4—C5—H5A108.8 (11)
N2—C2—C1177.00 (18)C6—C5—H5A111.6 (11)
O2—C3—N3123.57 (17)C4—C5—H5B108.1 (12)
O2—C3—C1120.19 (15)C6—C5—H5B108.5 (12)
N3—C3—C1116.23 (16)H5A—C5—H5B107.2 (16)
C4—N4—H3108.7 (11)C6i—C6—C5113.04 (18)
C4—N4—H4107.8 (13)C6i—C6—H6A110.5 (10)
H3—N4—H4107.1 (17)C5—C6—H6A108.9 (10)
C4—N4—H5109.0 (13)C6i—C6—H6B107.6 (11)
H3—N4—H5110.8 (18)C5—C6—H6B110.9 (11)
H4—N4—H5113.3 (19)H6A—C6—H6B105.6 (15)
N4—C4—C5111.65 (15)
O1—N1—C1—C20.0 (2)N1—C1—C3—N35.1 (2)
O1—N1—C1—C3177.46 (14)C2—C1—C3—N3177.31 (16)
N1—C1—C3—O2173.90 (16)N4—C4—C5—C6179.84 (14)
C2—C1—C3—O23.6 (2)C4—C5—C6—C6i171.84 (18)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3···O10.94 (2)1.94 (2)2.792 (2)149.9 (16)
N4—H4···O1ii0.91 (2)1.96 (2)2.8178 (19)158.2 (18)
N4—H5···O2iii0.87 (2)1.99 (2)2.834 (2)162.3 (18)
N3—H1···N2iv0.90 (3)2.10 (3)3.003 (3)179 (2)
C4—H4B···O2v0.932 (18)2.443 (19)3.321 (2)156.9 (15)
C5—H5A···N1ii0.963 (19)2.597 (19)3.485 (2)153.4 (15)
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y+1/2, z1/2; (iv) x1, y+1/2, z+1/2; (v) x, y+1/2, z1/2.
Geometry of ππ stacking interactions (Å, °) for (1)–(4) top
CompoundInterlayer spacingStacked (ccnm)- MoietiesaSeparation between the anionsbShortest contactsInterplanar anglecSlippage angled
(1)3.42A/B3.475 (3)3.298 (2)022.2 (2)
A/C4.412 (3)3.333 (2)043.6 (2)
A/D5.323 (3)3.372 (3)052.1 (2)
(2)3.58A/B3.800 (2)3.328 (2)13.01 (2)15.1 (2)
(3)3.39A/B3.742 (2)3.196 (3)27.89 (3)38.1 (2)
(4)3.62A/B4.612 (2)3.356 (3)043.4 (3)
A/C5.861 (2)3.442 (2)18.22 (5)50.1 (3)
Notes: (a) the components of the stacks are indicated accordingly to Fig. 11; (b) defined by the distance between the central methanide atoms C1 of two stacked moieties; (c) the dihedral angle between the mean planes of two stacked anions; (d) the angle, which is subtended by the C1 (group 1)/C1 (group 2) vector to the plane normal.
Selected geometry parameters of the (ccnm)- of ions (Å, °) for (1)–(4) top
(1)(2)(3)(4)
O1—N11.3081 (17)1.3120 (16)1.299 (2)1.3061 (18)
O2—C31.2479 (17)1.2396 (19)1.239 (2)1.234 (2)
N1—C11.3084 (18)1.3129 (19)1.311 (2)1.314 (2)
N2—C21.134 (2)1.148 (2)1.151 (3)1.147 (2)
C1—C21.428 (2)1.427 (2)1.436 (3)1.429 (2)
C1—C31.4747 (19)1.480 (2)1.482 (3)1.480 (2)
O1—N1—C1116.64 (12)116.02 (12)117.74 (16)117.41 (14)
N1—C1—C2122.37 (13)121.57 (14)123.02 (17)121.83 (15)
N1—C1—C3119.26 (13)120.90 (14)118.77 (17)119.07 (14)
N2—C2—C1177.23 (18)177.70 (17)177.8 (2)177.00 (18)
O1—N1—C1—C21.3 (2)-0.2 (2)-0.5 (3)0.0 (2)
N1—C1—C3—O2177.99 (14)179.48 (13)-177.87 (18)173.90 (16)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds