Download citation
Download citation
link to html
Thermal analysis, X-ray diffraction and temperature-dependent IR spectroscopy were used to study the dehydration process of crystalline DL-phenyl­glycinium tri­fluoro­methane­sulfonate monohydrate (PGTFH), C8H10NO2+·CF3SO3·H2O. PGTFH dehydrates in one step centred at 353 K and crystallizes in the monoclinic space group C2/c, whereas the anhydrous compound (PGTF) crystallizes in the triclinic space group P\overline{1}. The dehydration process in PGTFH is preceded by a weakening of both the noncovalent aromatic–aromatic inter­actions and the packing contacts. This process is accom­panied by the breakage of medium-strength O—H...O hydrogen bonds between ions inside layers and a reorganization of the ions within the layers. This reorganization results in the formation of two different ion pairs (DL-phenyl­glycinium tri­fluoro­methane­sulfonate) and the formation of a new hydrogen-bond network. The dehydration process does not destroy the nature of the crystal structure. Both crystals, i.e. hydrated and anhydrous, have a layered structure, although the layers of each crystal are arranged somewhat differently.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619014402/jx3047sup1.cif
Contains datablocks ptfh_abs_twin1_hklf4, ptf_1, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619014402/jx3047ptfh_abs_twin1_hklf4sup2.hkl
Contains datablock ptfh_abs_twin1_hklf4

cdx

Chemdraw file https://doi.org/10.1107/S2053229619014402/jx3047ptfh_abs_twin1_hklf4sup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619014402/jx3047ptf_1sup3.hkl
Contains datablock ptf_1

cdx

Chemdraw file https://doi.org/10.1107/S2053229619014402/jx3047ptf_1sup5.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619014402/jx3047sup6.pdf
Additional tables, information and figures

CCDC references: 1902197; 1902198

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

DL-Phenylglycinium trifluoromethanesulfonate monohydrate (ptfh_abs_twin1_hklf4) top
Crystal data top
C8H10NO2+·CF3O3S·H2OF(000) = 1312
Mr = 319.26Dx = 1.589 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.804 (5) ÅCell parameters from 3549 reflections
b = 5.792 (2) Åθ = 3.7–29.0°
c = 24.523 (6) ŵ = 0.30 mm1
β = 92.57 (3)°T = 100 K
V = 2668.2 (13) Å3Plate, colourless
Z = 80.42 × 0.37 × 0.08 mm
Data collection top
Rigaku Xcalibur Atlas
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.6249 pixels mm-1θmax = 29.4°, θmin = 3.7°
ω scansh = 2424
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2018)
k = 57
Tmin = 0.891, Tmax = 0.974l = 3228
8083 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0884P)2 + 2.4562P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3085 reflectionsΔρmax = 0.52 e Å3
191 parametersΔρmin = 0.53 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal XRD measurements for hydrated form PGTFH and anhydrous form PGTF were performed on an Xcalibur CCD diffractometer (Mo Kα radiation, λ = 0.71073 nm). The crystallographic data for PGTFH were collected at 100 K. CrysAlis CCD and CrysAlis RED were used for data collection and reduction (Rigaku OD, 2015). The crystal structure was solved and refined using the SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software packages. Non-hydrogen bonded atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.49397 (3)0.20005 (11)0.41586 (2)0.01486 (18)
O1A0.55588 (10)0.0539 (3)0.42069 (7)0.0241 (4)
O2A0.43939 (10)0.1506 (3)0.45376 (7)0.0230 (4)
O3A0.50941 (9)0.4451 (3)0.41086 (7)0.0186 (4)
C1A0.45288 (15)0.1260 (5)0.34933 (11)0.0248 (6)
F1A0.43419 (10)0.0963 (3)0.34787 (6)0.0343 (5)
F2A0.39490 (11)0.2523 (4)0.33923 (8)0.0467 (6)
F3A0.49720 (11)0.1635 (4)0.30971 (7)0.0443 (6)
O1B0.28684 (9)0.8192 (3)0.41034 (7)0.0192 (4)
H1B0.3257960.7824110.4260840.029*
O2B0.26903 (9)1.0031 (3)0.48952 (7)0.0170 (4)
C1B0.24969 (13)0.9442 (4)0.44343 (9)0.0137 (5)
C2B0.17706 (12)1.0075 (4)0.41768 (9)0.0145 (5)
H2B0.1497780.8620430.4100040.017*
N1B0.13842 (11)1.1464 (4)0.45883 (8)0.0148 (4)
H1BC0.1219741.0505260.4848290.018*
H1BB0.1011251.2213700.4418210.018*
H1BA0.1687591.2514150.4747640.018*
C3B0.18124 (14)1.1420 (5)0.36488 (10)0.0163 (5)
C4B0.22151 (15)1.3414 (5)0.36345 (10)0.0216 (6)
H4B0.2484521.3896780.3951100.026*
C5B0.22272 (16)1.4717 (5)0.31577 (11)0.0254 (6)
H5B0.2501751.6092300.3150000.030*
C6B0.18404 (16)1.4008 (5)0.26972 (11)0.0275 (6)
H6B0.1851791.4890750.2371170.033*
C7B0.14350 (16)1.2013 (6)0.27080 (11)0.0286 (7)
H7B0.1167871.1532130.2390050.034*
C8B0.14190 (15)1.0707 (5)0.31863 (10)0.0237 (6)
H8B0.1140610.9340210.3195120.028*
O1W0.40477 (10)0.6858 (4)0.46303 (7)0.0176 (4)
H1W0.420 (2)0.813 (8)0.4692 (15)0.045 (12)*
H2W0.437 (3)0.599 (8)0.4450 (17)0.069 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0104 (3)0.0164 (3)0.0177 (3)0.0006 (2)0.0001 (2)0.0003 (2)
O1A0.0169 (10)0.0214 (10)0.0334 (10)0.0068 (8)0.0046 (8)0.0016 (8)
O2A0.0228 (11)0.0204 (10)0.0263 (10)0.0049 (8)0.0088 (8)0.0023 (7)
O3A0.0130 (9)0.0178 (10)0.0251 (9)0.0031 (7)0.0011 (7)0.0012 (7)
C1A0.0200 (14)0.0309 (16)0.0232 (13)0.0044 (12)0.0030 (10)0.0027 (11)
F1A0.0406 (11)0.0309 (10)0.0310 (9)0.0151 (8)0.0031 (7)0.0077 (7)
F2A0.0337 (11)0.0524 (14)0.0515 (11)0.0037 (9)0.0268 (9)0.0046 (9)
F3A0.0516 (14)0.0612 (15)0.0208 (9)0.0245 (11)0.0077 (8)0.0041 (8)
O1B0.0086 (9)0.0249 (11)0.0241 (9)0.0053 (7)0.0003 (7)0.0022 (7)
O2B0.0127 (9)0.0162 (10)0.0218 (9)0.0006 (7)0.0022 (6)0.0007 (7)
C1B0.0086 (11)0.0110 (12)0.0217 (12)0.0011 (9)0.0022 (8)0.0010 (9)
C2B0.0094 (12)0.0157 (13)0.0182 (12)0.0002 (9)0.0007 (8)0.0017 (9)
N1B0.0078 (10)0.0173 (11)0.0193 (10)0.0001 (8)0.0002 (7)0.0011 (8)
C3B0.0104 (11)0.0188 (13)0.0199 (12)0.0025 (10)0.0017 (9)0.0008 (9)
C4B0.0191 (14)0.0247 (15)0.0211 (12)0.0013 (11)0.0001 (10)0.0007 (10)
C5B0.0283 (16)0.0220 (15)0.0260 (14)0.0000 (12)0.0032 (11)0.0023 (11)
C6B0.0278 (16)0.0315 (17)0.0234 (14)0.0088 (13)0.0029 (11)0.0078 (11)
C7B0.0255 (15)0.0392 (18)0.0205 (13)0.0005 (13)0.0041 (11)0.0001 (12)
C8B0.0177 (14)0.0301 (17)0.0231 (13)0.0038 (12)0.0019 (10)0.0005 (11)
O1W0.0110 (9)0.0171 (10)0.0250 (9)0.0027 (8)0.0023 (7)0.0005 (7)
Geometric parameters (Å, º) top
S1A—O1A1.440 (2)N1B—H1BB0.9100
S1A—O2A1.4439 (19)N1B—H1BA0.9100
S1A—O3A1.455 (2)C3B—C4B1.382 (4)
S1A—C1A1.825 (3)C3B—C8B1.389 (4)
C1A—F1A1.335 (3)C4B—H4B0.9500
C1A—F2A1.327 (4)C4B—C5B1.393 (4)
C1A—F3A1.326 (3)C5B—H5B0.9500
O1B—H1B0.8400C5B—C6B1.378 (4)
O1B—C1B1.312 (3)C6B—H6B0.9500
O2B—C1B1.221 (3)C6B—C7B1.385 (5)
C1B—C2B1.523 (3)C7B—H7B0.9500
C2B—H2B1.0000C7B—C8B1.397 (4)
C2B—N1B1.503 (3)C8B—H8B0.9500
C2B—C3B1.516 (3)O1W—H1W0.80 (5)
N1B—H1BC0.9100O1W—H2W0.91 (5)
O1A—S1A—O2A115.19 (12)C2B—N1B—H1BA109.5
O1A—S1A—O3A114.63 (11)H1BC—N1B—H1BB109.5
O1A—S1A—C1A104.11 (13)H1BC—N1B—H1BA109.5
O2A—S1A—O3A113.46 (11)H1BB—N1B—H1BA109.5
O2A—S1A—C1A104.13 (12)C4B—C3B—C2B120.0 (2)
O3A—S1A—C1A103.42 (12)C4B—C3B—C8B120.0 (2)
F1A—C1A—S1A110.56 (18)C8B—C3B—C2B119.9 (2)
F2A—C1A—S1A110.4 (2)C3B—C4B—H4B119.9
F2A—C1A—F1A108.3 (2)C3B—C4B—C5B120.2 (2)
F3A—C1A—S1A111.21 (19)C5B—C4B—H4B119.9
F3A—C1A—F1A108.2 (2)C4B—C5B—H5B120.0
F3A—C1A—F2A108.1 (2)C6B—C5B—C4B119.9 (3)
C1B—O1B—H1B109.5C6B—C5B—H5B120.0
O1B—C1B—C2B111.6 (2)C5B—C6B—H6B119.9
O2B—C1B—O1B125.6 (2)C5B—C6B—C7B120.2 (3)
O2B—C1B—C2B122.8 (2)C7B—C6B—H6B119.9
C1B—C2B—H2B108.5C6B—C7B—H7B120.0
N1B—C2B—C1B107.57 (18)C6B—C7B—C8B120.0 (3)
N1B—C2B—H2B108.5C8B—C7B—H7B120.0
N1B—C2B—C3B110.1 (2)C3B—C8B—C7B119.6 (3)
C3B—C2B—C1B113.4 (2)C3B—C8B—H8B120.2
C3B—C2B—H2B108.5C7B—C8B—H8B120.2
C2B—N1B—H1BC109.5H1W—O1W—H2W110 (4)
C2B—N1B—H1BB109.5
O1A—S1A—C1A—F1A61.1 (2)C1B—C2B—C3B—C4B53.8 (3)
O1A—S1A—C1A—F2A179.15 (19)C1B—C2B—C3B—C8B129.3 (3)
O1A—S1A—C1A—F3A59.1 (2)C2B—C3B—C4B—C5B176.8 (2)
O2A—S1A—C1A—F1A60.0 (2)C2B—C3B—C8B—C7B177.1 (3)
O2A—S1A—C1A—F2A59.8 (2)N1B—C2B—C3B—C4B66.8 (3)
O2A—S1A—C1A—F3A179.8 (2)N1B—C2B—C3B—C8B110.1 (3)
O3A—S1A—C1A—F1A178.83 (19)C3B—C4B—C5B—C6B0.5 (4)
O3A—S1A—C1A—F2A59.0 (2)C4B—C3B—C8B—C7B0.2 (4)
O3A—S1A—C1A—F3A61.0 (2)C4B—C5B—C6B—C7B0.5 (4)
O1B—C1B—C2B—N1B179.1 (2)C5B—C6B—C7B—C8B0.2 (5)
O1B—C1B—C2B—C3B58.9 (3)C6B—C7B—C8B—C3B0.1 (5)
O2B—C1B—C2B—N1B0.1 (3)C8B—C3B—C4B—C5B0.1 (4)
O2B—C1B—C2B—C3B121.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1W0.841.792.632 (3)175
C2B—H2B···O1Ai1.002.533.481 (3)158
N1B—H1BC···O1Wii0.911.952.859 (3)172
N1B—H1BB···O1Aiii0.912.162.954 (3)145
N1B—H1BA···O2Biv0.912.022.925 (3)177
O1W—H1W···O2Av0.80 (5)2.03 (5)2.781 (3)156 (4)
O1W—H2W···O3A0.91 (5)1.86 (5)2.771 (3)174 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+5/2, z+1; (v) x, y+1, z.
DL-Phenylglycinium trifluoromethanesulfonate (ptf_1) top
Crystal data top
C8H10NO2+·CF3O3SZ = 4
Mr = 301.24F(000) = 616
Triclinic, P1Dx = 1.608 Mg m3
a = 10.485 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.635 (4) ÅCell parameters from 2218 reflections
c = 13.734 (5) Åθ = 3.1–25.9°
α = 104.79 (3)°µ = 0.31 mm1
β = 98.04 (3)°T = 373 K
γ = 118.07 (3)°Irregular
V = 1244.4 (9) Å3
Data collection top
Rigaku Xcalibur, Sapphire1, long nozzle
diffractometer
6208 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 8.4350 pixels mm-1θmax = 29.6°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1412
Tmin = 0.729, Tmax = 1.000l = 1718
14080 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.274 w = 1/[σ2(Fo2) + (0.0827P)2 + 1.8829P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6208 reflectionsΔρmax = 0.36 e Å3
372 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal XRD measurements for hydrated form PGTFH and anhydrous form PGTF were performed on an Xcalibur CCD diffractometer (Mo Kα radiation, λ = 0.71073 nm). The crystallographic data for PGTFH were collected at 100 K. CrysAlis CCD and CrysAlis RED were used for data collection and reduction (Rigaku OD, 2015). The crystal structure was solved and refined using the SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) software packages. Non-hydrogen bonded atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A10.10042 (17)0.21499 (17)0.87773 (12)0.0458 (4)
O1A10.0000 (5)0.0878 (5)0.9018 (4)0.0687 (13)
O2A10.1137 (6)0.3569 (5)0.9338 (3)0.0644 (12)
O3A10.2388 (5)0.2235 (6)0.8783 (4)0.0782 (15)
C1A10.0143 (9)0.1714 (9)0.7418 (5)0.0668 (19)
F1A10.0891 (7)0.2817 (7)0.7109 (4)0.130 (2)
F2A10.1203 (6)0.1570 (7)0.7276 (4)0.1218 (19)
F3A10.0049 (8)0.0489 (7)0.6779 (4)0.134 (2)
S1A20.55384 (18)0.65876 (17)0.84295 (12)0.0486 (4)
O1A20.6600 (5)0.6116 (5)0.8498 (4)0.0627 (14)0.948 (5)
O2A20.6213 (7)0.8183 (5)0.8697 (4)0.088 (2)0.948 (5)
O3A20.4361 (6)0.5851 (7)0.8858 (4)0.0863 (19)0.948 (5)
O1X20.487 (9)0.756 (9)0.878 (6)0.05 (2)*0.052 (5)
O2X20.539 (7)0.568 (7)0.890 (5)0.029 (16)*0.052 (5)
O3X20.727 (7)0.773 (7)0.880 (4)0.027 (15)*0.052 (5)
C1A20.4592 (8)0.5810 (8)0.7032 (5)0.0604 (17)
F1A20.3883 (8)0.4312 (6)0.6644 (4)0.112 (2)0.948 (5)
F2A20.5500 (6)0.6274 (9)0.6476 (4)0.125 (3)0.948 (5)
F3A20.3567 (6)0.6142 (7)0.6811 (4)0.112 (2)0.948 (5)
F1X20.493 (6)0.699 (6)0.669 (4)0.030 (14)*0.052 (5)
F2X20.322 (5)0.470 (6)0.663 (3)0.019 (12)*0.052 (5)
F3X20.527 (7)0.519 (7)0.667 (5)0.039 (15)*0.052 (5)
O1B10.0017 (5)0.5153 (5)0.8687 (4)0.0659 (13)
H1B10.0413840.4690280.8747480.099*
O2B10.2195 (5)0.7206 (5)0.9728 (4)0.0672 (13)
C1B10.0977 (7)0.6632 (7)0.9103 (5)0.0443 (13)
C2B10.0403 (6)0.7529 (6)0.8722 (4)0.0416 (13)
H2B10.0583930.7228940.8839740.050*
N1B10.1497 (5)0.9189 (5)0.9386 (3)0.0451 (11)
H1BA0.1493240.9350451.0053730.054*
H1BB0.1222080.9754980.9145370.054*
H1BC0.2425490.9448970.9352500.054*
C3B10.0209 (6)0.7258 (6)0.7572 (4)0.0433 (13)
C4B10.1023 (8)0.7115 (9)0.6943 (5)0.0688 (19)
H4B10.1751660.7162220.7239650.083*
C5B10.1223 (10)0.6905 (10)0.5902 (6)0.090 (3)
H5B10.2078070.6802180.5494640.108*
C6B10.0166 (11)0.6849 (9)0.5468 (6)0.084 (2)
H6B10.0288190.6711650.4757530.101*
C7B10.1093 (11)0.6994 (10)0.6074 (6)0.088 (3)
H7B10.1810300.6936760.5767510.106*
C8B10.1295 (8)0.7223 (9)0.7131 (5)0.069 (2)
H8B10.2162700.7353910.7543960.083*
O1B20.6019 (6)0.0230 (6)0.8074 (4)0.0758 (14)
H1B20.5826900.0478990.8280590.114*
O2B20.4404 (5)0.0472 (5)0.8888 (4)0.0602 (12)
C1B20.5346 (7)0.0933 (7)0.8460 (5)0.0471 (14)
C2B20.5930 (7)0.2413 (6)0.8265 (4)0.0435 (13)
H2B20.7037060.2939410.8438000.052*
N1B20.5548 (6)0.3384 (5)0.8983 (4)0.0485 (12)
H1BD0.5968530.3556090.9649500.058*
H1BE0.4544400.2908630.8842350.058*
H1BF0.5898930.4271850.8889130.058*
C3B20.5274 (7)0.2092 (7)0.7120 (4)0.0457 (14)
C4B20.6236 (9)0.2745 (9)0.6572 (5)0.070 (2)
H4B20.7274540.3397710.6906570.084*
C5B20.5626 (12)0.2411 (11)0.5505 (7)0.093 (3)
H5B20.6268680.2861250.5131420.112*
C6B20.4133 (11)0.1453 (10)0.5003 (6)0.084 (2)
H6B20.3747510.1224970.4286730.101*
C7B20.3197 (10)0.0825 (9)0.5554 (6)0.087 (3)
H7B20.2160230.0169210.5212580.105*
C8B20.3753 (8)0.1140 (8)0.6602 (5)0.070 (2)
H8B20.3090900.0704160.6968950.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A10.0514 (9)0.0479 (9)0.0497 (9)0.0294 (8)0.0193 (7)0.0262 (7)
O1A10.087 (3)0.051 (3)0.077 (3)0.031 (3)0.041 (3)0.041 (2)
O2A10.097 (4)0.052 (3)0.059 (3)0.052 (3)0.019 (3)0.021 (2)
O3A10.065 (3)0.118 (4)0.082 (3)0.064 (3)0.028 (3)0.048 (3)
C1A10.072 (5)0.080 (5)0.054 (4)0.040 (4)0.021 (4)0.031 (4)
F1A10.149 (5)0.144 (5)0.083 (3)0.048 (4)0.030 (3)0.083 (4)
F2A10.081 (3)0.185 (6)0.092 (4)0.078 (4)0.000 (3)0.037 (4)
F3A10.210 (7)0.133 (5)0.058 (3)0.115 (5)0.008 (3)0.002 (3)
S1A20.0564 (10)0.0419 (9)0.0478 (9)0.0250 (8)0.0125 (7)0.0210 (7)
O1A20.073 (3)0.073 (3)0.062 (3)0.049 (3)0.015 (3)0.034 (3)
O2A20.102 (5)0.036 (3)0.098 (4)0.031 (3)0.016 (3)0.019 (3)
O3A20.076 (4)0.104 (5)0.062 (3)0.027 (3)0.037 (3)0.038 (3)
C1A20.070 (5)0.063 (5)0.063 (4)0.045 (4)0.022 (4)0.021 (4)
F1A20.144 (6)0.078 (4)0.076 (3)0.059 (4)0.010 (3)0.006 (3)
F2A20.103 (4)0.228 (7)0.073 (3)0.085 (5)0.044 (3)0.093 (4)
F3A20.114 (4)0.169 (6)0.078 (3)0.113 (4)0.002 (3)0.022 (3)
O1B10.063 (3)0.036 (2)0.085 (3)0.023 (2)0.000 (3)0.019 (2)
O2B10.061 (3)0.057 (3)0.076 (3)0.032 (2)0.005 (3)0.024 (2)
C1B10.047 (4)0.040 (3)0.050 (3)0.022 (3)0.015 (3)0.024 (3)
C2B10.042 (3)0.037 (3)0.044 (3)0.020 (3)0.013 (3)0.015 (3)
N1B10.055 (3)0.037 (3)0.046 (3)0.026 (2)0.015 (2)0.016 (2)
C3B10.041 (3)0.035 (3)0.050 (3)0.016 (3)0.012 (3)0.019 (3)
C4B10.060 (4)0.096 (6)0.059 (4)0.048 (4)0.014 (4)0.029 (4)
C5B10.098 (6)0.125 (8)0.052 (5)0.067 (6)0.009 (5)0.030 (5)
C6B10.123 (8)0.074 (5)0.043 (4)0.047 (5)0.017 (5)0.020 (4)
C7B10.103 (7)0.121 (7)0.070 (5)0.071 (6)0.051 (5)0.041 (5)
C8B10.066 (4)0.097 (6)0.057 (4)0.050 (4)0.025 (4)0.030 (4)
O1B20.108 (4)0.063 (3)0.090 (4)0.059 (3)0.046 (3)0.041 (3)
O2B20.055 (3)0.056 (3)0.076 (3)0.024 (2)0.025 (2)0.041 (2)
C1B20.052 (4)0.045 (3)0.049 (3)0.028 (3)0.011 (3)0.023 (3)
C2B20.053 (3)0.040 (3)0.047 (3)0.027 (3)0.019 (3)0.022 (3)
N1B20.058 (3)0.043 (3)0.053 (3)0.030 (3)0.018 (3)0.024 (2)
C3B20.057 (4)0.045 (3)0.044 (3)0.029 (3)0.017 (3)0.025 (3)
C4B20.074 (5)0.090 (5)0.065 (5)0.045 (4)0.036 (4)0.047 (4)
C5B20.107 (7)0.123 (8)0.068 (5)0.060 (7)0.047 (5)0.053 (5)
C6B20.108 (7)0.079 (6)0.046 (4)0.038 (5)0.009 (5)0.024 (4)
C7B20.086 (6)0.082 (6)0.056 (5)0.024 (5)0.009 (4)0.025 (4)
C8B20.062 (5)0.078 (5)0.052 (4)0.019 (4)0.014 (4)0.035 (4)
Geometric parameters (Å, º) top
S1A1—O1A11.426 (4)C3B1—C8B11.374 (8)
S1A1—O2A11.439 (4)C4B1—H4B10.9300
S1A1—O3A11.409 (5)C4B1—C5B11.359 (10)
S1A1—C1A11.791 (7)C5B1—H5B10.9300
C1A1—F1A11.285 (8)C5B1—C6B11.347 (11)
C1A1—F2A11.326 (8)C6B1—H6B10.9300
C1A1—F3A11.276 (8)C6B1—C7B11.376 (11)
S1A2—O1A21.421 (4)C7B1—H7B10.9300
S1A2—O2A21.412 (5)C7B1—C8B11.377 (10)
S1A2—O3A21.419 (5)C8B1—H8B10.9300
S1A2—O1X21.52 (7)O1B2—H1B20.8200
S1A2—O2X21.26 (6)O1B2—C1B21.318 (7)
S1A2—O3X21.54 (6)O2B2—C1B21.191 (7)
S1A2—C1A21.800 (7)C1B2—C2B21.509 (7)
C1A2—F1A21.310 (8)C2B2—H2B20.9800
C1A2—F2A21.297 (8)C2B2—N1B21.476 (7)
C1A2—F3A21.301 (7)C2B2—C3B21.505 (7)
C1A2—F1X21.36 (5)N1B2—H1BD0.8900
C1A2—F2X21.27 (5)N1B2—H1BE0.8900
C1A2—F3X21.25 (6)N1B2—H1BF0.8900
O1B1—H1B10.8200C3B2—C4B21.373 (8)
O1B1—C1B11.312 (7)C3B2—C8B21.367 (9)
O2B1—C1B11.197 (7)C4B2—H4B20.9300
C1B1—C2B11.501 (7)C4B2—C5B21.393 (10)
C2B1—H2B10.9800C5B2—H5B20.9300
C2B1—N1B11.498 (7)C5B2—C6B21.343 (12)
C2B1—C3B11.497 (7)C6B2—H6B20.9300
N1B1—H1BA0.8900C6B2—C7B21.353 (11)
N1B1—H1BB0.8900C7B2—H7B20.9300
N1B1—H1BC0.8900C7B2—C8B21.364 (9)
C3B1—C4B11.369 (8)C8B2—H8B20.9300
O1A1—S1A1—O2A1114.5 (3)C4B1—C3B1—C2B1120.7 (5)
O1A1—S1A1—C1A1105.5 (3)C4B1—C3B1—C8B1118.1 (6)
O2A1—S1A1—C1A1104.5 (3)C8B1—C3B1—C2B1121.1 (5)
O3A1—S1A1—O1A1111.9 (3)C3B1—C4B1—H4B1118.7
O3A1—S1A1—O2A1115.4 (3)C5B1—C4B1—C3B1122.6 (7)
O3A1—S1A1—C1A1103.5 (3)C5B1—C4B1—H4B1118.7
F1A1—C1A1—S1A1112.2 (6)C4B1—C5B1—H5B1120.4
F1A1—C1A1—F2A1103.2 (7)C6B1—C5B1—C4B1119.1 (7)
F2A1—C1A1—S1A1110.9 (5)C6B1—C5B1—H5B1120.4
F3A1—C1A1—S1A1114.3 (5)C5B1—C6B1—H6B1119.9
F3A1—C1A1—F1A1108.3 (7)C5B1—C6B1—C7B1120.2 (7)
F3A1—C1A1—F2A1107.3 (7)C7B1—C6B1—H6B1119.9
O1A2—S1A2—C1A2103.2 (3)C6B1—C7B1—H7B1119.8
O2A2—S1A2—O1A2113.8 (3)C6B1—C7B1—C8B1120.3 (7)
O2A2—S1A2—O3A2117.2 (4)C8B1—C7B1—H7B1119.8
O2A2—S1A2—C1A2103.5 (3)C3B1—C8B1—C7B1119.7 (7)
O3A2—S1A2—O1A2113.0 (3)C3B1—C8B1—H8B1120.2
O3A2—S1A2—C1A2103.9 (3)C7B1—C8B1—H8B1120.2
O1X2—S1A2—O3X2105 (4)C1B2—O1B2—H1B2109.5
O1X2—S1A2—C1A298 (3)O1B2—C1B2—C2B2109.9 (5)
O2X2—S1A2—O1X2114 (4)O2B2—C1B2—O1B2125.5 (5)
O2X2—S1A2—O3X2103 (4)O2B2—C1B2—C2B2124.5 (5)
O2X2—S1A2—C1A2119 (3)C1B2—C2B2—H2B2108.6
O3X2—S1A2—C1A2117 (2)N1B2—C2B2—C1B2108.1 (4)
F1A2—C1A2—S1A2111.9 (5)N1B2—C2B2—H2B2108.6
F2A2—C1A2—S1A2113.8 (5)N1B2—C2B2—C3B2112.5 (4)
F2A2—C1A2—F1A2105.5 (6)C3B2—C2B2—C1B2110.3 (5)
F2A2—C1A2—F3A2107.0 (6)C3B2—C2B2—H2B2108.6
F3A2—C1A2—S1A2112.1 (5)C2B2—N1B2—H1BD109.5
F3A2—C1A2—F1A2106.1 (7)C2B2—N1B2—H1BE109.5
F1X2—C1A2—S1A2109 (2)C2B2—N1B2—H1BF109.5
F2X2—C1A2—S1A2121 (2)H1BD—N1B2—H1BE109.5
F2X2—C1A2—F1X2115 (3)H1BD—N1B2—H1BF109.5
F3X2—C1A2—S1A2101 (3)H1BE—N1B2—H1BF109.5
F3X2—C1A2—F1X2107 (4)C4B2—C3B2—C2B2119.0 (6)
F3X2—C1A2—F2X2102 (4)C8B2—C3B2—C2B2121.9 (5)
C1B1—O1B1—H1B1109.5C8B2—C3B2—C4B2119.0 (6)
O1B1—C1B1—C2B1112.3 (5)C3B2—C4B2—H4B2120.6
O2B1—C1B1—O1B1123.9 (5)C3B2—C4B2—C5B2118.7 (7)
O2B1—C1B1—C2B1123.7 (5)C5B2—C4B2—H4B2120.6
C1B1—C2B1—H2B1108.4C4B2—C5B2—H5B2119.2
N1B1—C2B1—C1B1107.5 (5)C6B2—C5B2—C4B2121.5 (7)
N1B1—C2B1—H2B1108.4C6B2—C5B2—H5B2119.2
C3B1—C2B1—C1B1113.1 (5)C5B2—C6B2—H6B2120.4
C3B1—C2B1—H2B1108.4C5B2—C6B2—C7B2119.1 (7)
C3B1—C2B1—N1B1110.8 (4)C7B2—C6B2—H6B2120.4
C2B1—N1B1—H1BA109.5C6B2—C7B2—H7B2119.5
C2B1—N1B1—H1BB109.5C6B2—C7B2—C8B2120.9 (8)
C2B1—N1B1—H1BC109.5C8B2—C7B2—H7B2119.5
H1BA—N1B1—H1BB109.5C3B2—C8B2—H8B2119.7
H1BA—N1B1—H1BC109.5C7B2—C8B2—C3B2120.7 (7)
H1BB—N1B1—H1BC109.5C7B2—C8B2—H8B2119.7
O1A1—S1A1—C1A1—F1A1176.1 (6)O2B1—C1B1—C2B1—C3B1113.8 (7)
O1A1—S1A1—C1A1—F2A161.3 (6)C1B1—C2B1—C3B1—C4B1139.3 (6)
O1A1—S1A1—C1A1—F3A160.1 (7)C1B1—C2B1—C3B1—C8B144.0 (8)
O2A1—S1A1—C1A1—F1A154.9 (6)C2B1—C3B1—C4B1—C5B1178.4 (7)
O2A1—S1A1—C1A1—F2A159.8 (6)C2B1—C3B1—C8B1—C7B1179.1 (7)
O2A1—S1A1—C1A1—F3A1178.8 (6)N1B1—C2B1—C3B1—C4B199.9 (6)
O3A1—S1A1—C1A1—F1A166.2 (7)N1B1—C2B1—C3B1—C8B176.9 (7)
O3A1—S1A1—C1A1—F2A1179.0 (6)C3B1—C4B1—C5B1—C6B10.6 (13)
O3A1—S1A1—C1A1—F3A157.6 (7)C4B1—C3B1—C8B1—C7B12.2 (10)
O1A2—S1A2—C1A2—F1A261.5 (6)C4B1—C5B1—C6B1—C7B10.3 (13)
O1A2—S1A2—C1A2—F2A257.9 (6)C5B1—C6B1—C7B1—C8B11.1 (13)
O1A2—S1A2—C1A2—F3A2179.5 (6)C6B1—C7B1—C8B1—C3B12.1 (12)
O2A2—S1A2—C1A2—F1A2179.6 (6)C8B1—C3B1—C4B1—C5B11.5 (11)
O2A2—S1A2—C1A2—F2A261.0 (7)O1B2—C1B2—C2B2—N1B2162.1 (5)
O2A2—S1A2—C1A2—F3A260.6 (7)O1B2—C1B2—C2B2—C3B274.5 (6)
O3A2—S1A2—C1A2—F1A256.6 (6)O2B2—C1B2—C2B2—N1B218.7 (8)
O3A2—S1A2—C1A2—F2A2176.0 (6)O2B2—C1B2—C2B2—C3B2104.7 (7)
O3A2—S1A2—C1A2—F3A262.4 (6)C1B2—C2B2—C3B2—C4B2128.9 (6)
O1X2—S1A2—C1A2—F1X257 (4)C1B2—C2B2—C3B2—C8B249.5 (8)
O1X2—S1A2—C1A2—F2X279 (4)C2B2—C3B2—C4B2—C5B2178.3 (6)
O1X2—S1A2—C1A2—F3X2170 (4)C2B2—C3B2—C8B2—C7B2177.6 (6)
O2X2—S1A2—C1A2—F1X2179 (4)N1B2—C2B2—C3B2—C4B2110.3 (6)
O2X2—S1A2—C1A2—F2X245 (5)N1B2—C2B2—C3B2—C8B271.2 (7)
O2X2—S1A2—C1A2—F3X266 (5)C3B2—C4B2—C5B2—C6B21.0 (13)
O3X2—S1A2—C1A2—F1X254 (4)C4B2—C3B2—C8B2—C7B20.9 (11)
O3X2—S1A2—C1A2—F2X2170 (4)C4B2—C5B2—C6B2—C7B21.4 (14)
O3X2—S1A2—C1A2—F3X258 (4)C5B2—C6B2—C7B2—C8B20.7 (14)
O1B1—C1B1—C2B1—N1B1170.0 (5)C6B2—C7B2—C8B2—C3B20.5 (12)
O1B1—C1B1—C2B1—C3B167.3 (6)C8B2—C3B2—C4B2—C5B20.2 (10)
O2B1—C1B1—C2B1—N1B18.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B1—H1B1···O2A10.821.962.735 (6)159
N1B1—H1BA···O1A1i0.892.122.865 (6)141
N1B1—H1BB···O1A1ii0.892.142.973 (6)155
N1B1—H1BC···O2B2ii0.892.122.960 (6)157
O1B2—H1B2···O2A2iii0.821.852.614 (6)155
N1B2—H1BD···O3A2iv0.892.112.842 (7)139
N1B2—H1BE···O3A10.892.012.883 (7)168
N1B2—H1BF···O1A20.891.992.878 (6)173
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z+2.
Table 1 Thermodynamic parameters (Tonset, Tmax, ΔHonset and ΔSonset) for dehydration and melting processes estimated from DSC measurements top
ProcessTonseta (K)Tmaxa (K)ΔHonseta (kJ mol-1)ΔSonseta (J mol-1 K-1)
Dehydration/353.4/379.2/21.8/61.7
Solidliquid (1st cycle)456.3/461.3448.7/493.5-20.6/56.2-45.2/121.8
Solidliquid (2nd cycle)450.6/497.1444.0/503.6-20.1/26.2-44.5/52.7
Note: (a) the values given before and after `/' are related to the cooling and heating process, respectively.
Table 3 The wavenumbers (cm-1), IR and Raman intensities of the bands observed in the vibrational spectra of polycrystalline samples of the PGTFH and PGTF (after annealing) at room temperature top
PGTFHPGTFProposed assignmentsb,c
IR (cm-1)Ramana (cm-1)IR (cm-1)Ramana (cm-1)
3418 s shνasH2O(cryst)
3361 s bνasH2O(cryst)
3228 s3214 (2)3214 (2)νN—H···O
3164 s3165 (2)3191 s shνN—H···O
3160 vs bνOH (O—H···O)
3147 s sh3153 s b3150 (3)νN—H···O/ν8a(νCC) + ν19a(νCC)
3111 wν8b(νCC) + ν19a(νCC)
3103 w3098 s sh
3084 s sh3084 (10)
3079 (15)3074 (8)
3061 (8)3067 s sh3066 (13)ν2(νCH)
3051 (4)3054 s sh3055 (7)ν20b(νCH)
3046 vs bνOH (A) (O—H···Ow)
3042 s3042 (3)3041 s shν7a(νCH)
3024 (3)ν20a(νCH)
3019 (3)3020 (3)ν7b(νCH)
3002 (5)
2991 (2)2996 (4)
2968 s2970 (6)2975 s sh2980 (6)νCH/2 × ν19a(CC)
2974 (5) sh
2933 w sh
2869 m2852 w sh
2776 w
2728 vw2723 w
2697 vw sh
2672 w
2623 m b2624 w bνOH (B) (O—H···Ow)
2602 m2607 w b
2528 vw
1764 sh1763 (10) shνCO
1742 s1748 (19)νCO
1722 s1726 (7)νCO
1652 w bδH2O
1614 m1606 (22)1603 m1605 (33)ν8a(νCC)
15911591 (16)1590 (27)ν8b(νCC)
1582 wδasNH3+
1508 s shν19a(νCC)
1501 s1502 (2)1503 s1502 (14)ν19a(νCC)
1460 s1462 (2)1460 m1462 (15)ν19b(νCC) + ν14(νCC)
1456 w shδOH (O—H···Ow)
1420 w1423 (15)δsNH3+
1399 vwνC-O(H)
1358 w1357 (3)1356 m1357 (17)δCH
1347 s1344 (2)1341 wγCH + νNH3+
1307 vw sh1308 (2)1305 (17)ν3(νCH)
1284 vs1284 (18)
1277 vs1278 vs sh1270 (19)νasSO3
1266 vs1268 (9)1249 s1251 (19)νasSO3
1237 vsνC—O(H)
1227 vs1228 (14)1227 vs b1229 (30)νsCF3/νC—O(H)
1220 vs sh1213 (22)
1194 w1196 (19)1200 w sh1192 (29)ν(C—Cring) + νCH + νCN
1182 s1184 (6) sh1176 vsν9a(δCH)
1175 s1174 (6)1176 vs sh1172 (19)νasCF3
1159 w1160 (10)1158 s1158 (23)ν15(νCH)
1128 w1127 (2)δOH (O—H···Ow)
1111 vw1111 (3)1111 m1111 (18)νasSO3
1100 w1099 (3)1097 m1097 (17)νCN + ν18b(δCH)/γCH
1074 w1073 (2)1071 m1071 (17)ν18b(δCH) + νCN
1031 vs1037 (56)1034 vs1039 (85)νsSO3
1021 (18)10271017 (24)ν18a(δCH)
1003 (100)1008 vw1003 (100)ν12(δCC) + ν1(νCC)
991 vw992 (5)988 vw992 (21) shν5(νCH)
970 (2)963 vwν17a(νCH)
952 m bγOH (O—H···Ow)
922 w920 (3)921 m923 (17)ν17b(νCH)
888 m889 (4)882 m882 (19)ν1(νCC)
849 vw
833 w833 (11)827 m825 (26)2 × ν16a(δCC)
795 w bγOH (O—H···O)
766 s766 (38)766 w sh767 (52)δsCF3
761 mδsCF3
744 vw
737 m741 (9)727 (29)ν11(νCH) + νCOO + ν4(νCC)
697 s695 mνCCN + νCOO
672 vwτH2O, ρH2O
657 (17)
643 s652 (3)643 s646 (17)δsSO3
635 (3)637 s shδCOO
615 m616 (14)616 vw616 (30)ν(Cring—CN) + ν6b(νCC)/ν6a(νCC)
597 vwωH2O
583 sh585 (9)585 m584 (23)δsSO3
573 s577 (9)574 m sh575 (20)δasCF3
522 m525 w527 (16)ν16b(νCC) +ν(CCC)ringC
514 s513 (5) b512 m514 (17)δasSO3
498 m497 (21)tNH3+(dehydrated)
485 w484 (4)477 w479 (19)δCCO + νCC/skeletal vibrations
352 (25) sh352 (36) shρSO3
349 (27)348 (39)ρSO3
318 (22)322 (40)νCS
284 (4)270 (16)νr(NH3+)
222 (12)
Notes: (a) relative intensities are given in parentheses with respect to the most intense Raman band in the PGTFH and in the PGTF crystals spectra at 1003 cm-1, respectively. Their intensities were taken as 100. (b) Used symbols: vs = very strong, s = strong, m = medium, w = weak, vw = very weak, b = broad, sh = shoulder; ν = stretching (s = symmetric and as = asymmetric), δ = bending in plane, γ = bending out of plane, ρ = rocking, τ = torsion, ω = wagging and t = twisting. (c) The phenyl-ring internal vibrations are marked by symbols taken from Varsányi (1969) and Wojtkowiak & Chabanel (1977).
Table 3 Analysis of the fundamental (k = 0) modes of the PGTF crystal top
CiaNbATLC6H5CHNH3COOHCF3SO3-Selection rules
νPGνHνacIRRaman
Ag17401212108636iaxx,yy,zz,xy,xz,yz
Au1743912108636x,y,zia
Notes: (a) unit-cell symmetry; (b) abbreviations: N is the total number of modes, A are the acoustic modes, T are the translation modes, L are the libration modes; νPG are the internal vibrations of phenylglycine, νH are the modes of the proton in O—H···O hydrogen bonds and νac are the internal modes of the trifluoromethanesulfonate anion.
Table 2 Analysis of the fundamental (k = 0) modes of the PGTFH crystal top
C2haNbATLC6H5CHNH3COOHCF3SO3-H2OSelection rules
νPGνHνacνwIRRaman
Ag96099543183iaxx,yy,zz,xy
Bg96099543183iaxz,yz
Au96189543183zia
Bu96279543183x,yia
Notes: (a) unit-cell symmetry; (b) abbreviations: N is the total number of modes, A are the acoustic modes, T are the translation modes, L are the libration modes; νPG are the internal vibrations of phenylglycine, νH are the modes of the proton in O—H···O hydrogen bonds, νac are the internal modes of the trifluoromethanesulfonate anion and νw are the internal vibrations of water molecules.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds