research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dilithium bi­phenyl-4,4′-di­sulfonate dihydrate

crossmark logo

aNagakute, Aichi 480-1192, Japan, and bJonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 31 October 2023; accepted 4 December 2023; online 1 January 2024)

The asymmetric unit of the title compound, μ-biphenyl-4,4′-di­sulfonato-bis­(aqua­lithium), [Li2(C12H8O6S2)(H2O)2] or Li2[Bph(SO3)2](H2O)2, consists of an Li ion, half of the diphenyl-4,4′-di­sulfonate [Bph(SO3)2] ligand, and a water mol­ecule. The Li ion exhibits a four-coordinate tetra­hedral geometry with three oxygen atoms of the Bph(SO3)2 ligands and a water mol­ecule. The tetra­hedral LiO4 units, which are inter­connected by biphenyl moieties, form a layer structure parallel to (100). These layers are further connected by hydrogen-bonding inter­actions to yield a three-dimensional network.

1. Chemical context

Coordination networks (CNs) are crystalline materials composed of infinite arrays of s-block metal ions, connected by organic linkers, forming chain, layer or 3-D networks. These materials offer several advantages such as being non-toxic, abundant on the planet, and cheap and provide good results when gravimetric methods are used (Banerjee & Parise 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]). Li–di­carboxyl­ates may be good candidates as electrode materials for eco-friendly alternatives to other inorganic materials, and have been reported for use in battery applications (Armand et al., 2009[Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribiére, P., Poizot, P. & Tarascon, J. M. (2009). Nat. Mater. 2009 8, 120-125.]; Ogihara et al., 2014[Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467-11472.], 2023[Ogihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1-11.]; Yasuda & Ogihara, 2014[Yasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565-11567.]; Mikita et al., 2020[Mikita, R., Ogihara, N., Takahashi, N., Kosaka, S. & Isomura, N. (2020). Chem. Mater. 32, 3396-3404.]). To improve our chemistry and electrode applications, we investigated CNs using di­sulfonate ligands. While the structures of di­carboxyl­ate salts of alkali metals have been reported (Banerjee & Parise, 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]), the CNs of the di­sulfonates of alkali metals are still scarcely reported. Our present investigation focuses on the use of diphenyl-4,4′-di­sulfonic acid [Bph(SO3H)2] as a structural building block in the synthesis of CNs. Here, we report a rare example of a crystal structure of a Li–di­sulfonate CN material.

[Scheme 1]

2. Structural commentary

The title compound [Li2(Bph(SO3)2)(H2O)2] (Fig. 1[link]) consists of two Li cations, two water mol­ecules, and a diphenyl-4,4′-di­sulfonate [Bph(SO3)2] ligand. Its asymmetric unit consists of an Li ion, half of the Bph(SO3)2 ligand, and a water mol­ecule. The key feature of the structure is a di-periodic layer structure in which the layers are built up by LiO4 units bridged by Bph(SO3)2 ligands (Fig. 2[link]). The biphenyl groups of the ligands exhibit a planar and herringbone-type arrangement in the layer (Fig. 3[link]). Two parallel biphenyl groups are stacked not in a face-to-face but rather in a parallel-displaced fashion. The slippage of the layers is 4.43 Å and the nearest inter­molecular centroid-to-centroid distance between adjacent parallel phenyl groups is 5.47 Å. The angle formed by the two centroids of the phenyl rings and the ring plane is 34.5°. Inter­molecular distances between the carbon atoms of the planar biphenyl moieties of 3.66 Å are indicative of some degree of ππ stacking inter­action along the crystallographic b-axis direction. Similar herringbone-type stacking of aromatic organic moieties are found in Li–di­carboxyl­ate CN materials in which herringbone-type stacking structures play an important role in electron mobilities and electrode performance (Ogihara et al., 2017[Ogihara, N., Ohba, N. & Kishida, Y. (2017). Sci. Adv. 3, e1603103.]; Ozawa et al., 2018[Ozawa, Y., Ogihara, N., Hasegawa, M., Hiruta, O., Ohba, N. & Kishida, Y. (2018). Commun. Chem. 1, 65.]). The Li cation exhibits a four-coordinate tetra­hedral geometry formed by an oxygen atom of a coordinated water mol­ecule and three oxygen atoms coming from three different Bph(SO3)2 ligands. The tetra­hedrons are connected to one another by O–S–O bridges of the di­sulfonate group, and the shortest Li⋯Li distance is 4.80 Å. All the oxygen atoms of a sulfonate group coordinate to different Li cations. Thus, each sulfonate group coordinates to three Li cations to obtain a di-periodic layer. The bond distances between the Li cation and the oxygen atoms lie in the range 1.901 (5)–1.944 (5) Å at angles of 103.7 (2)–114.8 (2) °, which are shorter than those of reported Na2-di­sulfonate [2.313 (3)–2.560 (3) Å] and K2-di­sulfonate [2.657 (3)–3.079 (4) Å] complexes (Albat & Stock 2016[Albat, M. & Stock, N. (2016). IUCrData, 1, x160039.]; Smith et al., 2007[Smith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. E63, m3056-m3057.]). Similar trends of bond distances are observed in alkali metal–carboxyl­ate network materials (Banerjee & Parise, 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]).

[Figure 1]
Figure 1
Part of the crystal structure of the title compound with labeling scheme and 50% probability displacement ellipsoids. [Symmetry code: (iii) −x + 2, −y + 1, −z + 1.]
[Figure 2]
Figure 2
View of the layer structure of the title compound along the crystallographic b-axis. The layer is built up by LiO4 tetra­hedra connected by the organic ligands. The dashed lines represent hydrogen bonds between the oxygen atoms of the Bph(SO3)2 ligands and the coordinated water mol­ecules.
[Figure 3]
Figure 3
View of the herringbone-type stacking structure in the layer along the crystallographic a-axis.

3. Supra­molecular features

The hydrogen atoms of the coordinated water mol­ecules are oriented in such a direction exiting the di-periodic layers to form hydrogen-bonding inter­actions (Table 1[link]). A hydrogen atom of the water mol­ecule (H4) and an oxygen atom of the Bph(SO3)2 ligand acts as a hydrogen-bond donor and a hydrogen-bond acceptor, respectively, resulting in a three-dimensional hydrogen-bonding network (Fig. 2[link]). Because of the hydrogen-bonding inter­action, another hydrogen atom of the coordinated water mol­ecule (H1) is directed towards the oxygen atom of the Bph(SO3)2 ligand, where the distance between the oxygen atoms of 3.204 (3) Å is indicative of some degree of inter­action. Li2–di­carboxyl­ates where the di­carboxyl­ate is terephthalate, biphenyl di­carboxyl­ate or naphthalene di­carboxyl­ate, also consist of LiO4 layers (Banerjee & Parise 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]; Kaduk et al., 2000[Kaduk, J. A. (2000). Acta Cryst. B56, 474-485.]; Armand et al., 2009[Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribiére, P., Poizot, P. & Tarascon, J. M. (2009). Nat. Mater. 2009 8, 120-125.]; Banerjee et al., 2009a[Banerjee, D., Borkowski, L. A., Kim, S. J. & Parise, B. (2009a). Cryst. Growth Des. 9, 4922-4926.],b[Banerjee, D., Kim, S. J. & Parise, J. B. (2009b). Cryst. Growth Des. 9, 2500-2503.]; Ogihara et al., 2014[Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467-11472.]). In contrast to the sulfonate compound, four oxygen atoms come from the carboxyl­ate group and LiO4 units share the edges and corners of the tetra­hedrons, forming a coordination-bonded three-dimensional structure in these Li2–di­carboxyl­ates.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.89 (5) 2.17 (5) 3.016 (3) 157 (5)
O4—H1⋯O3ii 2.41 (5) 3.21 (1) 0.89 (5) 149 (4)
O4—H1⋯O4iii 2.50 (5) 3.14 (1) 0.89 (5) 129 (4)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

4. Database survey

A survey of the Cambridge Structural Database (CSD, v5.44, April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with biphenyl and sulfonate and alkali metals resulted in seven hits. Of these, the alkali metal-coordinated compounds are a potassium complex (HIQKEY; Smith et al., 2007[Smith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. E63, m3056-m3057.]), which is related to this work, and a sodium complex (SIWVUP; Anderson et al., 1998[Anderson, S., Anderson, H. L. & Clegg, W. (1998). Chem. Commun. pp. 2379-2380.]). No coordination bonds are found in other alkali-metal salts. Our structure is a rare example of the crystal structure of an Li–di­sulfonate CN material.

5. Synthesis and crystallization

An aqueous solution (5 mL) of LiOH (0.28 g, 1 mmol L−1) was added to an aqueous solution of Bph(SO3H)2 (1.8 g, 2 mmol L−1). Colorless crystals began to form at ambient temperature in one month. One of these crystals was used for X-ray crystallography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen-atom parameters were fully refined. The final cycle of the full-matrix least-squares refinement on F2 was based on 1666 observed reflections and 133 variable parameters.

Table 2
Experimental details

Crystal data
Chemical formula [Li2(C12H8O6S2)(H2O)2]
Mr 362.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 286
a, b, c (Å) 15.8584 (11), 5.3693 (4), 8.8636 (6)
β (°) 99.994 (7)
V3) 743.27 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.50 × 0.40 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.213, 0.924
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 9858, 1666, 1490
Rint 0.067
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.159, 1.12
No. of reflections 1666
No. of parameters 133
No. of restraints 3
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.74, −0.28
Computer programs: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

µ-Biphenyl-4,4'-disulfonato-bis(aqualithium) top
Crystal data top
[Li2(C12H8O6S2)(H2O)2]F(000) = 372.00
Mr = 362.22Dx = 1.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 15.8584 (11) ÅCell parameters from 17604 reflections
b = 5.3693 (4) Åθ = 3.2–27.6°
c = 8.8636 (6) ŵ = 0.40 mm1
β = 99.994 (7)°T = 286 K
V = 743.27 (9) Å3Block, colorless
Z = 20.50 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1490 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.067
ω scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 2020
Tmin = 0.213, Tmax = 0.924k = 66
9858 measured reflectionsl = 1111
1666 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0948P)2 + 0.3642P]
where P = (Fo2 + 2Fc2)/3
1666 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.74 e Å3
3 restraintsΔρmin = 0.28 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67846 (4)0.56370 (10)0.59448 (6)0.0341 (3)
O10.66681 (15)0.8238 (3)0.6295 (3)0.0550 (6)
O20.62416 (15)0.4887 (5)0.4532 (2)0.0566 (6)
O30.67041 (13)0.4012 (4)0.7215 (2)0.0451 (5)
O40.49748 (14)1.0921 (5)0.6579 (3)0.0587 (6)
C10.78551 (17)0.5384 (4)0.5648 (3)0.0346 (5)
C20.81715 (19)0.7143 (6)0.4756 (4)0.0566 (8)
C30.90075 (19)0.6964 (6)0.4499 (4)0.0588 (9)
C40.95484 (15)0.5075 (4)0.5137 (3)0.0354 (5)
C50.9221 (2)0.3349 (6)0.6046 (5)0.0628 (9)
C60.8381 (2)0.3489 (6)0.6297 (5)0.0608 (9)
Li10.6195 (3)1.0777 (8)0.7388 (5)0.0413 (9)
H10.464 (3)0.986 (9)0.696 (7)0.13 (2)*
H20.778 (3)0.874 (10)0.441 (5)0.083 (13)*
H30.916 (3)0.789 (10)0.375 (6)0.099 (16)*
H40.462 (3)1.197 (9)0.600 (6)0.12 (2)*
H50.954 (3)0.196 (9)0.644 (5)0.078 (13)*
H60.823 (3)0.262 (9)0.695 (6)0.096 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0333 (4)0.0345 (4)0.0359 (4)0.0043 (2)0.0093 (2)0.0016 (2)
O10.0641 (13)0.0359 (11)0.0724 (13)0.0116 (9)0.0324 (11)0.0000 (9)
O20.0377 (11)0.0905 (17)0.0413 (10)0.0008 (10)0.0057 (9)0.0115 (10)
O30.0481 (11)0.0404 (9)0.0485 (10)0.0001 (8)0.0131 (8)0.0050 (8)
O40.0396 (12)0.0691 (14)0.0666 (14)0.0048 (10)0.0073 (10)0.0160 (11)
C10.0334 (12)0.0316 (11)0.0386 (11)0.0022 (8)0.0060 (9)0.0036 (8)
C20.0352 (13)0.0581 (17)0.077 (2)0.0112 (12)0.0120 (13)0.0322 (15)
C30.0356 (14)0.0630 (19)0.079 (2)0.0077 (12)0.0137 (14)0.0355 (16)
C40.0302 (13)0.0337 (11)0.0414 (12)0.0007 (8)0.0042 (10)0.0033 (9)
C50.0479 (17)0.0465 (15)0.100 (3)0.0186 (13)0.0298 (17)0.0301 (17)
C60.0489 (16)0.0460 (15)0.095 (2)0.0149 (13)0.0333 (17)0.0300 (17)
Li10.041 (2)0.041 (2)0.043 (2)0.0029 (17)0.0106 (18)0.0036 (16)
Geometric parameters (Å, º) top
S1—O31.4472 (19)C1—C21.381 (4)
S1—O21.448 (2)C2—C31.387 (4)
S1—O11.4492 (19)C2—H21.07 (5)
S1—C11.768 (3)C3—C41.384 (4)
O1—Li11.901 (5)C3—H30.90 (5)
O2—Li1i1.922 (5)C4—C51.387 (4)
O3—Li1ii1.933 (5)C4—C4iii1.496 (5)
O4—Li11.944 (5)C5—C61.390 (4)
O4—H10.88 (2)C5—H50.94 (5)
O4—H40.89 (2)C6—H60.81 (5)
C1—C61.377 (4)
O3—S1—O2112.66 (14)C4—C3—C2121.8 (3)
O3—S1—O1112.48 (12)C4—C3—H3119 (3)
O2—S1—O1112.00 (15)C2—C3—H3118 (3)
O3—S1—C1106.61 (11)C3—C4—C5117.3 (2)
O2—S1—C1107.01 (12)C3—C4—C4iii121.1 (3)
O1—S1—C1105.51 (12)C5—C4—C4iii121.6 (3)
S1—O1—Li1151.24 (19)C4—C5—C6121.5 (3)
S1—O2—Li1i145.2 (2)C4—C5—H5121 (3)
S1—O3—Li1ii134.28 (19)C6—C5—H5118 (3)
Li1—O4—H1117 (4)C1—C6—C5120.1 (3)
Li1—O4—H4136 (4)C1—C6—H6119 (4)
H1—O4—H4106 (4)C5—C6—H6120 (4)
C6—C1—C2119.4 (3)O1—Li1—O2iv114.8 (2)
C6—C1—S1121.5 (2)O1—Li1—O3v113.3 (2)
C2—C1—S1119.09 (19)O2iv—Li1—O3v107.5 (2)
C1—C2—C3119.9 (3)O1—Li1—O4107.2 (3)
C1—C2—H2117 (2)O2iv—Li1—O4103.7 (2)
C3—C2—H2122 (2)O3v—Li1—O4109.8 (2)
O3—S1—O1—Li127.3 (5)O2—S1—C1—C274.3 (3)
O2—S1—O1—Li1100.8 (5)O1—S1—C1—C245.2 (3)
C1—S1—O1—Li1143.1 (4)C6—C1—C2—C31.1 (5)
O3—S1—O2—Li1i131.3 (4)S1—C1—C2—C3179.5 (3)
O1—S1—O2—Li1i100.7 (4)C1—C2—C3—C41.1 (6)
C1—S1—O2—Li1i14.4 (4)C2—C3—C4—C50.2 (5)
O2—S1—O3—Li1ii12.8 (3)C2—C3—C4—C4iii179.3 (3)
O1—S1—O3—Li1ii140.6 (3)C3—C4—C5—C60.6 (6)
C1—S1—O3—Li1ii104.2 (3)C4iii—C4—C5—C6179.8 (4)
O3—S1—C1—C614.5 (3)C2—C1—C6—C50.3 (6)
O2—S1—C1—C6106.3 (3)S1—C1—C6—C5179.7 (3)
O1—S1—C1—C6134.3 (3)C4—C5—C6—C10.6 (6)
O3—S1—C1—C2165.0 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2vi0.89 (5)2.17 (5)3.016 (3)157 (5)
O4—H1···O3vii2.41 (5)3.21 (1)0.89 (5)149 (4)
O4—H1···O4viii2.50 (5)3.14 (1)0.89 (5)129 (4)
Symmetry codes: (vi) x+1, y+2, z+1; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y1/2, z+3/2.
 

Acknowledgements

We would like to thank Dr Mitsutaro Umehara for the help with the database survey.

References

First citationAlbat, M. & Stock, N. (2016). IUCrData, 1, x160039.  Google Scholar
First citationAnderson, S., Anderson, H. L. & Clegg, W. (1998). Chem. Commun. pp. 2379–2380.  CSD CrossRef Google Scholar
First citationArmand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribiére, P., Poizot, P. & Tarascon, J. M. (2009). Nat. Mater. 2009 8, 120–125.  Google Scholar
First citationBanerjee, D., Borkowski, L. A., Kim, S. J. & Parise, B. (2009a). Cryst. Growth Des. 9, 4922–4926.  CSD CrossRef Google Scholar
First citationBanerjee, D., Kim, S. J. & Parise, J. B. (2009b). Cryst. Growth Des. 9, 2500–2503.  CSD CrossRef Google Scholar
First citationBanerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704–4720.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. (2000). Acta Cryst. B56, 474–485.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMikita, R., Ogihara, N., Takahashi, N., Kosaka, S. & Isomura, N. (2020). Chem. Mater. 32, 3396–3404.  CrossRef Google Scholar
First citationOgihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1–11.  CrossRef PubMed Google Scholar
First citationOgihara, N., Ohba, N. & Kishida, Y. (2017). Sci. Adv. 3, e1603103.  CrossRef PubMed Google Scholar
First citationOgihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467–11472.  CrossRef Google Scholar
First citationOzawa, Y., Ogihara, N., Hasegawa, M., Hiruta, O., Ohba, N. & Kishida, Y. (2018). Commun. Chem. 1, 65.  CrossRef Google Scholar
First citationRigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. E63, m3056–m3057.  CSD CrossRef IUCr Journals Google Scholar
First citationYasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565–11567.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds