Download citation
Download citation
link to html
Two new N-oxide compounds, namely glycinium 2-carb­oxy-1-(λ1-oxidane­yl)-1λ4-pyridine-6-carboxyl­ate–glycine–water (1/1/1), C2H6NO2+·C7H4NO5·C2H5NO2·H2O or [(2,6-HpydcO)(HGLY)(GLY)(H2O)], 1, and methyl 6-carb­oxy-1-(λ1-oxidane­yl)-1λ4-pyridine-2-carboxyl­ate, C8H7NO5 or 2,6-HMepydcO, 2, were prepared and identified by elemental analysis, FT–IR, Raman spectroscopy and single-crystal X-ray diffraction. The X-ray analysis of 1 revealed an ionic compound containing a 2,6-HpydcO anion, a glycinium cation, a neutral gly­cine mol­ecule and a water mol­ecule. Compound 2 is a neutral compound with two independent units in its crystal structure. In addition to the hydrogen bonds, the crystal network is stabilized by π–π stacking inter­actions of the types pyridine–carboxyl­ate and carboxyl­ate–carboxyl­ate. The thermodynamic stability and charge-distribution patterns for isolated mol­ecules of 2,6-H2pydcO and 2,6-HMepydcO, and their two similar derivatives, pyridine-2,6-di­carb­oxy­lic acid (2,6-H2pydc) and dimethyl 1-(λ1-oxidane­yl)-1λ4-pyridine-2,6-di­carboxyl­ate (2,6-Me2pydcO), were studied by density functional theory (DFT) and natural bond orbital (NBO) analysis, respectively. The ability of these compounds and their analogues to inter­act with nine selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) was investigated using docking calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619006375/jx3030sup1.cif
Contains datablocks global, 1, 1_1, 1_2, 1_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619006375/jx30301sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619006375/jx30302sup3.hkl
Contains datablock 2

CCDC references: 1878768; 1878767

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

Glycinium 2-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-6-carboxylate–glycine–water (1/1/1) (1) top
Crystal data top
C2H6NO2+·C7H4NO5·C2H5NO2·H2OF(000) = 736
Mr = 351.2Dx = 1.594 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2acCell parameters from 6609 reflections
a = 10.9307 (3) Åθ = 4.2–74.2°
b = 10.4069 (4) ŵ = 1.25 mm1
c = 12.8686 (4) ÅT = 95 K
V = 1463.86 (8) Å3Polygonal shape, colourless
Z = 40.49 × 0.06 × 0.03 × 0.06 (radius) mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an AtlasS2 detector
2482 independent reflections
Radiation source: X-ray tube2432 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 5.2027 pixels mm-1θmax = 74.5°, θmin = 4.3°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1212
Tmin = 0.736, Tmax = 1l = 1512
8004 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.025Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F) = 0.080(Δ/σ)max = 0.004
S = 1.65Δρmax = 0.19 e Å3
2482 reflectionsΔρmin = 0.16 e Å3
230 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
3 restraintsExtinction coefficient: 1200 (200)
57 constraintsAbsolute structure: 925 of Friedel pairs used in the refinement
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20407 (12)0.10762 (10)0.01347 (11)0.0197 (3)
O20.77050 (10)0.37972 (10)0.13865 (10)0.0137 (3)
O30.40294 (10)0.12662 (10)0.07686 (10)0.0148 (3)
O40.02520 (9)0.21107 (10)0.17074 (10)0.0152 (3)
O50.35303 (11)0.50934 (11)0.07973 (11)0.0187 (3)
O60.17205 (9)0.15411 (10)0.16340 (10)0.0154 (3)
O70.33622 (11)0.32755 (13)0.24976 (11)0.0233 (4)
O80.59044 (10)0.30478 (10)0.19672 (10)0.0158 (3)
O90.48123 (10)0.34364 (11)0.06606 (10)0.0165 (3)
O100.26647 (11)0.10554 (10)0.15284 (10)0.0163 (3)
N10.28764 (10)0.17250 (12)0.08201 (11)0.0108 (3)
N20.10677 (11)0.02976 (12)0.18420 (11)0.0127 (3)
N30.68827 (11)0.61109 (11)0.08930 (11)0.0131 (4)
C10.37227 (15)0.39423 (15)0.07919 (13)0.0136 (4)
C20.22655 (12)0.05559 (14)0.07094 (14)0.0123 (4)
C30.19476 (13)0.08761 (14)0.07802 (13)0.0110 (4)
C40.05550 (13)0.13130 (14)0.16902 (13)0.0113 (4)
C50.65682 (14)0.39050 (13)0.15903 (12)0.0113 (4)
C60.26737 (13)0.30155 (14)0.08985 (12)0.0109 (4)
C70.07547 (14)0.13133 (14)0.08257 (13)0.0132 (4)
C80.05009 (14)0.26118 (15)0.09625 (12)0.0143 (4)
C90.59873 (13)0.51869 (14)0.13372 (13)0.0138 (4)
C100.02688 (12)0.01116 (13)0.17693 (13)0.0113 (4)
C110.14828 (16)0.34626 (14)0.09984 (12)0.0146 (4)
H10.304 (2)0.2570 (18)0.286 (2)0.0279*
H20.4208 (12)0.316 (2)0.245 (2)0.0279*
H1o90.463 (2)0.2560 (13)0.069 (2)0.0198*
H1n30.6504880.6811110.071010.0158*
H2n30.7435050.6292390.135710.0158*
H3n30.7232260.5770160.0351720.0158*
H1n20.1231280.1115420.1861170.0152*
H2n20.1419870.0045650.1303030.0152*
H3n20.1339440.0067330.2404780.0152*
H1c70.0092450.0712580.0761840.0159*
H1c80.0325650.2912120.1030190.0172*
H1c90.532880.5060550.0854280.0165*
H2c90.5632730.554490.1955220.0165*
H1c100.0654640.0460480.2377150.0135*
H2c100.0573810.0545550.1164040.0135*
H1c110.1335390.4364440.1092880.0175*
H1o60.1919 (19)0.2412 (13)0.1577 (19)0.0185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (6)0.0130 (5)0.0163 (6)0.0019 (4)0.0065 (5)0.0021 (5)
O20.0095 (5)0.0124 (5)0.0192 (6)0.0018 (4)0.0016 (4)0.0023 (4)
O30.0098 (5)0.0135 (5)0.0212 (6)0.0029 (4)0.0011 (5)0.0010 (5)
O40.0129 (5)0.0106 (5)0.0221 (6)0.0019 (4)0.0025 (4)0.0004 (5)
O50.0212 (5)0.0129 (5)0.0219 (6)0.0033 (4)0.0030 (5)0.0008 (5)
O60.0105 (5)0.0113 (5)0.0244 (6)0.0019 (4)0.0007 (4)0.0016 (4)
O70.0176 (5)0.0245 (6)0.0276 (7)0.0009 (5)0.0028 (5)0.0086 (5)
O80.0152 (5)0.0116 (4)0.0208 (6)0.0008 (4)0.0023 (4)0.0019 (4)
O90.0142 (5)0.0151 (5)0.0200 (6)0.0036 (4)0.0014 (4)0.0014 (4)
O100.0213 (5)0.0112 (5)0.0164 (6)0.0003 (4)0.0043 (5)0.0019 (4)
N10.0101 (6)0.0115 (6)0.0107 (6)0.0010 (4)0.0005 (5)0.0004 (5)
N20.0153 (6)0.0093 (5)0.0134 (6)0.0021 (4)0.0003 (5)0.0004 (5)
N30.0126 (6)0.0103 (6)0.0165 (7)0.0021 (5)0.0002 (5)0.0010 (5)
C10.0159 (6)0.0147 (7)0.0103 (7)0.0035 (5)0.0023 (6)0.0025 (6)
C20.0134 (6)0.0093 (6)0.0143 (7)0.0014 (5)0.0008 (6)0.0004 (6)
C30.0116 (6)0.0108 (6)0.0105 (7)0.0012 (5)0.0012 (5)0.0019 (6)
C40.0119 (6)0.0113 (6)0.0108 (7)0.0013 (5)0.0010 (6)0.0013 (5)
C50.0128 (6)0.0113 (7)0.0099 (7)0.0012 (5)0.0014 (5)0.0011 (6)
C60.0105 (6)0.0105 (7)0.0117 (8)0.0000 (5)0.0008 (5)0.0004 (6)
C70.0149 (7)0.0130 (7)0.0118 (7)0.0010 (5)0.0002 (6)0.0004 (6)
C80.0131 (6)0.0152 (7)0.0147 (8)0.0024 (6)0.0004 (5)0.0023 (6)
C90.0107 (6)0.0111 (7)0.0195 (8)0.0009 (5)0.0020 (6)0.0029 (6)
C100.0086 (7)0.0099 (6)0.0153 (7)0.0001 (5)0.0017 (6)0.0001 (6)
C110.0215 (8)0.0101 (7)0.0121 (8)0.0016 (6)0.0009 (6)0.0019 (5)
Geometric parameters (Å, º) top
O1—C21.238 (2)N3—H1n30.87
O2—C51.2749 (18)N3—H2n30.87
O4—C41.2116 (18)N3—H3n30.87
O5—C11.2164 (19)C1—C61.505 (2)
O6—C41.2979 (18)C2—C31.533 (2)
O6—H1o60.935 (14)C3—C71.382 (2)
O7—H10.93 (2)C4—C101.519 (2)
O7—H20.934 (13)C5—C91.513 (2)
O8—C51.2481 (18)C6—C111.388 (2)
O9—C11.3131 (19)C7—C81.391 (2)
O9—H1o90.935 (14)C7—H1c70.96
O10—C21.254 (2)C8—C111.392 (2)
N1—C31.3467 (19)C8—H1c80.96
N1—C61.3649 (19)C9—H1c90.96
N2—C101.4767 (18)C9—H2c90.96
N2—H1n20.87C10—H1c100.96
N2—H2n20.87C10—H2c100.96
N2—H3n20.87C11—H1c110.96
N3—C91.4864 (19)
C4—O6—H1o6114.2 (12)O2—C5—O8125.71 (13)
H1—O7—H2108 (2)O2—C5—C9116.25 (12)
C1—O9—H1o9101.0 (13)O8—C5—C9118.03 (13)
C3—N1—C6121.73 (12)N1—C6—C1120.02 (13)
C10—N2—H1n2109.47N1—C6—C11119.26 (13)
C10—N2—H2n2109.47C1—C6—C11120.54 (13)
C10—N2—H3n2109.47C3—C7—C8120.89 (14)
H1n2—N2—H2n2109.47C3—C7—H1c7119.56
H1n2—N2—H3n2109.47C8—C7—H1c7119.56
H2n2—N2—H3n2109.47C7—C8—C11117.94 (14)
C9—N3—H1n3109.47C7—C8—H1c8121.03
C9—N3—H2n3109.47C11—C8—H1c8121.03
C9—N3—H3n3109.47N3—C9—C5112.14 (12)
H1n3—N3—H2n3109.47N3—C9—H1c9109.47
H1n3—N3—H3n3109.47N3—C9—H2c9109.47
H2n3—N3—H3n3109.47C5—C9—H1c9109.47
O5—C1—O9123.53 (15)C5—C9—H2c9109.47
O5—C1—C6119.94 (14)H1c9—C9—H2c9106.66
O9—C1—C6116.49 (13)N2—C10—C4109.63 (11)
O1—C2—O10128.70 (14)N2—C10—H1c10109.47
O1—C2—C3115.61 (14)N2—C10—H2c10109.47
O10—C2—C3115.59 (14)C4—C10—H1c10109.47
N1—C3—C2117.98 (12)C4—C10—H2c10109.47
N1—C3—C7119.58 (13)H1c10—C10—H2c10109.31
C2—C3—C7122.44 (13)C6—C11—C8120.44 (14)
O4—C4—O6126.18 (14)C6—C11—H1c11119.78
O4—C4—C10121.18 (13)C8—C11—H1c11119.78
O6—C4—C10112.61 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O10i0.93 (2)1.93 (2)2.8582 (17)175 (2)
O7—H2···O80.934 (13)1.958 (15)2.8712 (16)165 (3)
O9—H1o9···O30.935 (14)1.500 (15)2.4192 (15)167 (2)
O9—H1o9···N10.935 (14)2.11 (2)2.7735 (16)127.0 (16)
N3—H1n3···O1ii0.872.393.0905 (16)137.48
N3—H1n3···O4ii0.872.192.7750 (16)124.63
N3—H2n3···O7ii0.871.842.6994 (19)169.48
N3—H3n3···O5iii0.872.173.0160 (18)165.09
N2—H1n2···O6iii0.872.302.7553 (16)112.63
N2—H1n2···O8iv0.872.052.8721 (16)157.98
N2—H2n2···O10.871.972.8289 (19)170.28
N2—H3n2···O10i0.872.032.8810 (18)165.11
C7—H1c7···O3iv0.962.363.2815 (19)159.62
C8—H1c8···O5v0.962.443.2231 (19)138.39
O6—H1o6···O2vi0.935 (14)1.519 (14)2.4512 (15)175 (2)
O6—H1o6···C5vi0.935 (14)2.269 (18)3.0910 (17)146.3 (17)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1, z; (iii) x+1/2, y, z; (iv) x1/2, y, z; (v) x1/2, y1, z; (vi) x1, y, z.
Methyl 6-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-2-carboxylate (1_1) top
Crystal data top
C8H7NO5F(000) = 816
Mr = 197.15Dx = 1.619 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 901 reflections
a = 7.3758 (8) Åθ = 7.2–71.7°
b = 11.7446 (10) ŵ = 1.20 mm1
c = 18.9211 (17) ÅT = 95 K
β = 99.328 (8)°Polygon shape, white
V = 1617.4 (3) Å30.08 × 0.03 × 0.02 mm
Z = 8
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an AtlasS2 detector
4549 independent reflections
Radiation source: X-ray tube1931 reflections with I > 3σ(I)
Mirror monochromatorRint = 0
Detector resolution: 5.2027 pixels mm-1θmax = 74.4°, θmin = 6.1°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1414
Tmin = 0.974, Tmax = 1l = 2323
4549 measured reflections
Refinement top
Refinement on F250 constraints
R[F > 3σ(F)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.062Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.000016I2)
S = 1.02(Δ/σ)max = 0.004
4549 reflectionsΔρmax = 0.28 e Å3
260 parametersΔρmin = 0.25 e Å3
1 restraint
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3114 (3)0.27930 (16)0.00008 (11)0.0207 (8)
O20.1809 (3)0.3197 (2)0.21714 (13)0.0283 (9)
O30.6339 (3)0.88713 (18)0.20312 (12)0.0231 (8)
O40.7857 (3)0.75471 (19)0.27406 (11)0.0263 (8)
O50.4132 (3)0.82622 (16)0.10106 (12)0.0219 (8)
O60.3106 (3)0.10620 (17)0.05051 (12)0.0244 (8)
O70.2756 (3)0.1632 (2)0.27922 (13)0.0355 (9)
O80.1663 (3)0.57316 (18)0.02712 (11)0.0235 (8)
O90.2014 (3)0.76235 (18)0.01753 (12)0.0308 (9)
O100.0292 (3)0.30052 (15)0.10587 (13)0.0258 (9)
N10.4579 (4)0.71601 (18)0.11373 (14)0.0144 (9)
N20.0331 (4)0.18752 (19)0.11308 (15)0.0188 (9)
C10.6324 (4)0.5774 (3)0.18552 (16)0.0201 (11)
C20.5499 (4)0.4914 (3)0.14217 (17)0.0214 (11)
C30.1381 (4)0.0062 (2)0.06910 (17)0.0208 (12)
C40.5855 (4)0.6893 (2)0.17203 (17)0.0162 (10)
C50.2615 (5)0.1820 (3)0.00161 (17)0.0196 (11)
C60.6762 (5)0.7804 (3)0.22125 (19)0.0222 (12)
C70.1396 (4)0.1230 (2)0.06249 (17)0.0154 (11)
C80.0705 (4)0.1367 (3)0.17122 (17)0.0180 (11)
C90.1869 (5)0.2091 (3)0.2282 (2)0.0273 (13)
C100.2393 (5)0.6685 (3)0.00369 (17)0.0194 (11)
C110.3755 (4)0.6352 (2)0.06885 (17)0.0139 (10)
C120.0316 (4)0.5923 (2)0.09234 (16)0.0266 (11)
C130.4194 (4)0.5222 (2)0.08253 (17)0.0170 (11)
C140.0712 (5)0.0213 (2)0.17781 (17)0.0222 (11)
C150.0325 (4)0.0469 (2)0.12710 (16)0.0231 (12)
C160.4371 (5)0.1496 (2)0.11261 (18)0.0280 (12)
H1c10.7243370.5586460.2258070.0241*
H1c20.5804510.4130550.152380.0257*
H1c30.2112640.03910.0330020.025*
H1c120.01540.5203530.1112940.0319*
H2c120.0676260.6379850.0809820.0319*
H3c120.0899780.630880.1273260.0319*
H1c130.3605220.4642090.0511320.0204*
H1c140.145320.0134140.2185130.0267*
H1c150.0315860.1282570.1318760.0277*
H1c160.4810360.0874240.1436480.0336*
H2c160.5391290.1866080.0965730.0336*
H3c160.3737580.203150.1382080.0336*
H1o30.540 (3)0.884 (2)0.1651 (14)0.0277*
H1o20.093 (4)0.341 (3)0.1795 (15)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (14)0.0121 (12)0.0242 (13)0.0018 (10)0.0027 (10)0.0017 (9)
O20.0272 (16)0.0325 (15)0.0247 (14)0.0106 (13)0.0026 (11)0.0076 (11)
O30.0187 (15)0.0212 (13)0.0268 (14)0.0056 (11)0.0037 (11)0.0040 (10)
O40.0236 (13)0.0290 (14)0.0229 (13)0.0008 (12)0.0065 (10)0.0007 (11)
O50.0272 (15)0.0098 (11)0.0262 (14)0.0009 (10)0.0026 (11)0.0035 (9)
O60.0305 (15)0.0216 (13)0.0183 (12)0.0041 (11)0.0041 (10)0.0020 (9)
O70.0264 (16)0.0546 (17)0.0219 (14)0.0045 (14)0.0066 (12)0.0055 (13)
O80.0256 (14)0.0171 (11)0.0241 (13)0.0030 (11)0.0068 (10)0.0031 (10)
O90.0422 (17)0.0163 (12)0.0286 (14)0.0042 (12)0.0100 (12)0.0088 (11)
O100.0360 (17)0.0123 (12)0.0278 (15)0.0059 (11)0.0017 (12)0.0014 (9)
N10.0174 (16)0.0104 (13)0.0156 (14)0.0006 (12)0.0031 (12)0.0002 (10)
N20.0195 (17)0.0167 (14)0.0216 (15)0.0006 (13)0.0074 (12)0.0003 (11)
C10.0171 (19)0.0266 (18)0.0157 (17)0.0024 (17)0.0003 (13)0.0039 (15)
C20.020 (2)0.0226 (18)0.0231 (17)0.0043 (16)0.0063 (14)0.0057 (14)
C30.022 (2)0.024 (2)0.0163 (18)0.0008 (16)0.0047 (14)0.0014 (14)
C40.0165 (18)0.0184 (16)0.0155 (17)0.0043 (15)0.0074 (14)0.0011 (13)
C50.021 (2)0.0224 (19)0.0172 (17)0.0023 (16)0.0071 (14)0.0027 (14)
C60.021 (2)0.0226 (19)0.025 (2)0.0049 (16)0.0098 (16)0.0051 (15)
C70.016 (2)0.0159 (17)0.0143 (17)0.0013 (15)0.0017 (14)0.0006 (13)
C80.017 (2)0.0240 (18)0.0133 (17)0.0017 (15)0.0025 (14)0.0031 (14)
C90.020 (2)0.038 (2)0.026 (2)0.0080 (18)0.0108 (16)0.0090 (16)
C100.018 (2)0.0233 (19)0.0172 (18)0.0011 (15)0.0049 (14)0.0035 (14)
C110.0104 (19)0.0146 (16)0.0175 (17)0.0006 (13)0.0049 (14)0.0004 (12)
C120.026 (2)0.0299 (19)0.0196 (18)0.0028 (17)0.0092 (15)0.0077 (14)
C130.018 (2)0.0153 (16)0.0172 (17)0.0019 (14)0.0007 (14)0.0019 (13)
C140.023 (2)0.0296 (19)0.0151 (17)0.0078 (17)0.0075 (15)0.0036 (14)
C150.032 (2)0.0138 (17)0.026 (2)0.0065 (16)0.0123 (16)0.0048 (13)
C160.027 (2)0.037 (2)0.0168 (18)0.0055 (18)0.0061 (16)0.0012 (16)
Geometric parameters (Å, º) top
O1—C51.200 (4)C2—H1c20.96
O2—C91.316 (4)C3—C71.377 (4)
O2—H1o20.92 (3)C3—C151.387 (4)
O3—C61.324 (4)C3—H1c30.96
O3—H1o30.92 (2)C4—C61.503 (4)
O4—C61.216 (4)C5—C71.510 (4)
O6—C51.334 (4)C8—C91.524 (5)
O6—C161.468 (4)C8—C141.361 (4)
O7—C91.203 (4)C10—C111.511 (4)
O8—C101.335 (4)C11—C131.380 (4)
O8—C121.470 (3)C12—H1c120.96
O9—C101.190 (4)C12—H2c120.96
N1—C41.365 (4)C12—H3c120.96
N1—C111.351 (4)C13—H1c130.96
N2—C71.365 (4)C14—C151.382 (4)
N2—C81.370 (4)C14—H1c140.96
C1—C21.379 (4)C15—H1c150.96
C1—C41.373 (4)C16—H1c160.96
C1—H1c10.96C16—H2c160.96
C2—C131.406 (4)C16—H3c160.96
C9—O2—H1o2113.4 (19)O2—C9—O7124.8 (3)
C6—O3—H1o3106.4 (18)O2—C9—C8116.0 (3)
C5—O6—C16114.9 (2)O7—C9—C8119.2 (3)
C10—O8—C12114.1 (2)O8—C10—O9125.0 (3)
C4—N1—C11121.8 (2)O8—C10—C11107.8 (2)
C7—N2—C8120.2 (2)O9—C10—C11127.2 (3)
C2—C1—C4121.1 (3)N1—C11—C10120.2 (3)
C2—C1—H1c1119.45N1—C11—C13119.3 (3)
C4—C1—H1c1119.45C10—C11—C13120.5 (3)
C1—C2—C13117.9 (3)O8—C12—H1c12109.47
C1—C2—H1c2121.04O8—C12—H2c12109.47
C13—C2—H1c2121.04O8—C12—H3c12109.47
C7—C3—C15121.0 (3)H1c12—C12—H2c12109.47
C7—C3—H1c3119.5H1c12—C12—H3c12109.47
C15—C3—H1c3119.5H2c12—C12—H3c12109.47
N1—C4—C1119.4 (3)C2—C13—C11120.4 (3)
N1—C4—C6121.1 (2)C2—C13—H1c13119.79
C1—C4—C6119.5 (3)C11—C13—H1c13119.79
O1—C5—O6124.8 (3)C8—C14—C15121.3 (3)
O1—C5—C7126.9 (3)C8—C14—H1c14119.34
O6—C5—C7108.3 (3)C15—C14—H1c14119.34
O3—C6—O4123.0 (3)C3—C15—C14117.8 (3)
O3—C6—C4116.8 (3)C3—C15—H1c15121.12
O4—C6—C4120.1 (3)C14—C15—H1c15121.12
N2—C7—C3119.6 (3)O6—C16—H1c16109.47
N2—C7—C5118.9 (3)O6—C16—H2c16109.47
C3—C7—C5121.4 (3)O6—C16—H3c16109.47
N2—C8—C9120.1 (3)H1c16—C16—H2c16109.47
N2—C8—C14120.1 (3)H1c16—C16—H3c16109.47
C9—C8—C14119.8 (3)H2c16—C16—H3c16109.47
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1c1···O40.962.492.794 (4)98.17
C2—H1c2···O4i0.962.433.330 (4)155.24
C3—H1c3···O60.962.362.681 (4)98.80
C3—H1c3···O9ii0.962.353.037 (4)127.80
C13—H1c13···O10.962.383.287 (3)157.20
C13—H1c13···O80.962.282.626 (3)100.24
C14—H1c14···O70.962.492.792 (4)98.24
O3—H1o3···O50.92 (2)1.56 (2)2.423 (3)155 (3)
O3—H1o3···N10.92 (2)2.24 (3)2.806 (3)120 (2)
O2—H1o2···O100.92 (3)1.60 (3)2.414 (3)145 (3)
O2—H1o2···N20.92 (3)2.31 (3)2.788 (3)112 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z.
Selected bond lengths (Å) and angles (°) for compounds 1 and 2 top
Bond lengths (Å)Bond angles (°)
1
C1—O51.216 (2)C1—C6—N1120.0 (1)
C1—O91.313 (2)C3—C2—O10115.6 (1)
C2—O11.238 (2)C4—C10—N2109.6 (1)
C2—O101.254 (2)C6—N1—O3120.2 (1)
C4—O41.212 (2)C10—C4—O4121.2 (1)
C4—O61.298 (2)O1—C2—O10128.7 (1)
C5—O81.248 (2)O2—C5—O8125.7 (1)
C5—O21.275 (2)O2—C5—C9116.3 (1)
N1—O31.349 (2)O4—C4—O6126.2 (1)
2
C5—O11.199 (4)C7—N2—O10120.0 (2)
C5—O61.334 (4)C12—O8—C10114.1 (2)
C6—O41.217 (4)O1—C5—O6124.8 (3)
C10—O81.335 (4)O2—C9—O7124.8 (3)
C10—O91.191 (4)O3—C6—C4116.8 (3)
O2—C91.315 (4)O4—C6—O3123.0 (3)
O3—C61.323 (4)O5—N1—C4118.8 (2)
O5—N11.348 (3)O5—N1—C11119.4 (2)
O7—C91.202 (4)O9—C10—O8125.0 (3)
O10—N21.335 (3)O9—C10—C11127.1 (3)
Selected hydrogen-bond dimensions (Å, °) in compounds 1 and 2 top
D—H···AD—HH···AD—H···AD···A
1
O9—H1o9···O30.9351.5001672.419 (2)
C8—H1c8···O5i0.962.44138.43.223 (2)
C7—H1c7···O3ii0.962.36159.63.282 (2)
O6—H1o6···O2iii0.9351.5191752.451 (1)
N2—H3n2···O10iv0.872.03165.112.881 (2)
N2—H1n2···O8ii0.8702.05157.982.872 (2)
N2—H2n2···O10.871.97170.282.829 (2)
O7—H1···O10iv0.931.931752.859 (2)
O7—H2···O80.9341.9581652.871 (2)
2
C2—H1c2···O4v0.962.43155.243.330 (4)
C13—H1c13···O10.962.38157.203.287 (3)
O3—H1o3···O50.921.561552.423 (3)
O2—H1o2···O100.921.601452.414 (3)
Symmetry codes: (i) x-1/2, -y-1, z; (ii) x-1/2, -y, z; (iii) x-1, y, z; (iv) -x+1/2, y, z+1/2; (v) -x+3/2, y-1/2, -z+1/2.
ππ stacking interactions dimensions (Å, °) in compounds 1 and 2 top
Centroid–centroid distanceAngle between the planesPerpendicular distanceSlippageType
13.4856.392,6-H2pydcOpy···GLYCOO
3.66120.142,6-H2pydcOpy···GLYCOO
3.38420.372,6-H2pydcOCOO···GLYCOO
23.5502.912,6-HMepydcOpy···2,6-HMepydcOCOO
The NBO analysis results for 2,6-H2pydcopt, 2,6-H2pydcOopt, 2,6-HMepydcOopt and 2,6-Me2pydcOopt. The values are the average of charge on similar atoms top
CpyCCOOCMeHpyHCOOHHMeNpyOC=OOCO(Me)OO—HOMeON—O
2,6-H2pydcopt-0.090.800.270.51-0.39-0.60-0.68
2,6-H2pydcOopt-0.120.800.270.510.13-0.61-0.67-0.41
2,6-HMepydcOopt-0.120.80-0.340.270.510.230.13-0.61-0.60-0.67-0.51-0.43
2,6-Me2pydcOopt-0.110.80-0.340.27,0.230.12-0.60-0.51-0.43
HOMO and LUMO orbitals for the optimized structures of 2,6-H2pydcopt, 2,6-H2pydcOopt, 2,6-HMepydcOopt and 2,6-Me2pydcOopt, along with the calculated the total energy and HOMO/LUMO gap top
LUMOHOMOTotal Energy (kcal mol-1)HOMO/LUMO Gap (eV)
2,6-H2pydcopt(a)(b)-392462.175.38
2,6-H2pydcOopt(c)(d)-439616.124.38
2,6-HMepydcOopt(e)(f)-464280.444.36
2,6-Me2pydcOopt(g)(h)-488944.734.39
The calculated fitness values for 2,6-H2pydcopt, 2,6-H2pydcOopt, 2,6-HMepydcOopt and 2,6-Me2pydcOopt structures top
BRAF-KinaseCatBDNA-GyraseHDAC7rHARNRTrxRTSTop II
2,6-H2pydcopt24.1218.5131.1930.7927.8429.1135.9127.8130.77
2,6-H2pydcOopt26.0419.4930.0431.9029.1530.9741.0230.7629.00
2,6-HMepydcOopt29.6825.8333.6136.7733.2936.0635.8832.9133.51
2,6-Me2pydcOopt32.4523.8736.1840.0536.0338.1537.7737.7334.89
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds