research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of the dinuclear complex bis­­(μ-4-methylpyridine N-oxide-κ2O:O)bis­­[(methanol-κO)(4-methylpyridine N-oxide-κO)bis­­(thio­cyanato-κN)cobalt(II)]

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 9 April 2024; accepted 10 April 2024; online 18 April 2024)

Reaction of Co(NCS)2 with 4-methyl­pyridine N-oxide in methanol leads to the formation of crystals of the title compound, [Co2(NCS)4(C6H7NO)4(CH4O)2] or Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2. The asymmetric unit consist of one CoII cation, two thio­cyanate anions, two 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule in general positions. The H atoms of one of the methyl groups are disordered and were refined using a split model. The CoII cations octa­hedrally coordinate two terminal N-bonded thio­cyanate anions, three 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. Each two CoII cations are linked by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units that are located on centers of inversion. Powder X-ray diffraction (PXRD) investigations prove that the title compound is contaminated with a small amount of Co(NCS)2(4-meth­yl­pyridine N-oxide)3. Thermogravimetric investigations reveal that the methanol mol­ecules are removed in the beginning, leading to a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide), which has been reported in the literature and which is of poor crystallinity.

1. Chemical context

The synthesis of new coordination compounds and polymers is still an important topic in inorganic chemistry because of their versatile structural behavior and their varied physical properties. One important part of these investigations includes the synthesis of compounds with paramagnetic metal cations to prepare materials with promising magnetic behavior. In several cases, the cations are linked by small-sized anionic ligands and in this regard, compounds based on thio­cyanate anions are of inter­est because this anionic ligand can mediate magnetic exchange (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Inorg. Chem. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. A Eur. J. 26, 2837-2851.]). Compared to cyanides or azides, this anionic ligand shows many more coordination modes and consequently a more pronounced structural variability, leading to metal thio­cyanate substructures that consist of linear and corrugated chains or layered structures of different topology (Wöhlert et al., 2013[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]; Neumann et al. 2018[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.], 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]). However, most paramagnetic metal cations are not very chalcophilic and therefore, the N-terminal coordination mode frequently dominates over the various bridging modes.

However, in recent work we used pyridine N-oxide deriv­atives as coligands that can be terminally O-bonded or that can bridge two metal cations in the μ-1,1(O,O) bridging mode, leading to an enhanced structural variability. In the beginning, we focused on Co(NCS)2 compounds because, among other things, this cation is of special inter­est in terms of its magnetic properties (Murrie, 2010[Murrie, M. (2010). Chem. Soc. Rev. 39, 1986-1995.]; Mautner et al., 2018a[Mautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17-24.],b[Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436-442.]; Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Inorg. Chem. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. A Eur. J. 26, 2837-2851.]). In the course of this project, we became inter­ested in 4-methyl­pyridine N-oxide as a coligand. With this ligand, two compounds with the composition Co(NCS)2(4-methyl­pyridine N-oxide) (Refcode: MEQKOJ, Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]) and Co(NCS)2(4-methyl­pyridine N-oxide)(methanol) (Refcode: REKBUF; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]) have already been reported in the literature. In the first compound, the CoII cations octa­hedrally coordinate two N- and two S-bonding thio­cyanate anions and two μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands, and are connected by pairs of bridging thio­cyanate anions into corrugated chains. These chains are further linked into layers by μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands (Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]). In the second compound, the CoII cations sixfold coordinate two bridging and one terminal thio­cyanate anion, two O atoms of two bridging 4-methyl­pyridine N-oxide ligands and one methanol mol­ecule (Refcode: REKBUF; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]). The Co cations are linked by alternating pairs of μ-1,3-bridging thio­cyanate anions and μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into chains.

[Scheme 1]

In our own synthetic work, we have added two additional compounds with the composition Co(NCS)2(4-methyl­pyridine N-oxide)3 and Co(NCS)2(4-methyl­pyridine N-oxide)4, that form discrete complexes with two different metal coordinations (Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]). In the latter compound, an octa­hedral coordination is observed, whereas the former shows a trigonal–bipyramidal coordination, which is relatively rare for CoII cations. Surprisingly, this compound can easily be prepared, whereas only a few crystals of the complex with a sixfold coordination were accidentally obtained. Much effort was made to prepare Co(NCS)2(4-methyl­pyridine N-oxide)4 but without any success. In the course of these investigations, we always found additional reflections in some of the powder patterns of products prepared in methanol that do not correspond to the discrete complexes or to the coordination polymers mentioned above. Therefore, an additional crystalline phase based on Co(NCS)2 and 4-methyl­pyridine N-oxide must exist. Based on these findings the synthesis conditions were varied, leading to the formation of a new crystalline phase that was characterized by single-crystal X-ray diffraction. This proves that a dinuclear complex with methanol was obtained, that is somehow structurally related to Co(NCS)2(4-methyl­pyridine N-oxide)(methanol), which has already been reported in the literature (refcode REKBUF; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]).

2. Structural commentary

The asymmetric unit of the title compound, Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2, consists of one cobalt cation, two thio­cyanate anions, one methanol mol­ecule and two 4-methyl­pyridine N-oxide coligands, all of them located in general positions. The Co cations sixfold coordinate two ter­minal N-bonding thio­cyanate anions, one methanol mol­ecule and one terminal as well as two μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands (Fig. 1[link]). Bond lengths and angles are similar to those in related compounds (Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]) and show that the octa­hedra are slightly distorted (Table 1[link]). Each two cobalt cations are linked via two μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into dinuclear units, with the Co2O2 rings that are the central motif located on centers of inversion (Fig. 1[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0525 (18) Co1—O21 2.1057 (15)
Co1—N2 2.0840 (18) Co1—O21i 2.1043 (15)
Co1—O11 2.0543 (16) Co1—O31 2.1301 (16)
       
N1—Co1—N2 96.79 (7) O11—Co1—N2 96.57 (7)
N1—Co1—O11 96.07 (7) O11—Co1—O21 83.57 (6)
N1—Co1—O21i 94.26 (7) O11—Co1—O21i 87.62 (7)
N1—Co1—O21 166.79 (7) O11—Co1—O31 167.80 (6)
N1—Co1—O31 95.14 (7) O21i—Co1—O21 72.53 (6)
N2—Co1—O21i 167.69 (7) O21i—Co1—O31 86.77 (7)
N2—Co1—O21 96.37 (7) O21—Co1—O31 84.42 (7)
N2—Co1—O31 86.85 (7)    
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
The molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. The disorder of the H atoms of one of the methyl groups is shown with full and open bonds. [Symmetry code: (i) −x + 1, −y, −z + 1.]

Similar Co2O2 rings are also observed in the related compound Co(NCS)2(4-methyl­pyridine N-oxide)(methanol), in which the Co cations are additionally linked via alternating pairs of μ-1,3-bridging thio­cyanate anions and μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into chains (Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]).

3. Supra­molecular features

In the crystal structure of the title compound, the dinculear units are arranged in columns along the crystallographic a-axis direction (Fig. 2[link]). Several C—H⋯S, one C—H⋯O and one C—H⋯N contacts are observed between the complexes, but only for some of them are the C—H⋯X angles close to linearity and the H⋯X distances relatively short, indicating a significant inter­action (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2 0.95 2.40 3.225 (3) 145
C12—H12⋯S1ii 0.95 2.79 3.688 (3) 158
C15—H15⋯S2iii 0.95 2.68 3.609 (3) 167
C21—H21⋯S2iv 0.95 3.03 3.917 (2) 156
C22—H22⋯S1v 0.95 2.98 3.821 (2) 148
O31—H31⋯S1vi 0.84 2.97 3.6106 (18) 134
O31—H31⋯O11i 0.84 2.31 3.003 (2) 141
C31—H31B⋯S2iv 0.98 2.83 3.575 (3) 133
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x-1, y, z]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the crystallographic a axis. Inter­molecular C—H⋯S and O—H⋯O hydrogen bonding is shown as dashed lines

4. Database survey

As mentioned above, two Co(NCS)2 compounds with 4-meth­yl­pyridine N-oxide are already reported in the Cambridge Structural Database (Version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including Co(NCS)2(4-methyl­pyridine N-oxide)(methanol) (CSD refcode REKBUF; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]) and Co(NCS)2(4-methyl­pyridine N-oxide) (refcode MEQKOJ; Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]). There are also two discrete complexes with the composition Co(NCS)2(4-methyl­pyridine N-oxide)3 and Co(NCS)2(4-methyl­pyridine N-oxide)4, as already mentioned in the Chemical context section (Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]).

With NiII, a discrete complex with the composition Ni(NCS)2(4-methyl­pyridine N-oxide)2(H2O)2 has been reported that contains only terminally O-bonded coligands and which crystallizes as a monohydrate (Shi et al., 2005a[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005a). Acta Cryst. E61, m871-m872.]). With MnII, a similar discrete complex with the composition Mn(NCS)2(4-methyl­pyridine N-oxide)2(H2O)2 has also been reported (Mautner et al., 2018a[Mautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17-24.],b[Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436-442.]).

Two compounds with the composition M(NCS)2(4-methyl­pyridine N-oxide) (with M = Ni, Cd) are also found that are isotypic to its Co analog mentioned in the chemical context section [refcodes PEDSUN (Shi et al., 2006b[Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84-89.]), PEDSUN01 (Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]) and TEQKAC (Shi et al., 2006c[Shi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006c). J. Coord. Chem. 59, 1883-1889.])].

With Cu(II), one compound with the composition Cu(NCS)2(4-methyl­pyridine N-oxide) is reported in which the Cu(II) cations are octa­hedrally coordinated by two N and three S-bonding thio­cyanate anions and one terminal O-coordinating 4-methyl­pyridine N-oxide) coligand (refcode TEB­TAW; Shi et al., 2006d[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. pp. 376-380.]). The Cu(II) cations are connected into linear chains by pairs of bridging thio­cyanate anions, that are further linked via Cu2S2 rings into double chains.

Finally, three isotypic compounds with the composition M(NCS)2)(acetato)2(H2O)3(4-methyl­pyridine N-oxide) (with M = Sm, Eu, Gd) are found [refcodes GIHBUV (Zhang & Shi, 2007[Zhang, S.-G. & Shi, J.-M. (2007). Acta Cryst. E63, m1775-m1776.]) and PIJBIU and PIJBOA (Shi et al., 2007a[Shi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007a). J. Coord. Chem. 60, 1637-1644.])].

Some Co(NCS)2 compounds with other pyridine N-oxide derivatives are also known. This includes Co(NCS)2(pyridine N-oxide)2(H2O)2 and Co(NCS)2(3-hy­droxy­pyridine N-oxide)2(H2O)2 that consist of discrete octa­hedral complexes [refcodes FONBIU (Shi et al., 2005b[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005b). Acta Cryst. E61, m1133-m1134.]) and IDOYEG (Shi et al., 2006e[Shi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577-m1578.])]. This also includes Co(NCS)2(4-meth­oxy­pyridine N-oxide) that is isotypic to its 4-methyl­pyridine N-oxide analog (refcode TERRAK; Zhang et al., 2006b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3398-m3400.]).

Finally, a compound with the composition Co(NCS)2(4-nitro­pyridine N-oxide) is also reported in the literature (refcode TILHIG; Shi et al., 2007b[Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007b). J. Coord. Chem. 60, 2009-2013.]).

5. Additional investigations

The title compound was also investigated by powder X-ray diffraction. Comparison of the experimental pattern with that calculated from single-crystal data reveals that this compound is of low crystallinity and that only a poor powder pattern can be obtained (Fig. 3[link]). The low signal-to-noise ratio originates from the fact that only relatively large crystals were obtained, that could not be crushed into smaller crystals because in this case the compound started to decompose. However, it is obvious that no pure crystalline phase was obtained. In this context, it is noted that in those cases where different batches were investigated, the powder patterns always showed some differences. However, comparison of the experimental pattern with those calculated for the title compound and for Co(NCS)2(4-methyl­pyridine N-oxide) compounds retrieved from the literature indicate that the title compound is contaminated with a small amount of the discrete complex Co(NCS)2(4-methyl­pyridine N-oxide)3 (Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]). In fact, this is difficult to prove because the powder pattern was measured at room temperature, whereas the patterns calculated for the literature compounds are based in part on structure determinations at lower temperatures.

[Figure 3]
Figure 3
Experimental powder pattern of the title compound (A) together with the calculated pattern for the title compound (B), Co(NCS)2(4-methyl­pyridine N-oxide)3 (C, Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]), Co(NCS)2(4-methyl­pyridine N-oxide)4 (D, Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]), Co(NCS)2(4-methyl­pyridine N-oxide)(methanol) (E, Refcode: REKBUF; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]) and Co(NCS)2(4-methyl­pyridine N-oxide) (F, Refcode: MEQKOJ; Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]).

However, measurements with thermogravimetry and differential thermoanalysis (TG-DTA) show three mass losses, of which the first is accompanied by an endothermic and the second by a strong exothermic signal in the DTA curve (Fig. 4[link]). The first mass loss of 6.4% is a bit lower than that calculated for the removal of the methanol mol­ecules (7.5%), whereas the sum of the second and third mass losses is slightly higher than expected for the removal of all 4-methyl­pyridine N-oxide coligands (51.2%). However, the strong exothermic signal points to a decomposition of the coligands, as is usually observed for pyridine N-oxide derivatives (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.], 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]). To characterize the compound formed after the first mass loss, it was isolated in a second TG run and investigated by PXRD. The powder pattern proves that a new crystalline phase of low crystallinity had been obtained that obviously contains a large amount of amorphous content (Figure S1). If the experimental pattern of the residue is compared with that calculated for Co(NCS)2(4-methyl­pyridine N-oxide) reported in the literature (Refcode: MEQKOJ, Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]), it is obvious that this compound has formed by methanol removal.

[Figure 4]
Figure 4
TG-DTA curve of the title compound measured at 8°C min−1.

6. Synthesis and crystallization

Co(NCS)2 (99%) was purchased from Sigma Aldrich, 4-methyl­pyridine N-oxide (97%) from Thermo Scientific and methanol from Fisher Chemical.

Synthesis:

The title compound was prepared by the reaction of 0.5 mmol (87 mg) of Co(SCN)2 and 1 mmol (109 mg) of 4-methyl­pyridine N oxide in 1 mL of methanol. The reaction mixture was stored overnight, leading to the formation of violet-colored crystals that were always contaminated with Co(NCS)2(4-methyl­pyridine N-oxide)3 (Näther & Jess, 2024[Näther, C. & Jess, I. (2024). Acta Cryst. E80, 174-179.]).

Experimental details:

The data collection for single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation. The PXRD measurements were either performed with the single-crystal diffractometer mentioned above (Fig. S1) or with a Stoe Transmission Powder Diffraction System STADI P (Fig. 3[link]) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å). Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The H atoms of one of the methyl groups are disordered and were refined using a split model with two orientations rotated to each other by 60°.

Table 3
Experimental details

Crystal data
Chemical formula [Co2(NCS)4(C6H7NO)4(CH4O)2]
Mr 850.77
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.46665 (13), 12.37103 (15), 13.58185 (17)
β (°) 97.0894 (11)
V3) 1911.91 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.27
Crystal size (mm) 0.21 × 0.14 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.529, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13370, 4111, 3945
Rint 0.024
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.09
No. of reflections 4111
No. of parameters 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.57
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Bis(µ-4-methylpyridine N-oxide-κ2O:O)bis[(methanol-κO)(4-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II)] top
Crystal data top
[Co2(NCS)4(C6H7NO)4(CH4O)2]F(000) = 876
Mr = 850.77Dx = 1.478 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.46665 (13) ÅCell parameters from 9687 reflections
b = 12.37103 (15) Åθ = 4.8–80.1°
c = 13.58185 (17) ŵ = 9.27 mm1
β = 97.0894 (11)°T = 100 K
V = 1911.91 (4) Å3Block, violet
Z = 20.21 × 0.14 × 0.1 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4111 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3945 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.0000 pixels mm-1θmax = 80.6°, θmin = 4.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1415
Tmin = 0.529, Tmax = 1.000l = 1617
13370 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0563P)2 + 1.4735P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4111 reflectionsΔρmax = 0.67 e Å3
231 parametersΔρmin = 0.57 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.52596 (3)0.09188 (3)0.59292 (2)0.02238 (11)
N10.68049 (16)0.13883 (15)0.67419 (14)0.0275 (4)
C10.77744 (19)0.15936 (17)0.70365 (15)0.0251 (4)
S10.91377 (5)0.18723 (5)0.74606 (5)0.03513 (15)
N20.41432 (16)0.18148 (15)0.67148 (14)0.0289 (4)
C20.3463 (2)0.24201 (18)0.69672 (16)0.0293 (4)
S20.25069 (6)0.32838 (5)0.72994 (5)0.04178 (17)
O110.53273 (15)0.20122 (12)0.47994 (11)0.0309 (3)
N110.58635 (16)0.29720 (15)0.49406 (13)0.0272 (4)
C110.5698 (2)0.3592 (2)0.57280 (18)0.0364 (5)
H110.5205670.3341270.6193450.044*
C120.6237 (3)0.4587 (2)0.58635 (19)0.0393 (6)
H120.6120970.5010940.6426350.047*
C130.6944 (2)0.4972 (2)0.51892 (17)0.0339 (5)
C140.7098 (2)0.4312 (2)0.43895 (18)0.0357 (5)
H140.7586120.4547840.3915030.043*
C150.6552 (2)0.3316 (2)0.42736 (17)0.0322 (5)
H150.6664650.2873970.3721020.039*
C160.7506 (3)0.6070 (2)0.53342 (19)0.0409 (6)
H16A0.8147180.6130820.4922460.061*
H16B0.7818970.6164320.6033610.061*
H16C0.6917640.6630390.5141000.061*
O210.39294 (13)0.02026 (13)0.49327 (12)0.0287 (3)
N210.28216 (15)0.05826 (15)0.48253 (13)0.0242 (3)
C210.21856 (19)0.04578 (18)0.55877 (17)0.0283 (4)
H210.2489230.0046420.6152350.034*
C220.1092 (2)0.09302 (19)0.55439 (18)0.0310 (5)
H220.0646680.0849730.6084660.037*
C230.0632 (2)0.15256 (19)0.47132 (18)0.0316 (5)
C240.1299 (2)0.15751 (19)0.39241 (18)0.0325 (5)
H240.0992130.1932060.3328810.039*
C250.2396 (2)0.11137 (18)0.39968 (17)0.0297 (4)
H250.2852080.1170400.3461080.036*
C260.0518 (2)0.2114 (2)0.4683 (2)0.0418 (6)
H26A0.0689180.2489730.4045930.063*0.5
H26B0.0469390.2641820.5224370.063*0.5
H26C0.1146320.1594570.4757820.063*0.5
H26D0.0847420.1994350.5306150.063*0.5
H26E0.1067200.1842260.4127710.063*0.5
H26F0.0390270.2889510.4594260.063*0.5
O310.49549 (16)0.04034 (13)0.68691 (12)0.0340 (4)
H310.4955360.1043040.6661490.061 (11)*
C310.5284 (2)0.0392 (2)0.79179 (18)0.0373 (5)
H31A0.6113510.0594170.8066570.056*
H31B0.4797970.0908380.8232270.056*
H31C0.5167110.0335420.8174700.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02249 (18)0.02112 (18)0.02309 (18)0.00307 (12)0.00103 (12)0.00346 (12)
N10.0264 (9)0.0278 (9)0.0269 (9)0.0040 (7)0.0024 (7)0.0050 (7)
C10.0333 (11)0.0209 (9)0.0213 (9)0.0016 (8)0.0046 (8)0.0018 (7)
S10.0250 (3)0.0377 (3)0.0412 (3)0.0034 (2)0.0017 (2)0.0031 (2)
N20.0284 (9)0.0286 (9)0.0302 (9)0.0000 (7)0.0059 (7)0.0062 (7)
C20.0368 (11)0.0288 (11)0.0222 (10)0.0063 (9)0.0032 (8)0.0025 (8)
S20.0547 (4)0.0415 (3)0.0316 (3)0.0200 (3)0.0152 (3)0.0069 (2)
O110.0412 (9)0.0245 (7)0.0257 (7)0.0083 (6)0.0016 (6)0.0000 (6)
N110.0324 (9)0.0234 (9)0.0245 (8)0.0032 (7)0.0013 (7)0.0025 (7)
C110.0514 (14)0.0278 (11)0.0316 (12)0.0054 (10)0.0113 (10)0.0004 (9)
C120.0575 (16)0.0279 (12)0.0338 (12)0.0083 (11)0.0102 (11)0.0009 (9)
C130.0397 (12)0.0307 (11)0.0296 (11)0.0060 (10)0.0028 (9)0.0058 (9)
C140.0378 (12)0.0380 (12)0.0308 (12)0.0095 (10)0.0022 (10)0.0034 (10)
C150.0339 (11)0.0345 (12)0.0275 (11)0.0022 (9)0.0008 (9)0.0001 (9)
C160.0539 (16)0.0353 (13)0.0318 (12)0.0149 (11)0.0009 (11)0.0051 (10)
O210.0207 (7)0.0321 (8)0.0322 (8)0.0013 (6)0.0005 (6)0.0131 (6)
N210.0197 (8)0.0234 (8)0.0291 (9)0.0031 (7)0.0012 (6)0.0051 (7)
C210.0262 (10)0.0288 (11)0.0293 (10)0.0052 (8)0.0010 (8)0.0013 (8)
C220.0243 (10)0.0362 (12)0.0329 (12)0.0039 (8)0.0052 (9)0.0026 (9)
C230.0273 (10)0.0302 (11)0.0358 (12)0.0021 (9)0.0026 (9)0.0072 (9)
C240.0369 (12)0.0274 (11)0.0317 (11)0.0010 (9)0.0012 (9)0.0008 (9)
C250.0330 (11)0.0275 (10)0.0288 (11)0.0044 (9)0.0046 (9)0.0033 (9)
C260.0310 (12)0.0459 (15)0.0467 (15)0.0076 (11)0.0025 (10)0.0067 (12)
O310.0465 (9)0.0235 (8)0.0328 (8)0.0070 (7)0.0085 (7)0.0028 (6)
C310.0445 (13)0.0345 (12)0.0330 (12)0.0045 (10)0.0053 (10)0.0029 (10)
Geometric parameters (Å, º) top
Co1—N12.0525 (18)C16—H16C0.9800
Co1—N22.0840 (18)O21—N211.345 (2)
Co1—O112.0543 (16)N21—C211.347 (3)
Co1—O212.1057 (15)N21—C251.342 (3)
Co1—O21i2.1043 (15)C21—H210.9500
Co1—O312.1301 (16)C21—C221.378 (3)
N1—C11.162 (3)C22—H220.9500
C1—S11.635 (2)C22—C231.395 (3)
N2—C21.163 (3)C23—C241.393 (3)
C2—S21.634 (2)C23—C261.503 (3)
O11—N111.340 (2)C24—H240.9500
N11—C111.348 (3)C24—C251.373 (3)
N11—C151.342 (3)C25—H250.9500
C11—H110.9500C26—H26A0.9800
C11—C121.379 (3)C26—H26B0.9800
C12—H120.9500C26—H26C0.9800
C12—C131.380 (3)C26—H26D0.9800
C13—C141.388 (4)C26—H26E0.9800
C13—C161.506 (3)C26—H26F0.9800
C14—H140.9500O31—H310.8400
C14—C151.382 (3)O31—C311.428 (3)
C15—H150.9500C31—H31A0.9800
C16—H16A0.9800C31—H31B0.9800
C16—H16B0.9800C31—H31C0.9800
N1—Co1—N296.79 (7)C25—N21—O21120.21 (18)
N1—Co1—O1196.07 (7)C25—N21—C21121.67 (19)
N1—Co1—O21i94.26 (7)N21—C21—H21120.2
N1—Co1—O21166.79 (7)N21—C21—C22119.6 (2)
N1—Co1—O3195.14 (7)C22—C21—H21120.2
N2—Co1—O21i167.69 (7)C21—C22—H22119.7
N2—Co1—O2196.37 (7)C21—C22—C23120.6 (2)
N2—Co1—O3186.85 (7)C23—C22—H22119.7
O11—Co1—N296.57 (7)C22—C23—C26121.4 (2)
O11—Co1—O2183.57 (6)C24—C23—C22117.2 (2)
O11—Co1—O21i87.62 (7)C24—C23—C26121.4 (2)
O11—Co1—O31167.80 (6)C23—C24—H24119.6
O21i—Co1—O2172.53 (6)C25—C24—C23120.7 (2)
O21i—Co1—O3186.77 (7)C25—C24—H24119.6
O21—Co1—O3184.42 (7)N21—C25—C24119.9 (2)
C1—N1—Co1166.57 (18)N21—C25—H25120.0
N1—C1—S1179.4 (2)C24—C25—H25120.0
C2—N2—Co1165.94 (18)C23—C26—H26A109.5
N2—C2—S2178.8 (2)C23—C26—H26B109.5
N11—O11—Co1122.38 (12)C23—C26—H26C109.5
O11—N11—C11120.70 (19)C23—C26—H26D109.5
O11—N11—C15118.81 (19)C23—C26—H26E109.5
C15—N11—C11120.5 (2)C23—C26—H26F109.5
N11—C11—H11119.7H26A—C26—H26B109.5
N11—C11—C12120.6 (2)H26A—C26—H26C109.5
C12—C11—H11119.7H26A—C26—H26D141.1
C11—C12—H12119.7H26A—C26—H26E56.3
C11—C12—C13120.6 (2)H26A—C26—H26F56.3
C13—C12—H12119.7H26B—C26—H26C109.5
C12—C13—C14117.3 (2)H26B—C26—H26D56.3
C12—C13—C16120.1 (2)H26B—C26—H26E141.1
C14—C13—C16122.6 (2)H26B—C26—H26F56.3
C13—C14—H14119.5H26C—C26—H26D56.3
C15—C14—C13120.9 (2)H26C—C26—H26E56.3
C15—C14—H14119.5H26C—C26—H26F141.1
N11—C15—C14120.1 (2)H26D—C26—H26E109.5
N11—C15—H15120.0H26D—C26—H26F109.5
C14—C15—H15120.0H26E—C26—H26F109.5
C13—C16—H16A109.5Co1—O31—H31121.0
C13—C16—H16B109.5C31—O31—Co1123.18 (14)
C13—C16—H16C109.5C31—O31—H31109.5
H16A—C16—H16B109.5O31—C31—H31A109.5
H16A—C16—H16C109.5O31—C31—H31B109.5
H16B—C16—H16C109.5O31—C31—H31C109.5
Co1i—O21—Co1107.47 (6)H31A—C31—H31B109.5
N21—O21—Co1i130.26 (12)H31A—C31—H31C109.5
N21—O21—Co1121.46 (12)H31B—C31—H31C109.5
O21—N21—C21118.04 (18)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N20.952.403.225 (3)145
C12—H12···S1ii0.952.793.688 (3)158
C15—H15···S2iii0.952.683.609 (3)167
C21—H21···S2iv0.953.033.917 (2)156
C22—H22···S1v0.952.983.821 (2)148
O31—H31···S1vi0.842.973.6106 (18)134
O31—H31···O11i0.842.313.003 (2)141
C31—H31B···S2iv0.982.833.575 (3)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x1, y, z; (vi) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17–24.  CSD CrossRef CAS Google Scholar
First citationMautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018b). Polyhedron, 154, 436–442.  CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMurrie, M. (2010). Chem. Soc. Rev. 39, 1986–1995.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNäther, C. & Jess, I. (2023). Acta Cryst. E79, 867–871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024). Acta Cryst. E80, 174–179.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Inorg. Chem. 19, 24534–24544.  CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. A Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007b). J. Coord. Chem. 60, 2009–2013.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005a). Acta Cryst. E61, m871–m872.  CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005b). Acta Cryst. E61, m1133–m1134.  CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006c). J. Coord. Chem. 59, 1883–1889.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007a). J. Coord. Chem. 60, 1637–1644.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84–89.  CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. pp. 376–380.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577–m1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237–242.  CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068.  Web of Science PubMed Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506–m3608.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3398–m3400.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G. & Shi, J.-M. (2007). Acta Cryst. E63, m1775–m1776.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds