organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dimeth­yl(4-methyl­phen­yl)ammonium naphthalene-1,5-di­sulfonate dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 7 September 2011; accepted 13 September 2011; online 17 September 2011)

The asymmetric unit of the organic–inorganic hybrid salt, 2C9H14N+·C10H6O6S22−·2H2O, consists of one dimeth­yl(4-methyl­phen­yl)ammonium cation, one half of a naphthalene-1,5-disulfonate anion lying on a crystallographic centre of inversion, and one water mol­ecule. In the crystal, O—H⋯O(S) and N—H⋯OH2 hydrogen bonds link the cations and anions forming ring motifs.

Related literature

The title compound was obtained during attempts to obtain dielectric-ferroelectric materials. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhang et al. (2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • 2C9H14N+·C10H6O6S22−·2H2O

  • Mr = 594.74

  • Triclinic, [P \overline 1]

  • a = 9.2660 (19) Å

  • b = 9.882 (2) Å

  • c = 10.260 (2) Å

  • α = 109.59 (3)°

  • β = 115.79 (3)°

  • γ = 98.39 (3)°

  • V = 748.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.955

  • 7762 measured reflections

  • 3421 independent reflections

  • 2951 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.06

  • 3421 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3i 0.85 (3) 1.93 (3) 2.778 (3) 176 (3)
O4—H4B⋯S1i 0.85 (3) 2.96 (3) 3.753 (3) 157 (2)
N1—H10⋯O4ii 0.89 (2) 1.84 (2) 2.723 (2) 174.2 (19)
O4—H4A⋯O1iii 0.84 (3) 2.01 (3) 2.846 (2) 171 (2)
O4—H4A⋯S1iii 0.84 (3) 2.87 (3) 3.6569 (18) 156 (2)
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids(Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately,the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (385k-387k) of the compound, we have found that cyclohexylammonium 4-methoxy-benzoate has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

Regarding its crystal structure,the asymmetric unit of the title compound consists of a dimethyl(4-methylphenyl)ammonium cation, a half of naphthalene-1,5-disulfonate anion and a water molecule(Fig. 1). The free water molecules connected cations and anions by intermolecular hydrogen bonds involving O—H···S, O—H···O and N—H···O which makes great contribution to the stability of the crystal structure,and these hydrogen bonds link the cations, water molecules and anions into a chains along the c axis(Fig. 2 and Tab. 1).

Related literature top

The title compound was obtained during attempts to obtain dielectric-ferroelectric materials. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008); Zhang et al. (2010).

Experimental top

The title compound was obtained by the addition of naphthalene-1,5-disulfonate acid (3.62 g, 0.01 mol) to a solution of dimethyl(4-methylphenyl)amine (2.72 g, 0.02 mol) in water, in the stoichiometric ratio 1: 2. Good quality single crystals were obtained by slow evaporation after two days(the chemical yield is 35%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.96 Å, O—H = 0.84 to 0.85 Å, N—H = 0.89 Å and with Uiso(H) = 1.2 Uiso(C, O) or 1.5 Uiso(C) for methyl H atoms.

Structure description top

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids(Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately,the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (385k-387k) of the compound, we have found that cyclohexylammonium 4-methoxy-benzoate has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

Regarding its crystal structure,the asymmetric unit of the title compound consists of a dimethyl(4-methylphenyl)ammonium cation, a half of naphthalene-1,5-disulfonate anion and a water molecule(Fig. 1). The free water molecules connected cations and anions by intermolecular hydrogen bonds involving O—H···S, O—H···O and N—H···O which makes great contribution to the stability of the crystal structure,and these hydrogen bonds link the cations, water molecules and anions into a chains along the c axis(Fig. 2 and Tab. 1).

The title compound was obtained during attempts to obtain dielectric-ferroelectric materials. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008); Zhang et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Dimethyl(4-methylphenyl)ammonium naphthalene-1,5-disulfonate dihydrate top
Crystal data top
2C9H14N+·C10H6O6S22·2H2OZ = 1
Mr = 594.74F(000) = 314
Triclinic, P1Dx = 1.315 Mg m3
a = 9.2660 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.882 (2) Åθ = 3.0–27.5°
c = 10.260 (2) ŵ = 0.23 mm1
α = 109.59 (3)°T = 293 K
β = 115.79 (3)°Block, colorless
γ = 98.39 (3)°0.20 × 0.20 × 0.20 mm
V = 748.3 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
3421 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.955, Tmax = 0.955k = 1212
7762 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1813P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.015
3421 reflectionsΔρmax = 0.28 e Å3
197 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
2C9H14N+·C10H6O6S22·2H2Oγ = 98.39 (3)°
Mr = 594.74V = 748.3 (3) Å3
Triclinic, P1Z = 1
a = 9.2660 (19) ÅMo Kα radiation
b = 9.882 (2) ŵ = 0.23 mm1
c = 10.260 (2) ÅT = 293 K
α = 109.59 (3)°0.20 × 0.20 × 0.20 mm
β = 115.79 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2951 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.955Rint = 0.026
7762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
3421 reflectionsΔρmin = 0.34 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5316 (3)0.4244 (2)0.3073 (3)0.0732 (7)
H1A0.58250.46900.26070.110*
H1B0.61940.43660.40960.110*
H1C0.45520.47460.32320.110*
N10.14101 (18)0.21478 (16)0.12073 (17)0.0374 (3)
O10.29693 (16)0.24956 (14)0.32982 (15)0.0444 (3)
S10.13241 (5)0.27559 (4)0.31891 (4)0.03323 (14)
C20.4338 (2)0.2567 (2)0.1950 (2)0.0487 (4)
O20.10384 (18)0.37468 (13)0.38791 (16)0.0482 (3)
C30.3514 (3)0.2034 (2)0.0300 (3)0.0649 (6)
H30.35870.27220.01230.078*
O30.00765 (16)0.32258 (14)0.15568 (14)0.0466 (3)
C40.2579 (3)0.0502 (2)0.0752 (2)0.0590 (6)
H40.20350.01670.18650.071*
O40.26401 (18)0.60704 (17)0.02223 (18)0.0468 (3)
C50.2464 (2)0.05151 (19)0.0131 (2)0.0369 (4)
C60.3283 (2)0.0021 (2)0.1516 (2)0.0442 (4)
H60.32090.07140.19330.053*
C70.4220 (3)0.1516 (2)0.2548 (2)0.0495 (5)
H70.47790.18480.36610.059*
C90.1372 (3)0.2773 (2)0.2766 (2)0.0580 (5)
H9A0.07040.23690.34540.087*
H9B0.08720.38680.32910.087*
H9C0.25150.24850.25560.087*
C100.0362 (3)0.2446 (2)0.1518 (3)0.0573 (5)
H10A0.03250.21350.05080.086*
H10B0.10060.35190.21860.086*
H10C0.08970.18770.20600.086*
C110.2843 (2)0.02932 (18)0.5176 (2)0.0371 (4)
H110.37750.01570.50880.045*
C150.00608 (18)0.07490 (15)0.45203 (17)0.0275 (3)
C160.13837 (19)0.09301 (16)0.43905 (17)0.0294 (3)
C170.1605 (2)0.19878 (17)0.37400 (19)0.0350 (3)
H170.16950.29680.31240.042*
C180.2949 (2)0.17579 (18)0.3883 (2)0.0412 (4)
H180.39540.25810.33510.049*
H100.186 (3)0.267 (2)0.068 (2)0.043 (5)*
H4A0.268 (3)0.640 (3)0.111 (4)0.073 (8)*
H4B0.187 (3)0.519 (3)0.036 (3)0.075 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0718 (15)0.0389 (11)0.0853 (17)0.0116 (10)0.0304 (13)0.0197 (11)
N10.0403 (8)0.0372 (7)0.0359 (7)0.0127 (6)0.0197 (6)0.0179 (6)
O10.0425 (7)0.0480 (7)0.0438 (7)0.0180 (5)0.0269 (6)0.0144 (6)
S10.0390 (2)0.0300 (2)0.0306 (2)0.01212 (16)0.01956 (17)0.01138 (16)
C20.0452 (10)0.0376 (9)0.0546 (11)0.0129 (8)0.0207 (9)0.0190 (8)
O20.0708 (9)0.0355 (6)0.0547 (8)0.0226 (6)0.0408 (7)0.0247 (6)
C30.0811 (16)0.0455 (11)0.0614 (13)0.0120 (10)0.0263 (12)0.0354 (10)
O30.0474 (7)0.0445 (7)0.0310 (6)0.0119 (5)0.0147 (5)0.0084 (5)
C40.0767 (14)0.0477 (11)0.0410 (10)0.0108 (10)0.0198 (10)0.0266 (9)
O40.0493 (8)0.0446 (8)0.0410 (7)0.0129 (6)0.0218 (6)0.0170 (6)
C50.0387 (8)0.0366 (8)0.0355 (8)0.0126 (7)0.0177 (7)0.0186 (7)
C60.0547 (11)0.0397 (9)0.0390 (9)0.0147 (8)0.0212 (8)0.0231 (8)
C70.0532 (11)0.0429 (10)0.0383 (9)0.0118 (8)0.0155 (8)0.0163 (8)
C90.0728 (14)0.0515 (11)0.0478 (11)0.0116 (10)0.0390 (11)0.0138 (9)
C100.0454 (11)0.0502 (11)0.0707 (14)0.0124 (9)0.0332 (10)0.0187 (10)
C110.0299 (8)0.0354 (8)0.0457 (9)0.0086 (6)0.0218 (7)0.0159 (7)
C150.0293 (7)0.0249 (7)0.0263 (7)0.0061 (5)0.0135 (6)0.0120 (6)
C160.0325 (7)0.0273 (7)0.0286 (7)0.0095 (6)0.0161 (6)0.0127 (6)
C170.0341 (8)0.0242 (7)0.0382 (8)0.0047 (6)0.0168 (7)0.0099 (6)
C180.0314 (8)0.0292 (8)0.0512 (10)0.0013 (6)0.0193 (7)0.0121 (7)
Geometric parameters (Å, º) top
C1—C21.506 (3)C5—C61.376 (2)
C1—H1A0.9600C6—C71.385 (3)
C1—H1B0.9600C6—H60.9300
C1—H1C0.9600C7—H70.9300
N1—C51.478 (2)C9—H9A0.9600
N1—C91.490 (2)C9—H9B0.9600
N1—C101.492 (2)C9—H9C0.9600
N1—H100.89 (2)C10—H10A0.9600
O1—S11.4562 (13)C10—H10B0.9600
S1—O21.4430 (13)C10—H10C0.9600
S1—O31.4548 (15)C11—C161.364 (2)
S1—C161.7883 (16)C11—C18i1.406 (2)
C2—C31.374 (3)C11—H110.9300
C2—C71.386 (3)C15—C171.422 (2)
C3—C41.384 (3)C15—C161.432 (2)
C3—H30.9299C15—C15i1.432 (3)
C4—C51.373 (2)C17—C181.358 (2)
C4—H40.9300C17—H170.9300
O4—H4A0.84 (3)C18—C11i1.406 (2)
O4—H4B0.85 (3)C18—H180.9300
C2—C1—H1A109.5C5—C6—H6120.3
C2—C1—H1B109.5C7—C6—H6120.3
H1A—C1—H1B109.5C6—C7—C2121.13 (17)
C2—C1—H1C109.5C6—C7—H7119.4
H1A—C1—H1C109.5C2—C7—H7119.4
H1B—C1—H1C109.5N1—C9—H9A109.5
C5—N1—C9114.42 (14)N1—C9—H9B109.5
C5—N1—C10111.22 (14)H9A—C9—H9B109.5
C9—N1—C10110.28 (16)N1—C9—H9C109.5
C5—N1—H10107.1 (13)H9A—C9—H9C109.5
C9—N1—H10107.0 (13)H9B—C9—H9C109.5
C10—N1—H10106.4 (13)N1—C10—H10A109.5
O2—S1—O3113.10 (9)N1—C10—H10B109.5
O2—S1—O1113.24 (8)H10A—C10—H10B109.5
O3—S1—O1112.12 (8)N1—C10—H10C109.5
O2—S1—C16106.42 (7)H10A—C10—H10C109.5
O3—S1—C16105.32 (8)H10B—C10—H10C109.5
O1—S1—C16105.85 (8)C16—C11—C18i120.47 (15)
C3—C2—C7117.88 (17)C16—C11—H11119.8
C3—C2—C1121.06 (19)C18i—C11—H11119.8
C7—C2—C1121.1 (2)C17—C15—C16122.94 (13)
C2—C3—C4121.90 (18)C17—C15—C15i118.74 (17)
C2—C3—H3119.0C16—C15—C15i118.32 (16)
C4—C3—H3119.1C11—C16—C15120.69 (14)
C5—C4—C3119.14 (18)C11—C16—S1118.17 (12)
C5—C4—H4120.4C15—C16—S1121.14 (11)
C3—C4—H4120.4C18—C17—C15120.86 (15)
H4A—O4—H4B105 (2)C18—C17—H17119.6
C4—C5—C6120.44 (17)C15—C17—H17119.6
C4—C5—N1121.04 (15)C17—C18—C11i120.91 (15)
C6—C5—N1118.48 (15)C17—C18—H18119.5
C5—C6—C7119.50 (16)C11i—C18—H18119.5
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3ii0.85 (3)1.93 (3)2.778 (3)176 (3)
O4—H4B···S1ii0.85 (3)2.96 (3)3.753 (3)157 (2)
N1—H10···O4iii0.89 (2)1.84 (2)2.723 (2)174.2 (19)
O4—H4A···O1iv0.84 (3)2.01 (3)2.846 (2)171 (2)
O4—H4A···S1iv0.84 (3)2.87 (3)3.6569 (18)156 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C9H14N+·C10H6O6S22·2H2O
Mr594.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2660 (19), 9.882 (2), 10.260 (2)
α, β, γ (°)109.59 (3), 115.79 (3), 98.39 (3)
V3)748.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.955, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7762, 3421, 2951
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.06
No. of reflections3421
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.85 (3)1.93 (3)2.778 (3)176 (3)
O4—H4B···S1i0.85 (3)2.96 (3)3.753 (3)157 (2)
N1—H10···O4ii0.89 (2)1.84 (2)2.723 (2)174.2 (19)
O4—H4A···O1iii0.84 (3)2.01 (3)2.846 (2)171 (2)
O4—H4A···S1iii0.84 (3)2.87 (3)3.6569 (18)156 (2)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds