Download citation
Download citation
link to html
The structure of a new synthetic compound, di­ammonium tetra­hydroxy­deca­borate monohydrate, has been determined by single-crystal X-ray diffraction. It crystallizes in triclinic space group P\overline 1 and all atoms occupy general sites. The title compound is composed of [B10O15(OH)4]4- ions as the fundamental building blocks, and these are linked end-to-end by sharing two common O atoms, thus producing infinite chains of composition [B10O14(OH)4]n2n-. These chains are linked by hydrogen bonds, thus forming borate sheets. Water mol­ecules and ammonium ions between these sheets connect adjacent sheets via hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021152/iz1036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021152/iz1036Isup2.hkl
Contains datablock I

Comment top

Borates are conventionally obtained by high-temperature solid-state or hydrothermal reactions. In order to enrich the borate chemistry and explore more practical materials, an unusual synthetic method involving a flux of molten boric acid was proposed for the synthesis of new borates (Williams et al., 1998; Li et al., 2002). The present work is part of a series of studies aimed at synthesizing new borates from boric acid flux. Several natural or synthetic ammonium borates, e.g. larderellite [NH4B5O7(OH)2·H2O; Merlino et al.,1969] and ammonioborite [(NH4)3B15O20(OH)8·4H2O; Merlino et al.,1971], have been found previously, but the title compound, (I), obtained from a boric acid flux, differs from all known ammonium borates. The experimental powder pattern, IR spectrum and ICP analysis of (I) are in good agreement with the results of single-crystal X-ray diffraction analysis.

The basic structural unit in (I) is a double ring consisting of one BO4 tetrahedron and four BO3 triangles. This unit was first found in K[B5O6(OH)4]·2H2O as an isolated ion (Zachariasen, 1937). In larderellite, these structural units are linked to form infinite chains, while in ammonioborite, three of these structural units are connected to give trimeric ions with C2-2 symmetry. However, in (I), two of the basic structural units with no symmetric relation are connected to a dimeric ion. Inclusive of H atoms bonded to the terminal O atoms, the dimeric ion is [B10O15(OH)4]4−, which is the fundamental building block (FBB) of (I) (Fig. 1). After making a careful inspection of known borates, we believe that (I) is a new borate FBB.

The FBBs in (I) are linked end-to-end by sharing two O atoms, thus forming infinite chains along the b axis with the composition [B10O14(OH)4]n2n-. Two symmetry-equivalent chains pass through the unit cell. These parallel chains are aligned along the a axis and are linked via hydrogen bonds, thus forming infinite sheets approximately parallel to the ab plane (Fig. 2). Ammonium ions and water molecules are located between these sheets, which are connected to one another via hydrogen bonds. The O atoms of the water molecules are disordered, presumably as a result of the large space between the sheets.

The general structural features and the composition are very similar in (I) and in larderellite, but the layout of their borate chains are different. In the title compound, two parallel chains run through a unit cell, but in larderellite, the two chains running through the unit cell intersect. Furthermore, in the chains of larderellite, each [B5O10] unit is obtained from the preceding one through the operation of a screw diad axis (Merlino et al., 1969), but in the title compound, adjacent [B5O10] units in each chain are symmetry distinct.

In the title compound, the triangular BO3 groups are slightly distorted, with an average B—O bond length of 1.366 Å and B—O—B angles in the range 113.72–124.50°. The BO4 groups are almost perfect tetrahedra, with a mean B—O distance of 1.469 Å and B—O—B angles in the range 107.65–111.85° (Table 1). These average bond lengths are in agreement with the data reviewed by Hawthorne et al. (1996).

The hydrogen bonds within the sheets originate from the H atoms of hydroxy groups and the O atoms in the sheets, and the hydorgen bonds between the sheets are attributed to the H atoms of the ammonium ions, water molecules and the O atoms in the sheets (Table 2). Each ammonium ion is hydrogen bonded to the two adjacent sheets, but each water molecule is only hydrogen bonded to one neighboring sheet.

Experimental top

The title compound was synthesized using boric acid as a flux. All reagents were of analytical grade. A mixture of V2O5 (0.22 g), H2O (1 ml) and NH2CH2CH2NH2 (0.5 ml) was stirred to obtain a transparent solution, which was mixed with H3BO3 (3.09 g), charged into a Teflon 50 ml autoclave and heated at 493 K for 7 d. The excess boric acid was removed by washing the products with hot distilled water and colorless crystals suitable for single-crystal diffraction analysis were easily isolated from the mixtures.

Refinement top

Difference Fourier analysis indicated residual electron density about 1 Å from positions O19A and O19B. Further refinement revealed that these two positions corresponded to O atoms with occupancies of 0.64 and 0.36, respectively. In addition, the difference Fourier analysis was able to locate H atoms around these O atoms; these atoms form a disordered water molecule with the occupancy ratio of about 2:1. A l l H atoms? were then refined without constraints. During the data collection, we did not observe any indication of superstructure reflections.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ViewerLite4.2 (Accelrys, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The fundamental building block in (NH4)2[B10O14(OH)4]·H2O. Displacement ellipsoids are drawn here at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The borate sheet in (NH4)2[B10O14(OH)4]·H2O, displayed in stick style.
diammonium tetrahydroxodecaborate monohydrate top
Crystal data top
(NH4)2[B10O14(OH)4]·H2OZ = 2
Mr = 454.23F(000) = 460
Triclinic, P1Dx = 1.900 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6207 (15) ÅCell parameters from 4431 reflections
b = 9.2328 (18) Åθ = 2.8–33.0°
c = 11.926 (2) ŵ = 0.18 mm1
α = 99.46 (3)°T = 293 K
β = 105.89 (3)°Tabular, colourless
γ = 91.54 (3)°0.4 × 0.2 × 0.1 mm
V = 793.8 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4462 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 33.0°, θmin = 2.8°
Detector resolution: 15X15microns pixels mm-1h = 911
ω scansk = 1412
7470 measured reflectionsl = 1818
5466 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
5466 reflections(Δ/σ)max = 0.006
346 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(NH4)2[B10O14(OH)4]·H2Oγ = 91.54 (3)°
Mr = 454.23V = 793.8 (3) Å3
Triclinic, P1Z = 2
a = 7.6207 (15) ÅMo Kα radiation
b = 9.2328 (18) ŵ = 0.18 mm1
c = 11.926 (2) ÅT = 293 K
α = 99.46 (3)°0.4 × 0.2 × 0.1 mm
β = 105.89 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4462 reflections with I > 2σ(I)
7470 measured reflectionsRint = 0.020
5466 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.52 e Å3
5466 reflectionsΔρmin = 0.34 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.42499 (11)0.23343 (9)0.35569 (6)0.01815 (16)
O20.99188 (11)0.75950 (8)0.52156 (6)0.01740 (15)
O30.61866 (11)0.14699 (8)0.52089 (6)0.01749 (16)
O40.61493 (11)0.35254 (9)0.05077 (7)0.01859 (16)
O50.79488 (11)0.54033 (9)0.02143 (6)0.01906 (16)
O61.20771 (11)0.57620 (9)0.54853 (7)0.02014 (17)
O70.82928 (11)0.78708 (9)0.32590 (6)0.01856 (16)
O80.76414 (11)0.54187 (9)0.21453 (7)0.01964 (17)
O90.79506 (10)0.05193 (8)0.49620 (6)0.01654 (15)
O100.59655 (11)0.24094 (9)0.21651 (6)0.01825 (16)
O110.62784 (11)0.04265 (9)0.32648 (6)0.01853 (16)
O120.34932 (11)0.05092 (9)0.17916 (6)0.01881 (16)
O131.05277 (11)0.60613 (9)0.35754 (7)0.01882 (16)
O140.40864 (11)0.15231 (9)0.02035 (6)0.01926 (17)
O150.44718 (12)0.34444 (10)0.55542 (7)0.02216 (17)
O160.98703 (11)0.71225 (9)0.18264 (7)0.01900 (16)
O170.97958 (12)0.73044 (9)0.01127 (7)0.02201 (18)
O180.19933 (12)0.04998 (10)0.02210 (7)0.02292 (18)
B10.72646 (16)0.47890 (13)0.10033 (10)0.0147 (2)
B20.54303 (16)0.24956 (13)0.10078 (10)0.0149 (2)
B30.50055 (16)0.14206 (13)0.26907 (10)0.0154 (2)
B40.91917 (16)0.66183 (12)0.06516 (10)0.0155 (2)
B50.31933 (16)0.05059 (13)0.06187 (10)0.0155 (2)
B60.67770 (16)0.04462 (12)0.44356 (10)0.0143 (2)
B70.90737 (16)0.66144 (13)0.26985 (10)0.0158 (2)
B80.49463 (16)0.24418 (13)0.47377 (10)0.0157 (2)
B91.08203 (16)0.64653 (12)0.47494 (10)0.0155 (2)
B100.86805 (16)0.82966 (13)0.44331 (10)0.0147 (2)
N20.98778 (18)0.04438 (14)0.25324 (10)0.0277 (2)
N10.4036 (2)0.72706 (17)0.21001 (11)0.0354 (3)
O19A0.1224 (5)0.3482 (4)0.2383 (2)0.0325 (9)0.634 (13)
O19B0.1993 (15)0.4056 (12)0.2285 (3)0.049 (3)0.366 (13)
H10.383 (3)0.414 (2)0.5312 (19)0.054 (6)*
H20.144 (3)0.112 (2)0.0000 (16)0.044 (5)*
H30.395 (3)0.690 (3)0.134 (2)0.063 (6)*
H41.224 (3)0.608 (2)0.6167 (19)0.050 (6)*
H50.439 (5)0.823 (4)0.231 (3)0.122 (12)*
H60.924 (4)0.046 (3)0.176 (2)0.077 (8)*
H70.967 (4)0.035 (4)0.269 (3)0.104 (11)*
H80.477 (4)0.676 (4)0.255 (3)0.095 (9)*
H91.114 (5)0.050 (3)0.258 (2)0.091 (9)*
H100.290 (5)0.744 (4)0.224 (3)0.115 (11)*
H110.934 (3)0.683 (2)0.0881 (17)0.046 (5)*
H120.989 (5)0.119 (4)0.315 (3)0.137 (13)*
H130.246 (4)0.335 (3)0.277 (2)0.072 (7)*
H140.113 (3)0.433 (3)0.276 (2)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (4)0.0188 (4)0.0151 (3)0.0067 (3)0.0046 (3)0.0038 (3)
O20.0220 (4)0.0154 (4)0.0136 (3)0.0068 (3)0.0032 (3)0.0016 (3)
O30.0227 (4)0.0159 (4)0.0132 (3)0.0067 (3)0.0042 (3)0.0014 (3)
O40.0239 (4)0.0156 (4)0.0147 (3)0.0078 (3)0.0043 (3)0.0018 (3)
O50.0261 (4)0.0166 (4)0.0135 (3)0.0075 (3)0.0059 (3)0.0006 (3)
O60.0243 (4)0.0188 (4)0.0159 (4)0.0077 (3)0.0030 (3)0.0029 (3)
O70.0238 (4)0.0173 (4)0.0128 (3)0.0063 (3)0.0028 (3)0.0010 (3)
O80.0238 (4)0.0194 (4)0.0142 (3)0.0078 (3)0.0062 (3)0.0011 (3)
O90.0207 (4)0.0141 (3)0.0140 (3)0.0060 (3)0.0033 (3)0.0023 (3)
O100.0206 (4)0.0187 (4)0.0135 (3)0.0053 (3)0.0021 (3)0.0032 (3)
O110.0247 (4)0.0185 (4)0.0134 (3)0.0083 (3)0.0060 (3)0.0038 (3)
O120.0218 (4)0.0191 (4)0.0141 (3)0.0064 (3)0.0034 (3)0.0031 (3)
O130.0231 (4)0.0158 (4)0.0156 (3)0.0059 (3)0.0037 (3)0.0003 (3)
O140.0233 (4)0.0182 (4)0.0138 (3)0.0086 (3)0.0022 (3)0.0027 (3)
O150.0300 (4)0.0199 (4)0.0177 (4)0.0114 (3)0.0081 (3)0.0024 (3)
O160.0225 (4)0.0175 (4)0.0154 (3)0.0062 (3)0.0052 (3)0.0001 (3)
O170.0285 (4)0.0195 (4)0.0191 (4)0.0066 (3)0.0096 (3)0.0031 (3)
O180.0268 (4)0.0222 (4)0.0165 (3)0.0120 (3)0.0019 (3)0.0034 (3)
B10.0160 (5)0.0136 (5)0.0140 (5)0.0013 (4)0.0039 (4)0.0026 (4)
B20.0168 (5)0.0125 (5)0.0146 (5)0.0023 (4)0.0041 (4)0.0012 (4)
B30.0177 (5)0.0151 (5)0.0126 (4)0.0010 (4)0.0030 (4)0.0029 (4)
B40.0178 (5)0.0122 (5)0.0170 (5)0.0008 (4)0.0062 (4)0.0019 (4)
B50.0168 (5)0.0138 (5)0.0148 (5)0.0019 (4)0.0027 (4)0.0026 (4)
B60.0166 (5)0.0117 (5)0.0143 (5)0.0018 (4)0.0038 (4)0.0019 (3)
B70.0194 (5)0.0134 (5)0.0132 (5)0.0006 (4)0.0041 (4)0.0003 (4)
B80.0182 (5)0.0133 (5)0.0160 (5)0.0030 (4)0.0056 (4)0.0025 (4)
B90.0170 (5)0.0112 (5)0.0174 (5)0.0016 (4)0.0041 (4)0.0015 (4)
B100.0168 (5)0.0127 (5)0.0138 (5)0.0019 (4)0.0031 (4)0.0022 (4)
N20.0364 (6)0.0262 (6)0.0183 (5)0.0007 (4)0.0043 (4)0.0039 (4)
N10.0372 (7)0.0411 (8)0.0234 (5)0.0052 (5)0.0020 (5)0.0036 (5)
O19A0.0403 (14)0.0314 (13)0.0203 (8)0.0182 (11)0.0019 (7)0.0025 (7)
O19B0.068 (5)0.059 (4)0.0186 (13)0.045 (4)0.0080 (16)0.0044 (15)
Geometric parameters (Å, º) top
O1—B81.3478 (14)O14—B51.3761 (14)
O1—B31.4751 (14)O14—B21.3801 (14)
O2—B91.3879 (14)O15—B81.3602 (14)
O2—B101.3893 (14)O15—H10.86 (2)
O3—B61.3820 (14)O16—B41.3501 (14)
O3—B81.3909 (15)O16—B71.4702 (14)
O4—B11.3703 (14)O17—B41.3595 (14)
O4—B21.3775 (14)O17—H110.915 (19)
O5—B41.3812 (14)O18—B51.3596 (14)
O5—B11.3811 (14)O18—H20.82 (2)
O6—B91.3673 (15)B3—O11.4751 (14)
O6—H40.79 (2)B8—O11.3478 (14)
O7—B101.3374 (13)B10—O9ii1.3786 (13)
O7—B71.4652 (14)N2—H60.91 (3)
O8—B11.3387 (13)N2—H70.81 (4)
O8—B71.4652 (15)N2—H90.95 (3)
O9—B10i1.3785 (13)N2—H120.92 (4)
O9—B61.3813 (14)N1—H30.90 (2)
O10—B21.3443 (14)N1—H50.89 (4)
O10—B31.4714 (14)N1—H80.87 (3)
O11—B61.3399 (13)N1—H100.94 (4)
O11—B31.4638 (14)O19A—O19B0.824 (10)
O12—B51.3536 (14)O19A—H130.95 (3)
O12—B31.4699 (15)O19A—H140.85 (3)
O13—B91.3424 (14)O19B—H130.95 (3)
O13—B71.4676 (15)O19B—H140.99 (3)
B8—O1—B3122.98 (9)O11—B6—O3121.99 (10)
B9—O2—B10118.24 (9)O11—B6—O9122.87 (10)
B6—O3—B8118.28 (9)O3—B6—O9115.12 (9)
B1—O4—B2131.70 (9)O8—B7—O7109.49 (9)
B4—O5—B1118.28 (9)O8—B7—O13108.17 (9)
B9—O6—H4113.7 (15)O7—B7—O13111.01 (8)
B10—O7—B7123.35 (9)O8—B7—O16111.85 (8)
B1—O8—B7122.68 (9)O7—B7—O16107.78 (9)
B10i—O9—B6128.86 (8)O13—B7—O16108.55 (9)
B2—O10—B3122.74 (9)O1—B8—O15124.06 (10)
B6—O11—B3123.53 (9)O1—B8—O15124.06 (10)
B5—O12—B3122.13 (9)O1—B8—O3121.04 (10)
B9—O13—B7123.16 (9)O1—B8—O3121.04 (10)
B5—O14—B2118.57 (9)O15—B8—O3114.87 (10)
B8—O15—H1118.2 (14)O13—B9—O6118.27 (10)
B4—O16—B7122.04 (8)O13—B9—O2121.38 (10)
B4—O17—H11112.3 (12)O6—B9—O2120.32 (9)
B5—O18—H2118.2 (12)O7—B10—O9ii123.43 (10)
O8—B1—O4123.93 (10)O7—B10—O2121.74 (10)
O8—B1—O5121.72 (9)O9ii—B10—O2114.79 (9)
O4—B1—O5114.32 (9)H6—N2—H7109 (3)
O10—B2—O4124.50 (10)H6—N2—H9108 (2)
O10—B2—O14121.78 (10)H7—N2—H9105 (3)
O4—B2—O14113.72 (9)H6—N2—H12123 (3)
O11—B3—O12107.65 (9)H7—N2—H12111 (3)
O11—B3—O10109.84 (9)H9—N2—H12100 (3)
O12—B3—O10111.80 (8)H3—N1—H5114 (3)
O11—B3—O1110.82 (8)H3—N1—H8109 (2)
O12—B3—O1108.62 (9)H5—N1—H8112 (3)
O10—B3—O1108.12 (9)H3—N1—H10113 (2)
O11—B3—O1110.82 (8)H5—N1—H1091 (3)
O12—B3—O1108.62 (9)H8—N1—H10118 (3)
O10—B3—O1108.12 (9)O19B—O19A—H1364.5 (17)
O16—B4—O17118.73 (9)O19B—O19A—H1472.3 (17)
O16—B4—O5121.70 (10)H13—O19A—H1499 (2)
O17—B4—O5119.54 (10)O19A—O19B—H1364.0 (18)
O12—B5—O18122.17 (10)O19A—O19B—H1455.2 (16)
O12—B5—O14121.94 (10)H13—O19B—H1490 (2)
O18—B5—O14115.89 (9)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H1···O6iii0.86 (2)2.06 (2)2.846 (1)153 (2)
O18—H2···O17iv0.82 (2)1.85 (2)2.637 (1)158 (2)
N1—H3···O4v0.90 (2)2.16 (2)3.039 (2)168 (2)
O6—H4···O10vi0.79 (2)2.29 (2)2.991 (2)147 (2)
N1—H5···O11ii0.89 (4)2.38 (4)3.231 (2)159 (3)
N2—H6···O18vii0.91 (3)1.83 (3)2.745 (2)179 (2)
N2—H7···O7i0.81 (4)2.22 (3)2.992 (2)160 (3)
N1—H8···O15viii0.87 (3)2.22 (3)2.909 (2)136 (3)
N2—H9···O12ix0.95 (3)2.24 (3)3.117 (2)154 (2)
N1—H10···O16iii0.94 (4)2.22 (4)3.098 (2)154 (3)
O17—H11···O19Av0.92 (2)1.70 (2)2.576 (2)160 (2)
O19A—H14···O13iii0.85 (3)1.87 (3)2.710 (2)170 (3)
N2—H12···O2vi0.92 (4)2.04 (4)2.945 (2)165 (3)
O19A—H13···O10.95 (3)1.81 (3)2.693 (2)153 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y+1, z+1; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula(NH4)2[B10O14(OH)4]·H2O
Mr454.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6207 (15), 9.2328 (18), 11.926 (2)
α, β, γ (°)99.46 (3), 105.89 (3), 91.54 (3)
V3)793.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7470, 5466, 4462
Rint0.020
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.01
No. of reflections5466
No. of parameters346
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.34

Computer programs: SMART (Bruker, 1997), SMART, Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and ViewerLite4.2 (Accelrys, 2001), SHELXL97.

Selected bond lengths (Å) top
O1—B81.3478 (14)O10—B21.3443 (14)
O1—B31.4751 (14)O10—B31.4714 (14)
O2—B91.3879 (14)O11—B61.3399 (13)
O2—B101.3893 (14)O11—B31.4638 (14)
O3—B61.3820 (14)O12—B51.3536 (14)
O3—B81.3909 (15)O12—B31.4699 (15)
O4—B11.3703 (14)O13—B91.3424 (14)
O4—B21.3775 (14)O13—B71.4676 (15)
O5—B41.3812 (14)O14—B51.3761 (14)
O5—B11.3811 (14)O14—B21.3801 (14)
O6—B91.3673 (15)O15—B81.3602 (14)
O7—B101.3374 (13)O16—B41.3501 (14)
O7—B71.4652 (14)O16—B71.4702 (14)
O8—B11.3387 (13)O17—B41.3595 (14)
O8—B71.4652 (15)O17—H110.915 (19)
O9—B10i1.3785 (13)O18—B51.3596 (14)
O9—B61.3813 (14)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H1···O6ii0.86 (2)2.06 (2)2.846 (1)153 (2)
O18—H2···O17iii0.82 (2)1.85 (2)2.637 (1)158 (2)
N1—H3···O4iv0.90 (2)2.16 (2)3.039 (2)168 (2)
O6—H4···O10v0.79 (2)2.29 (2)2.991 (2)147 (2)
N1—H5···O11vi0.89 (4)2.38 (4)3.231 (2)159 (3)
N2—H6···O18vii0.91 (3)1.83 (3)2.745 (2)179 (2)
N2—H7···O7i0.81 (4)2.22 (3)2.992 (2)160 (3)
N1—H8···O15viii0.87 (3)2.22 (3)2.909 (2)136 (3)
N2—H9···O12ix0.95 (3)2.24 (3)3.117 (2)154 (2)
N1—H10···O16ii0.94 (4)2.22 (4)3.098 (2)154 (3)
O17—H11···O19Aiv0.92 (2)1.70 (2)2.576 (2)160 (2)
O19A—H14···O13ii0.85 (3)1.87 (3)2.710 (2)170 (3)
N2—H12···O2v0.92 (4)2.04 (4)2.945 (2)165 (3)
O19A—H13···O10.95 (3)1.81 (3)2.693 (2)153 (3)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z; (v) x+2, y+1, z+1; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x+1, y+1, z+1; (ix) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds