Download citation
Download citation
link to html
The anions of the title compounds contain [Ag(SCN)4] units, with the S atoms coordinating to Ag+ in a tetrahedral arrangement. Whereas in the isolated anions of tripotassium tetra­thio­cyanatoargentate(I), K3[Ag(SCN)4], (I), all SCN groups are bonded as terminal ligands, in tetrapotassium di-μ-thio­cyanato-S:S-bis­[dithio­cyanato­argentate(I)], K4[Ag2(SCN)6], (II), two AgS4 tetrahedra share one common edge. In poly[potassium [argentate(I)-di-μ-thio­cyanato-S:S]], K[Ag(SCN)2], (III), edge- and vertex-sharing of AgS4 tetrahedra results in infinite [Ag(SCN)2] layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005650/iz1011sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005650/iz1011Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005650/iz1011IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005650/iz1011IIIsup4.hkl
Contains datablock III

Comment top

The compounds K[Ag(SCN)2] and K2[Ag(SCN)3] are reported to form stable phases in the system AgSCN/KSCN/H2O, whereas K3[Ag(SCN)4] is metastable and decomposes in saturated solution into K2[Ag(SCN)3] and KSCN (Merriam, 1902; Foote, 1903; Occleshaw, 1932). Although these compounds were known at the beginning of the last century, only the unit-cell parameters of K[Ag(SCN)2] have been reported to date (Chateau et al., 1962). We isolated the title compounds, K3[Ag(SCN)4], (I), K4[Ag2(SCN)6], (II), and K[Ag(SCN)2], (III), during the optimization of the synthesis of heteronuclear thiocyanato complexes (Krautscheid et al., 1998; Krautscheid & Gerber, 1999) and report their crystal structures herein. \sch

All three complexes contain Ag+ in a distorted tetrahedral environment of four S atoms from the SCN- ligands. Whereas the tetrathiocyanatoargentate anions in (I) are mononuclear, the binuclear anions in (II) can be regarded as two [Ag(SCN)4] units sharing two common SCN- ligands. The asymmetric unit of (II) contains a half of each of two crystallographically independent centrosymmetric [Ag2(SCN)6]4- anions, which differ in the orientation of two terminal SCN- ligands.

In (III), such [Ag2(SCN)6] units are linked by common SCN- groups to form a two-dimensional polymeric network perpendicular to [100]. The existence of two different SCN- ligands coordinating to Ag+ through the S atoms - 1,1-µ2 bridging in the [Ag2(SCN)2] ring and between these rings - is in accordance with vibrational spectroscopic investigations, in which doublet splitting of the ν1 bands (2086 and 2099 cm-1) was observed (Tramer, 1962).

In contrast with (III), the SCN- anions in (NH4)[Ag(SCN)2] can be described as terminal S-coordinating and 1,1,1-µ3-bridging, respectively, also leading to a two-dimensional polymeric structure and distorted tetrahedral coordination of the Ag+ cations (Lindqvist & Strandberg, 1957; Hall et al., 1983). In the crystal structure of Cs2[Ag(SCN)3], dinuclear [Ag2(SCN)6]4- anions similar to those in (II) are found, whereas [Ag(SCN)4] tetrahedra are connected by common vertices to polymeric [Ag(SCN)22-SCN)2/2]2- anions in Rb2[Ag(SCN)3] (Thiele & Kehr, 1984).

As expected, Ag—S bond lengths in compounds (I), (II) and (III) are longer for bridging SCN- ligands than for terminal ligands and increase with the negative charge of the thiocyanato argentate anions. Average Ag—S bond lengths are 2.586 (1) Å in (I) and 2.558 (1) Å in (II) for terminal ligands, and 2.691 (1) Å in (II) and 2.620 (1) Å in (III) for 1,1-µ2-bridging SCN-. Query s.u.s. The Ag—S—Ag angle for S1 in (III) connecting two Ag2S2 rings [111.30 (2)°] is significantly higher than the values for the bridging ligands in the Ag2S2 rings of (II) and (III) [83.69 (3)–87.30 (2)°].

In (I), (II) and (III), all K+ ions are surrounded by seven N and S atoms, in distance ranges of 2.732 (4)–3.194 (2) Å (K···N) and 3.230 (1)–3.628 (2) Å (K···S), respectively. Query range limits for K···N - values in original Comment don't match those in CIF tables. The only exception is K3 in compound (I), with two neighbouring N and six S atoms.

Experimental top

Crystals of (I) and (III) were grown by condensation of methanol into a concentrated aqueous solution of AgSCN and KSCN in molar ratios of 1:4.5 and 1:2, respectively. Crystals of (II) could be obtained in low yield as a side product during crystallization of (III).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996) for (I), (III); IPDS (Stoe & Cie, 1995) for (II). Cell refinement: STADI4 for (I), (III); IPDS for (II). Data reduction: X-RED (Stoe & Cie, 1996) for (I), (III); IPDS and X-RED (Stoe & Cie, 1996) for (II). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998).

Figures top
[Figure 1] Fig. 1. The structure of the [Ag(SCN)4]3- anion in (I) with 70% probability displacement ellipsoids.
[Figure 2] Fig. 2. The structure of the two crystallographically independent [Ag2(SCN)6]4- anions in (II) with 70% probability displacement ellipsoids [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z]. Query symops.
[Figure 3] Fig. 3. Fragment of the two-dimensional polymeric structure of the [Ag(SCN)2]- anion in (III) with 70% probability displacement ellipsoids [symmetry codes: (ii) 1 - x, 1 - y, -z; (iii) x, 1/2 - y, z - 1/2]. Query symops.
(I) Tripotassium tetrathiocyanatosilver(I) top
Crystal data top
K3[Ag(SCN)4]F(000) = 880
Mr = 457.49Dx = 2.180 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 14.343 (2) ÅCell parameters from 27 reflections
b = 12.778 (3) Åθ = 5–10°
c = 7.798 (2) ŵ = 2.92 mm1
β = 102.772 (18)°T = 293 K
V = 1393.7 (6) Å3Prism, colourless
Z = 40.33 × 0.15 × 0.12 mm
Data collection top
Stoe STADI4
diffractometer
1944 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 1717
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
k = 1515
Tmin = 0.604, Tmax = 0.688l = 95
7208 measured reflections3 standard reflections every 120 min
2446 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.1891P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.58 e Å3
2446 reflectionsΔρmin = 0.50 e Å3
146 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0073 (3)
Crystal data top
K3[Ag(SCN)4]V = 1393.7 (6) Å3
Mr = 457.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.343 (2) ŵ = 2.92 mm1
b = 12.778 (3) ÅT = 293 K
c = 7.798 (2) Å0.33 × 0.15 × 0.12 mm
β = 102.772 (18)°
Data collection top
Stoe STADI4
diffractometer
1944 reflections with I > 2σ(I)
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
Rint = 0.033
Tmin = 0.604, Tmax = 0.6883 standard reflections every 120 min
7208 measured reflections intensity decay: 2%
2446 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027146 parameters
wR(F2) = 0.0590 restraints
S = 1.10Δρmax = 0.58 e Å3
2446 reflectionsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.52147 (6)0.25639 (6)0.08867 (11)0.0394 (2)
K20.29970 (6)0.99135 (6)0.65026 (13)0.0455 (2)
K30.02629 (6)0.25232 (6)0.53450 (11)0.0405 (2)
Ag10.22135 (2)0.48664 (2)0.63152 (4)0.04209 (12)
S10.22156 (6)0.32755 (7)0.83529 (13)0.0358 (2)
S20.12731 (6)0.42869 (7)0.32255 (13)0.0340 (2)
S30.38787 (6)0.55557 (7)0.61685 (14)0.0399 (3)
S40.14461 (7)0.63293 (7)0.78579 (15)0.0420 (3)
C10.3110 (2)0.2535 (3)0.8050 (5)0.0327 (8)
C20.0572 (2)0.5316 (3)0.2637 (5)0.0316 (8)
C30.4604 (2)0.4718 (3)0.7415 (5)0.0311 (8)
C40.2240 (2)0.7273 (3)0.7866 (5)0.0355 (9)
N10.3722 (2)0.1994 (2)0.7845 (5)0.0436 (8)
N20.0086 (2)0.6026 (3)0.2217 (5)0.0492 (9)
N30.5123 (2)0.4143 (2)0.8290 (4)0.0406 (8)
N40.2795 (2)0.7923 (3)0.7881 (5)0.0553 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0431 (5)0.0421 (5)0.0316 (5)0.0007 (4)0.0053 (4)0.0056 (4)
K20.0423 (5)0.0350 (5)0.0596 (6)0.0058 (4)0.0122 (4)0.0046 (4)
K30.0529 (5)0.0379 (4)0.0296 (5)0.0038 (4)0.0068 (4)0.0008 (4)
Ag10.03926 (18)0.03603 (17)0.0483 (2)0.00027 (12)0.00383 (14)0.00173 (14)
S10.0380 (5)0.0295 (4)0.0396 (6)0.0011 (4)0.0078 (4)0.0029 (4)
S20.0332 (5)0.0262 (4)0.0402 (6)0.0027 (4)0.0033 (4)0.0008 (4)
S30.0301 (5)0.0347 (5)0.0520 (7)0.0022 (4)0.0029 (5)0.0078 (5)
S40.0333 (5)0.0343 (5)0.0600 (7)0.0020 (4)0.0140 (5)0.0056 (5)
C10.0318 (19)0.0291 (18)0.034 (2)0.0057 (15)0.0006 (16)0.0051 (16)
C20.0344 (19)0.0296 (18)0.030 (2)0.0017 (16)0.0062 (17)0.0019 (16)
C30.0323 (18)0.0282 (17)0.034 (2)0.0058 (15)0.0101 (17)0.0072 (17)
C40.0322 (19)0.0297 (18)0.041 (2)0.0034 (16)0.0008 (17)0.0043 (17)
N10.0373 (18)0.0379 (18)0.052 (2)0.0003 (15)0.0028 (16)0.0020 (16)
N20.056 (2)0.0412 (19)0.050 (2)0.0131 (17)0.0111 (18)0.0044 (18)
N30.0403 (17)0.0377 (17)0.045 (2)0.0027 (15)0.0119 (16)0.0037 (16)
N40.048 (2)0.0383 (19)0.077 (3)0.0072 (16)0.006 (2)0.0024 (19)
Geometric parameters (Å, º) top
K1—N3i2.841 (3)Ag1—S12.5798 (11)
K1—N4ii2.872 (4)Ag1—S22.5953 (12)
K1—N3iii2.897 (3)Ag1—S42.5958 (11)
K1—N1i2.915 (3)Ag1—K2viii3.9616 (16)
K1—N1iii2.946 (3)Ag1—K2ix4.1580 (15)
K1—C1i3.325 (4)S1—C11.653 (4)
K1—C3iii3.339 (4)S1—K2viii3.3803 (15)
K1—S3ii3.3789 (14)S1—K3v3.6362 (14)
K1—S3iv3.4300 (14)S2—C21.657 (4)
K1—K1iii3.9023 (11)S2—K2ix3.2297 (14)
K1—K1v3.9023 (11)S2—K3iii3.3249 (14)
K1—K2ii4.2937 (14)S3—C31.651 (4)
K2—N42.801 (4)S3—K1ii3.3789 (14)
K2—N3vi2.842 (3)S3—K1x3.4300 (14)
K2—N1vii2.961 (3)S3—K2ix3.6280 (18)
K2—S2viii3.2297 (14)S4—C41.657 (4)
K2—C3vi3.365 (3)S4—K3xii3.4189 (15)
K2—S1ix3.3803 (15)S4—K3xiv3.4377 (14)
K2—S4ix3.5710 (16)S4—K2viii3.5710 (16)
K2—S3viii3.6280 (18)C1—N11.154 (4)
K2—Ag1ix3.9616 (16)C1—K1xv3.325 (4)
K2—Ag1viii4.1580 (15)C2—N21.147 (4)
K2—K1ii4.2937 (14)C2—K3xii3.517 (4)
K2—K1x4.6017 (14)C3—N31.155 (4)
K3—N2xi2.732 (4)C3—K1v3.339 (4)
K3—N2xii2.779 (4)C3—K2xvi3.365 (3)
K3—S23.3119 (13)C4—N41.148 (4)
K3—S2v3.3249 (14)N1—K1xv2.915 (3)
K3—S13.3712 (15)N1—K1v2.946 (3)
K3—S4xii3.4189 (15)N1—K2xvii2.961 (3)
K3—S4xiii3.4377 (14)N2—K3xviii2.732 (4)
K3—C2xii3.517 (4)N2—K3xii2.779 (4)
K3—S1iii3.6362 (14)N3—K1xv2.841 (3)
K3—K3iii3.8994 (11)N3—K2xvi2.842 (3)
K3—K3v3.8994 (12)N3—K1v2.897 (3)
K3—Ag14.0532 (11)N4—K1ii2.872 (4)
Ag1—S32.5717 (10)
N3i—K1—N4ii106.17 (10)S2v—K3—S4xii157.94 (4)
N3i—K1—N3iii173.74 (12)S1—K3—S4xii137.49 (4)
N4ii—K1—N3iii78.72 (10)N2xi—K3—S4xiii87.46 (8)
N3i—K1—N1i71.78 (9)N2xii—K3—S4xiii76.41 (8)
N4ii—K1—N1i135.68 (11)S2—K3—S4xiii159.30 (4)
N3iii—K1—N1i102.01 (10)S2v—K3—S4xiii70.09 (3)
N3i—K1—N1iii107.99 (9)S1—K3—S4xiii113.61 (4)
N4ii—K1—N1iii130.59 (11)S4xii—K3—S4xiii91.57 (4)
N3iii—K1—N1iii70.54 (9)N2xi—K3—C2xii148.43 (10)
N1i—K1—N1iii88.97 (9)N2xii—K3—C2xii16.14 (9)
N3i—K1—C1i68.99 (9)S2—K3—C2xii85.35 (6)
N4ii—K1—C1i155.41 (11)S2v—K3—C2xii112.61 (7)
N3iii—K1—C1i104.92 (9)S1—K3—C2xii77.14 (6)
N1i—K1—C1i19.96 (8)S4xii—K3—C2xii74.35 (6)
N1iii—K1—C1i71.94 (10)S4xiii—K3—C2xii79.75 (6)
N3i—K1—C3iii154.17 (10)N2xi—K3—S1iii61.61 (8)
N4ii—K1—C3iii90.63 (9)N2xii—K3—S1iii138.72 (8)
N3iii—K1—C3iii19.75 (8)S2—K3—S1iii60.96 (3)
N1i—K1—C3iii82.48 (9)S2v—K3—S1iii80.30 (3)
N1iii—K1—C3iii72.80 (9)S1—K3—S1iii77.14 (3)
C1i—K1—C3iii87.52 (9)S4xii—K3—S1iii107.69 (4)
N3i—K1—S3ii85.97 (7)S4xiii—K3—S1iii137.35 (3)
N4ii—K1—S3ii73.85 (8)C2xii—K3—S1iii141.46 (6)
N3iii—K1—S3ii99.29 (8)N2xi—K3—K3iii45.44 (7)
N1i—K1—S3ii146.48 (7)N2xii—K3—K3iii137.22 (8)
N1iii—K1—S3ii74.11 (7)S2—K3—K3iii54.17 (3)
C1i—K1—S3ii128.07 (7)S2v—K3—K3iii124.65 (4)
C3iii—K1—S3ii118.05 (7)S1—K3—K3iii121.09 (3)
N3i—K1—S3iv99.26 (7)S4xii—K3—K3iii55.57 (3)
N4ii—K1—S3iv62.80 (8)S4xiii—K3—K3iii123.95 (3)
N3iii—K1—S3iv79.35 (7)C2xii—K3—K3iii122.32 (7)
N1i—K1—S3iv73.69 (7)S1iii—K3—K3iii53.01 (3)
N1iii—K1—S3iv141.20 (7)N2xi—K3—K3v132.87 (8)
C1i—K1—S3iv93.60 (7)N2xii—K3—K3v44.47 (7)
C3iii—K1—S3iv70.72 (7)S2—K3—K3v127.30 (4)
S3ii—K1—S3iv136.13 (4)S2v—K3—K3v53.86 (3)
N3i—K1—K1iii47.76 (7)S1—K3—K3v59.49 (3)
N4ii—K1—K1iii96.07 (9)S4xii—K3—K3v125.34 (3)
N3iii—K1—K1iii128.66 (8)S4xiii—K3—K3v55.11 (3)
N1i—K1—K1iii48.61 (7)C2xii—K3—K3v59.28 (6)
N1iii—K1—K1iii133.34 (7)S1iii—K3—K3v126.38 (3)
C1i—K1—K1iii62.30 (7)K3iii—K3—K3v178.26 (5)
C3iii—K1—K1iii112.21 (7)N2xi—K3—Ag1131.38 (8)
S3ii—K1—K1iii128.59 (4)N2xii—K3—Ag166.45 (8)
S3iv—K1—K1iii54.42 (3)S2—K3—Ag139.68 (2)
N3i—K1—K1v137.03 (8)S2v—K3—Ag1102.01 (3)
N4ii—K1—K1v82.88 (9)S1—K3—Ag139.33 (2)
N3iii—K1—K1v46.54 (7)S4xii—K3—Ag199.98 (3)
N1i—K1—K1v129.82 (7)S4xiii—K3—Ag1140.96 (3)
N1iii—K1—K1v47.91 (7)C2xii—K3—Ag168.02 (6)
C1i—K1—K1v117.64 (7)S1iii—K3—Ag173.86 (2)
C3iii—K1—K1v63.19 (7)K3iii—K3—Ag192.59 (3)
S3ii—K1—K1v55.65 (3)K3v—K3—Ag188.69 (2)
S3iv—K1—K1v121.28 (4)S3—Ag1—S1115.00 (3)
K1iii—K1—K1v175.20 (5)S3—Ag1—S2110.71 (4)
N3i—K1—K2ii142.21 (7)S1—Ag1—S2106.06 (4)
N4ii—K1—K2ii40.20 (7)S3—Ag1—S4105.49 (3)
N3iii—K1—K2ii41.08 (6)S1—Ag1—S4102.99 (4)
N1i—K1—K2ii117.14 (7)S2—Ag1—S4116.68 (3)
N1iii—K1—K2ii108.78 (7)S3—Ag1—K2viii87.97 (3)
C1i—K1—K2ii131.80 (6)S1—Ag1—K2viii57.70 (3)
C3iii—K1—K2ii50.45 (6)S2—Ag1—K2viii160.06 (3)
S3ii—K1—K2ii95.87 (3)S4—Ag1—K2viii61.92 (3)
S3iv—K1—K2ii54.66 (3)S3—Ag1—K3148.67 (3)
K1iii—K1—K2ii108.11 (3)S1—Ag1—K355.92 (3)
K1v—K1—K2ii68.12 (3)S2—Ag1—K354.57 (3)
N4—K2—N3vi80.84 (10)S4—Ag1—K3105.82 (3)
N4—K2—N1vii137.56 (11)K2viii—Ag1—K3105.74 (2)
N3vi—K2—N1vii92.10 (9)S3—Ag1—K2ix59.85 (3)
N4—K2—S2viii88.51 (8)S1—Ag1—K2ix130.20 (3)
N3vi—K2—S2viii152.88 (8)S2—Ag1—K2ix50.96 (3)
N1vii—K2—S2viii79.05 (7)S4—Ag1—K2ix126.61 (3)
N4—K2—C3vi91.32 (9)K2viii—Ag1—K2ix147.62 (3)
N3vi—K2—C3vi19.16 (8)K3—Ag1—K2ix101.22 (2)
N1vii—K2—C3vi73.66 (9)C1—S1—Ag1104.97 (13)
S2viii—K2—C3vi138.88 (7)C1—S1—K3106.80 (13)
N4—K2—S1ix148.71 (8)Ag1—S1—K384.75 (3)
N3vi—K2—S1ix115.89 (7)C1—S1—K2viii110.66 (13)
N1vii—K2—S1ix71.10 (7)Ag1—S1—K2viii82.13 (4)
S2viii—K2—S1ix85.66 (3)K3—S1—K2viii142.35 (4)
C3vi—K2—S1ix112.92 (6)C1—S1—K3v126.58 (12)
N4—K2—S4ix78.60 (8)Ag1—S1—K3v126.03 (3)
N3vi—K2—S4ix107.91 (7)K3—S1—K3v67.50 (3)
N1vii—K2—S4ix142.09 (7)K2viii—S1—K3v92.56 (3)
S2viii—K2—S4ix94.15 (3)C2—S2—Ag1100.95 (13)
C3vi—K2—S4ix126.08 (7)C2—S2—K2ix96.15 (13)
S1ix—K2—S4ix71.22 (3)Ag1—S2—K2ix90.42 (4)
N4—K2—S3viii60.52 (8)C2—S2—K3111.88 (13)
N3vi—K2—S3viii76.68 (7)Ag1—S2—K385.74 (3)
N1vii—K2—S3viii77.09 (7)K2ix—S2—K3151.94 (4)
S2viii—K2—S3viii76.37 (3)C2—S2—K3iii102.57 (13)
C3vi—K2—S3viii68.03 (7)Ag1—S2—K3iii152.26 (4)
S1ix—K2—S3viii145.88 (4)K2ix—S2—K3iii101.44 (4)
S4ix—K2—S3viii137.94 (4)K3—S2—K3iii71.96 (3)
N4—K2—Ag1ix115.22 (9)C3—S3—Ag1102.86 (12)
N3vi—K2—Ag1ix97.71 (7)C3—S3—K1ii87.89 (12)
N1vii—K2—Ag1ix107.18 (7)Ag1—S3—K1ii115.78 (4)
S2viii—K2—Ag1ix109.38 (3)C3—S3—K1x120.35 (12)
C3vi—K2—Ag1ix107.75 (7)Ag1—S3—K1x136.78 (4)
S1ix—K2—Ag1ix40.17 (2)K1ii—S3—K1x69.93 (3)
S4ix—K2—Ag1ix39.89 (2)C3—S3—K2ix121.18 (13)
S3viii—K2—Ag1ix173.23 (3)Ag1—S3—K2ix82.34 (3)
N4—K2—Ag1viii69.13 (8)K1ii—S3—K2ix142.70 (4)
N3vi—K2—Ag1viii114.48 (7)K1x—S3—K2ix74.88 (3)
N1vii—K2—Ag1viii76.35 (7)C4—S4—Ag199.45 (13)
S2viii—K2—Ag1viii38.62 (2)C4—S4—K3xii94.13 (13)
C3vi—K2—Ag1viii104.12 (7)Ag1—S4—K3xii106.22 (4)
S1ix—K2—Ag1viii119.81 (3)C4—S4—K3xiv103.12 (13)
S4ix—K2—Ag1viii120.22 (3)Ag1—S4—K3xiv157.23 (4)
S3viii—K2—Ag1viii37.81 (2)K3xii—S4—K3xiv69.32 (3)
Ag1ix—K2—Ag1viii147.62 (3)C4—S4—K2viii90.78 (13)
N4—K2—K1ii41.43 (7)Ag1—S4—K2viii78.19 (3)
N3vi—K2—K1ii42.07 (7)K3xii—S4—K2viii172.73 (4)
N1vii—K2—K1ii111.62 (7)K3xiv—S4—K2viii104.34 (4)
S2viii—K2—K1ii117.91 (4)N1—C1—S1178.2 (3)
C3vi—K2—K1ii49.90 (6)N1—C1—K1xv59.6 (2)
S1ix—K2—K1ii156.43 (3)S1—C1—K1xv121.17 (17)
S4ix—K2—K1ii104.55 (3)N2—C2—S2179.5 (4)
S3viii—K2—K1ii50.46 (2)N2—C2—K3xii42.3 (2)
Ag1ix—K2—K1ii122.77 (3)S2—C2—K3xii138.13 (18)
Ag1viii—K2—K1ii82.78 (3)N3—C3—S3179.0 (3)
N4—K2—K1x71.16 (8)N3—C3—K1v58.0 (2)
N3vi—K2—K1x35.92 (7)S3—C3—K1v122.47 (17)
N1vii—K2—K1x123.06 (7)N3—C3—K2xvi53.9 (2)
S2viii—K2—K1x157.12 (3)S3—C3—K2xvi125.16 (16)
C3vi—K2—K1x54.74 (7)K1v—C3—K2xvi79.65 (8)
S1ix—K2—K1x106.11 (4)N4—C4—S4179.5 (3)
S4ix—K2—K1x72.09 (3)C1—N1—K1xv100.5 (3)
S3viii—K2—K1x101.32 (3)C1—N1—K1v128.2 (3)
Ag1ix—K2—K1x71.98 (2)K1xv—N1—K1v83.48 (8)
Ag1viii—K2—K1x134.07 (3)C1—N1—K2xvii111.6 (3)
K1ii—K2—K1x51.900 (19)K1xv—N1—K2xvii130.48 (12)
N2xi—K3—N2xii159.44 (15)K1v—N1—K2xvii103.14 (11)
N2xi—K3—S298.11 (8)C2—N2—K3xviii139.8 (3)
N2xii—K3—S292.98 (8)C2—N2—K3xii121.5 (3)
N2xi—K3—S2v89.36 (8)K3xviii—N2—K3xii90.09 (10)
N2xii—K3—S2v96.86 (8)C3—N3—K1xv142.7 (3)
S2—K3—S2v129.58 (4)C3—N3—K2xvi107.0 (3)
N2xi—K3—S1134.28 (8)K1xv—N3—K2xvi108.16 (11)
N2xii—K3—S165.24 (8)C3—N3—K1v102.2 (3)
S2—K3—S176.43 (3)K1xv—N3—K1v85.69 (9)
S2v—K3—S163.73 (3)K2xvi—N3—K1v96.86 (10)
N2xi—K3—S4xii77.31 (8)C4—N4—K2141.6 (3)
N2xii—K3—S4xii90.30 (8)C4—N4—K1ii118.8 (3)
S2—K3—S4xii70.47 (3)K2—N4—K1ii98.37 (10)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+3/2; (vii) x, y+1, z; (viii) x, y+3/2, z+1/2; (ix) x, y+3/2, z1/2; (x) x+1, y+1/2, z+1/2; (xi) x, y1/2, z+1/2; (xii) x, y+1, z+1; (xiii) x, y1/2, z+3/2; (xiv) x, y+1/2, z+3/2; (xv) x, y, z+1; (xvi) x+1, y1/2, z+3/2; (xvii) x, y1, z; (xviii) x, y+1/2, z+1/2.
(II) Tetrapotassium di-µ-thiocyanato-S:S-bis[dicyanatosilver(I)] top
Crystal data top
K4[Ag2(SCN)6]F(000) = 1376
Mr = 720.62Dx = 2.358 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56087 Å
a = 9.8701 (6) ÅCell parameters from 8000 reflections
b = 20.0893 (8) Åθ = 1.8–22.4°
c = 10.6229 (7) ŵ = 1.75 mm1
β = 105.494 (8)°T = 213 K
V = 2029.8 (2) Å3Block, colourless
Z = 40.22 × 0.18 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
5096 independent reflections
Radiation source: fine-focus sealed tube4557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ scansθmax = 22.4°, θmin = 1.8°
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
h = 1313
Tmin = 0.741, Tmax = 0.803k = 2525
31846 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.035Secondary atom site location: difference Fourier map
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0448P)2 + 4.099P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5096 reflectionsΔρmax = 2.23 e Å3
217 parametersΔρmin = 2.08 e Å3
Crystal data top
K4[Ag2(SCN)6]V = 2029.8 (2) Å3
Mr = 720.62Z = 4
Monoclinic, P21/nAg Kα radiation, λ = 0.56087 Å
a = 9.8701 (6) ŵ = 1.75 mm1
b = 20.0893 (8) ÅT = 213 K
c = 10.6229 (7) Å0.22 × 0.18 × 0.15 mm
β = 105.494 (8)°
Data collection top
Stoe IPDS
diffractometer
5096 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
4557 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.803Rint = 0.036
31846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035217 parameters
wR(F2) = 0.0850 restraints
S = 1.05Δρmax = 2.23 e Å3
5096 reflectionsΔρmin = 2.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.13190 (7)0.60708 (3)0.62305 (6)0.02546 (13)
K20.51006 (7)0.21988 (4)0.21167 (7)0.02876 (14)
K30.75220 (7)0.23545 (3)0.95759 (7)0.02783 (14)
K40.85906 (7)0.59757 (4)0.89041 (7)0.02892 (14)
Ag10.58284 (3)0.428060 (14)0.60020 (3)0.03622 (8)
S10.66614 (7)0.51358 (4)0.43846 (7)0.02382 (14)
C10.7669 (3)0.56453 (15)0.5472 (3)0.0234 (5)
N10.8372 (3)0.60092 (14)0.6211 (3)0.0297 (5)
S20.70469 (8)0.44528 (4)0.83548 (8)0.03078 (17)
C20.8261 (3)0.38695 (15)0.8771 (3)0.0225 (5)
N20.9125 (3)0.34654 (14)0.9108 (3)0.0289 (5)
S30.57750 (8)0.32303 (4)0.46711 (7)0.02736 (15)
C30.6573 (3)0.27183 (16)0.5871 (3)0.0261 (6)
N30.7138 (3)0.23620 (16)0.6701 (3)0.0373 (6)
Ag20.62324 (3)0.548132 (15)0.12169 (3)0.03656 (8)
S40.51337 (8)0.56962 (4)0.13225 (8)0.02797 (16)
C40.3950 (3)0.62834 (15)0.1324 (3)0.0232 (5)
N40.3118 (3)0.66933 (14)0.1376 (3)0.0309 (6)
S50.66536 (10)0.66004 (4)0.24597 (8)0.03531 (18)
C50.5972 (3)0.71854 (15)0.1382 (3)0.0238 (5)
N50.5489 (3)0.75981 (15)0.0638 (3)0.0321 (6)
S60.87835 (7)0.50193 (4)0.14962 (7)0.02334 (14)
C60.9600 (3)0.54842 (15)0.2770 (3)0.0230 (5)
N61.0152 (3)0.58136 (16)0.3641 (3)0.0326 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0274 (3)0.0242 (3)0.0222 (3)0.0011 (2)0.0023 (2)0.0003 (2)
K20.0347 (3)0.0268 (4)0.0260 (3)0.0021 (2)0.0101 (3)0.0003 (2)
K30.0299 (3)0.0247 (3)0.0310 (3)0.0035 (2)0.0118 (3)0.0022 (2)
K40.0323 (3)0.0262 (4)0.0270 (3)0.0009 (2)0.0056 (3)0.0023 (2)
Ag10.04157 (16)0.02605 (15)0.03345 (14)0.00583 (10)0.00316 (11)0.00420 (10)
S10.0245 (3)0.0203 (4)0.0257 (3)0.0012 (2)0.0050 (3)0.0003 (2)
C10.0236 (13)0.0205 (15)0.0264 (13)0.0032 (10)0.0074 (11)0.0048 (10)
N10.0317 (13)0.0265 (15)0.0293 (13)0.0005 (10)0.0054 (10)0.0023 (10)
S20.0295 (4)0.0310 (4)0.0284 (4)0.0076 (3)0.0018 (3)0.0078 (3)
C20.0254 (13)0.0200 (14)0.0221 (12)0.0051 (10)0.0064 (10)0.0036 (10)
N20.0319 (13)0.0231 (14)0.0311 (13)0.0000 (10)0.0074 (11)0.0014 (10)
S30.0344 (4)0.0214 (4)0.0248 (3)0.0014 (3)0.0054 (3)0.0024 (3)
C30.0279 (14)0.0219 (15)0.0282 (14)0.0045 (11)0.0071 (11)0.0049 (11)
N30.0439 (16)0.0283 (16)0.0356 (15)0.0018 (12)0.0036 (12)0.0010 (11)
Ag20.03317 (14)0.02880 (16)0.04352 (16)0.00076 (10)0.00298 (11)0.00352 (10)
S40.0237 (3)0.0265 (4)0.0327 (4)0.0009 (3)0.0058 (3)0.0039 (3)
C40.0255 (13)0.0209 (15)0.0207 (12)0.0049 (10)0.0016 (10)0.0025 (10)
N40.0363 (14)0.0232 (14)0.0305 (13)0.0037 (11)0.0043 (11)0.0025 (10)
S50.0473 (5)0.0216 (4)0.0293 (4)0.0016 (3)0.0031 (3)0.0018 (3)
C50.0242 (13)0.0202 (15)0.0251 (13)0.0028 (10)0.0035 (10)0.0034 (10)
N50.0337 (14)0.0270 (15)0.0317 (14)0.0004 (11)0.0018 (11)0.0019 (11)
S60.0253 (3)0.0216 (4)0.0220 (3)0.0000 (2)0.0042 (3)0.0023 (2)
C60.0264 (13)0.0213 (15)0.0202 (12)0.0025 (10)0.0042 (10)0.0023 (10)
N60.0358 (14)0.0323 (16)0.0264 (13)0.0004 (11)0.0025 (11)0.0032 (11)
Geometric parameters (Å, º) top
K1—N6i2.733 (3)S1—C11.660 (3)
K1—N5ii2.818 (3)S1—Ag1iv2.6538 (8)
K1—N1i2.906 (3)S1—K1iv3.3125 (10)
K1—N4iii2.961 (3)C1—N11.158 (4)
K1—C4iii3.173 (3)C1—K3xiv3.438 (3)
K1—S6iv3.2816 (10)N1—K3xiv2.896 (3)
K1—S1iv3.3125 (10)N1—K1xvi2.906 (3)
K1—C6iv3.496 (3)S2—C21.650 (3)
K1—C5ii3.528 (3)C2—N21.163 (4)
K1—S3iv3.5473 (10)C2—K4xiii3.428 (3)
K1—K2v4.1328 (10)N2—K4xiii2.874 (3)
K1—Ag1iv4.1974 (8)N2—K2xii2.875 (3)
K2—N5vi2.856 (3)S3—C31.664 (3)
K2—N2vii2.875 (3)S3—K3vii3.3950 (11)
K2—N6viii2.889 (3)S3—K1iv3.5473 (10)
K2—N3vii2.972 (3)C3—N31.156 (5)
K2—N4vi3.066 (3)C3—K2xii3.382 (3)
K2—S33.3369 (10)C3—K4xi3.516 (3)
K2—S5viii3.3378 (12)N3—K4xi2.905 (3)
K2—C4vi3.363 (3)N3—K2xii2.972 (3)
K2—C3vii3.382 (3)Ag2—S52.5839 (9)
K2—C6viii3.457 (3)Ag2—S62.6250 (8)
K2—K3ix4.0670 (9)Ag2—S42.6601 (9)
K2—K1x4.1328 (10)Ag2—S4vi2.7400 (9)
K3—N22.855 (3)Ag2—K4ix3.9364 (8)
K3—N4iv2.892 (3)S4—C41.660 (3)
K3—N1xi2.896 (3)S4—Ag2vi2.7400 (9)
K3—N5iv2.921 (3)S4—K4ix3.4024 (10)
K3—N32.976 (3)C4—N41.153 (4)
K3—C23.296 (3)C4—K1ix3.173 (3)
K3—S5xi3.3919 (11)C4—K2vi3.363 (3)
K3—S3xii3.3950 (11)N4—K3iv2.892 (3)
K3—C1xi3.438 (3)N4—K1ix2.961 (3)
K3—C5iv3.451 (3)N4—K2vi3.066 (3)
K3—K2iii4.0670 (9)S5—C51.653 (3)
K3—K2xii4.2024 (9)S5—K2xvii3.3378 (12)
K4—N12.812 (3)S5—K3xiv3.3919 (11)
K4—N2xiii2.874 (3)C5—N51.157 (4)
K4—N3xiv2.905 (3)C5—K3iv3.451 (3)
K4—S6iii3.3211 (10)C5—K1xviii3.528 (3)
K4—S6xv3.3886 (10)N5—K1xviii2.818 (3)
K4—S23.3981 (12)N5—K2vi2.856 (3)
K4—S4iii3.4024 (11)N5—K3iv2.921 (3)
K4—C2xiii3.428 (3)S6—C61.664 (3)
K4—C3xiv3.516 (3)S6—K1iv3.2816 (10)
K4—Ag2iii3.9364 (8)S6—K4ix3.3211 (10)
K4—K1xvi4.4091 (10)S6—K4xv3.3886 (10)
K4—K3xiv4.5139 (10)C6—N61.150 (4)
Ag1—S22.4914 (9)C6—K2xvii3.457 (3)
Ag1—S32.5327 (8)C6—K1iv3.496 (3)
Ag1—S12.7083 (8)N6—K1xvi2.733 (3)
Ag1—S1iv2.6538 (8)N6—K2xvii2.889 (3)
Ag1—K1iv4.1974 (8)
N6i—K1—N5ii86.29 (9)C5iv—K3—K2xii118.88 (5)
N6i—K1—N1i80.38 (8)K2iii—K3—K2xii171.82 (2)
N5ii—K1—N1i78.94 (8)N1—K4—N2xiii124.77 (8)
N6i—K1—N4iii159.85 (9)N1—K4—N3xiv78.75 (9)
N5ii—K1—N4iii82.12 (8)N2xiii—K4—N3xiv83.53 (9)
N1i—K1—N4iii113.20 (8)N1—K4—S6iii146.03 (7)
N6i—K1—C4iii151.90 (8)N2xiii—K4—S6iii75.92 (6)
N5ii—K1—C4iii100.40 (8)N3xiv—K4—S6iii133.94 (7)
N1i—K1—C4iii127.61 (8)N1—K4—S6xv74.92 (6)
N4iii—K1—C4iii21.31 (8)N2xiii—K4—S6xv81.17 (6)
N6i—K1—S6iv121.81 (7)N3xiv—K4—S6xv133.66 (7)
N5ii—K1—S6iv137.18 (6)S6iii—K4—S6xv83.48 (2)
N1i—K1—S6iv75.49 (6)N1—K4—S286.44 (6)
N4iii—K1—S6iv77.26 (6)N2xiii—K4—S2134.88 (6)
C4iii—K1—S6iv70.53 (6)N3xiv—K4—S2138.76 (7)
N6i—K1—S1iv77.12 (7)S6iii—K4—S262.95 (2)
N5ii—K1—S1iv143.56 (7)S6xv—K4—S276.72 (2)
N1i—K1—S1iv128.42 (6)N1—K4—S4iii97.42 (6)
N4iii—K1—S1iv102.94 (6)N2xiii—K4—S4iii133.74 (6)
C4iii—K1—S1iv81.73 (6)N3xiv—K4—S4iii87.60 (7)
S6iv—K1—S1iv78.19 (2)S6iii—K4—S4iii78.32 (2)
N6i—K1—C6iv93.62 (8)S6xv—K4—S4iii132.84 (3)
N5ii—K1—C6iv146.33 (8)S2—K4—S4iii56.23 (2)
N1i—K1—C6iv67.91 (8)N1—K4—C2xiii122.64 (8)
N4iii—K1—C6iv105.15 (8)N2xiii—K4—C2xiii18.74 (8)
C4iii—K1—C6iv95.36 (7)N3xiv—K4—C2xiii101.28 (8)
S6iv—K1—C6iv28.20 (5)S6iii—K4—C2xiii67.35 (5)
S1iv—K1—C6iv67.95 (5)S6xv—K4—C2xiii64.37 (5)
N6i—K1—C5ii102.35 (8)S2—K4—C2xiii118.94 (6)
N5ii—K1—C5ii16.67 (8)S4iii—K4—C2xiii139.88 (5)
N1i—K1—C5ii86.19 (8)N1—K4—C3xiv93.02 (8)
N4iii—K1—C5ii65.46 (7)N2xiii—K4—C3xiv66.57 (8)
C4iii—K1—C5ii84.09 (8)N3xiv—K4—C3xiv17.67 (8)
S6iv—K1—C5ii127.35 (5)S6iii—K4—C3xiv120.88 (6)
S1iv—K1—C5ii143.76 (5)S6xv—K4—C3xiv130.29 (6)
C6iv—K1—C5ii146.86 (7)S2—K4—C3xiv151.83 (6)
N6i—K1—S3iv87.52 (7)S4iii—K4—C3xiv96.06 (5)
N5ii—K1—S3iv76.80 (6)C2xiii—K4—C3xiv84.84 (7)
N1i—K1—S3iv153.49 (6)N1—K4—Ag2iii138.04 (6)
N4iii—K1—S3iv73.85 (6)N2xiii—K4—Ag2iii96.80 (6)
C4iii—K1—S3iv67.91 (5)N3xiv—K4—Ag2iii103.13 (7)
S6iv—K1—S3iv130.46 (3)S6iii—K4—Ag2iii41.327 (15)
S1iv—K1—S3iv70.36 (2)S6xv—K4—Ag2iii121.94 (2)
C6iv—K1—S3iv136.86 (5)S2—K4—Ag2iii64.358 (19)
C5ii—K1—S3iv73.41 (5)S4iii—K4—Ag2iii41.715 (17)
N6i—K1—K2v44.17 (7)C2xiii—K4—Ag2iii98.42 (5)
N5ii—K1—K2v43.61 (6)C3xiv—K4—Ag2iii99.40 (5)
N1i—K1—K2v84.75 (6)N1—K4—K1xvi40.32 (6)
N4iii—K1—K2v119.66 (6)N2xiii—K4—K1xvi87.84 (6)
C4iii—K1—K2v130.23 (6)N3xiv—K4—K1xvi88.50 (7)
S6iv—K1—K2v158.29 (3)S6iii—K4—K1xvi130.51 (2)
S1iv—K1—K2v108.37 (2)S6xv—K4—K1xvi47.587 (18)
C6iv—K1—K2v134.06 (5)S2—K4—K1xvi104.56 (2)
C5ii—K1—K2v58.67 (5)S4iii—K4—K1xvi137.31 (3)
S3iv—K1—K2v70.33 (2)C2xiii—K4—K1xvi82.43 (5)
N6i—K1—Ag1iv64.23 (6)C3xiv—K4—K1xvi92.73 (5)
N5ii—K1—Ag1iv103.42 (6)Ag2iii—K4—K1xvi167.87 (2)
N1i—K1—Ag1iv144.10 (6)N1—K4—K3xiv38.40 (6)
N4iii—K1—Ag1iv102.53 (6)N2xiii—K4—K3xiv109.49 (6)
C4iii—K1—Ag1iv87.68 (5)N3xiv—K4—K3xiv40.44 (6)
S6iv—K1—Ag1iv117.44 (2)S6iii—K4—K3xiv168.97 (3)
S1iv—K1—Ag1iv40.147 (15)S6xv—K4—K3xiv106.63 (2)
C6iv—K1—Ag1iv106.79 (5)S2—K4—K3xiv114.33 (2)
C5ii—K1—Ag1iv106.30 (5)S4iii—K4—K3xiv91.34 (2)
S3iv—K1—Ag1iv36.985 (15)C2xiii—K4—K3xiv120.65 (5)
K2v—K1—Ag1iv74.366 (15)C3xiv—K4—K3xiv55.87 (5)
N5vi—K2—N2vii143.43 (9)Ag2iii—K4—K3xiv127.66 (2)
N5vi—K2—N6viii82.73 (8)K1xvi—K4—K3xiv60.180 (15)
N2vii—K2—N6viii74.75 (8)S2—Ag1—S3127.46 (3)
N5vi—K2—N3vii83.22 (8)S3—Ag1—S1iv113.66 (3)
N2vii—K2—N3vii74.79 (8)S2—Ag1—S1113.66 (3)
N6viii—K2—N3vii103.66 (9)S2—Ag1—S1iv105.83 (3)
N5vi—K2—N4vi66.89 (8)S3—Ag1—S197.99 (3)
N2vii—K2—N4vi148.54 (8)S1iv—Ag1—S192.70 (2)
N6viii—K2—N4vi129.84 (8)S2—Ag1—K1iv111.92 (2)
N3vii—K2—N4vi110.79 (8)S3—Ag1—K1iv57.42 (2)
N5vi—K2—S3133.33 (7)S1iv—Ag1—K1iv136.06 (2)
N2vii—K2—S373.94 (6)S1—Ag1—K1iv52.054 (19)
N6viii—K2—S3143.93 (6)C1—S1—Ag1100.18 (10)
N3vii—K2—S384.90 (6)C1—S1—Ag1iv101.13 (10)
N4vi—K2—S375.78 (6)Ag1iv—S1—Ag187.30 (2)
N5vi—K2—S5viii96.62 (6)C1—S1—K1iv107.95 (10)
N2vii—K2—S5viii103.39 (6)Ag1iv—S1—K1iv150.92 (3)
N6viii—K2—S5viii72.49 (6)Ag1—S1—K1iv87.80 (2)
N3vii—K2—S5viii176.12 (7)N1—C1—S1178.7 (3)
N4vi—K2—S5viii72.58 (6)N1—C1—K3xiv53.14 (19)
S3—K2—S5viii97.95 (3)S1—C1—K3xiv125.82 (14)
N5vi—K2—C4vi66.93 (8)C1—N1—K4122.9 (2)
N2vii—K2—C4vi140.85 (8)C1—N1—K3xiv108.2 (2)
N6viii—K2—C4vi144.37 (8)K4—N1—K3xiv104.51 (9)
N3vii—K2—C4vi91.29 (8)C1—N1—K1xvi116.7 (2)
N4vi—K2—C4vi19.98 (7)K4—N1—K1xvi100.90 (9)
S3—K2—C4vi68.42 (5)K3xiv—N1—K1xvi100.94 (9)
S5viii—K2—C4vi92.21 (6)C2—S2—Ag1106.95 (10)
N5vi—K2—C3vii71.66 (8)C2—S2—K4109.46 (11)
N2vii—K2—C3vii78.38 (8)Ag1—S2—K4111.80 (3)
N6viii—K2—C3vii86.28 (8)N2—C2—S2177.7 (3)
N3vii—K2—C3vii19.63 (8)N2—C2—K358.00 (19)
N4vi—K2—C3vii117.69 (8)S2—C2—K3122.01 (13)
S3—K2—C3vii104.38 (6)N2—C2—K4xiii52.59 (18)
S5viii—K2—C3vii157.09 (6)S2—C2—K4xiii125.62 (13)
C4vi—K2—C3vii100.61 (7)K3—C2—K4xiii96.76 (8)
N5vi—K2—C6viii99.80 (8)C2—N2—K3101.8 (2)
N2vii—K2—C6viii63.54 (7)C2—N2—K4xiii108.7 (2)
N6viii—K2—C6viii18.20 (7)K3—N2—K4xiii122.67 (10)
N3vii—K2—C6viii111.88 (8)C2—N2—K2xii117.4 (2)
N4vi—K2—C6viii133.06 (7)K3—N2—K2xii94.33 (9)
S3—K2—C6viii126.43 (5)K4xiii—N2—K2xii111.76 (9)
S5viii—K2—C6viii64.29 (5)C3—S3—Ag198.75 (11)
C4vi—K2—C6viii152.29 (7)C3—S3—K2100.96 (11)
C3vii—K2—C6viii97.60 (7)Ag1—S3—K2160.25 (3)
N5vi—K2—K3ix45.91 (6)C3—S3—K3vii93.41 (11)
N2vii—K2—K3ix153.56 (6)Ag1—S3—K3vii100.57 (3)
N6viii—K2—K3ix84.93 (6)K2—S3—K3vii77.25 (2)
N3vii—K2—K3ix127.42 (7)C3—S3—K1iv101.54 (11)
N4vi—K2—K3ix45.18 (5)Ag1—S3—K1iv85.60 (3)
S3—K2—K3ix117.84 (3)K2—S3—K1iv91.51 (2)
S5viii—K2—K3ix53.43 (2)K3vii—S3—K1iv162.83 (3)
C4vi—K2—K3ix60.76 (5)N3—C3—S3179.4 (3)
C3vii—K2—K3ix117.56 (6)N3—C3—K2xii59.7 (2)
C6viii—K2—K3ix92.28 (5)S3—C3—K2xii119.78 (14)
N5vi—K2—K1x42.89 (6)N3—C3—K4xi49.7 (2)
N2vii—K2—K1x105.97 (6)S3—C3—K4xi130.29 (14)
N6viii—K2—K1x41.23 (6)K2xii—C3—K4xi94.80 (8)
N3vii—K2—K1x86.61 (6)C3—N3—K4xi112.6 (2)
N4vi—K2—K1x105.26 (5)C3—N3—K2xii100.6 (2)
S3—K2—K1x171.21 (3)K4xi—N3—K2xii119.55 (11)
S5viii—K2—K1x90.64 (2)C3—N3—K3133.5 (3)
C4vi—K2—K1x109.57 (5)K4xi—N3—K3100.27 (10)
C3vii—K2—K1x67.26 (6)K2xii—N3—K389.91 (9)
C6viii—K2—K1x59.32 (5)S5—Ag2—S6103.38 (3)
K3ix—K2—K1x66.139 (17)S5—Ag2—S4110.08 (3)
N2—K3—N4iv80.07 (8)S6—Ag2—S4106.91 (3)
N2—K3—N1xi145.03 (8)S5—Ag2—S4vi138.07 (3)
N4iv—K3—N1xi134.79 (8)S6—Ag2—S4vi99.08 (2)
N2—K3—N5iv124.11 (8)S4—Ag2—S4vi96.31 (3)
N4iv—K3—N5iv68.42 (8)S5—Ag2—K4ix93.33 (3)
N1xi—K3—N5iv77.45 (8)S6—Ag2—K4ix56.67 (2)
N2—K3—N375.03 (8)S4—Ag2—K4ix58.33 (2)
N4iv—K3—N3133.25 (9)S4vi—Ag2—K4ix128.53 (2)
N1xi—K3—N376.30 (8)C4—S4—Ag2102.26 (10)
N5iv—K3—N394.14 (9)C4—S4—Ag2vi105.03 (10)
N2—K3—C220.20 (8)Ag2—S4—Ag2vi83.69 (3)
N4iv—K3—C270.33 (8)C4—S4—K4ix125.12 (11)
N1xi—K3—C2149.15 (8)Ag2—S4—K4ix79.96 (2)
N5iv—K3—C2103.94 (8)Ag2vi—S4—K4ix129.40 (3)
N3—K3—C272.86 (8)N4—C4—S4177.4 (3)
N2—K3—S5xi120.28 (6)N4—C4—K1ix68.94 (19)
N4iv—K3—S5xi73.86 (6)S4—C4—K1ix109.09 (13)
N1xi—K3—S5xi80.22 (6)N4—C4—K2vi65.3 (2)
N5iv—K3—S5xi94.21 (6)S4—C4—K2vi113.65 (13)
N3—K3—S5xi152.67 (7)K1ix—C4—K2vi97.98 (8)
C2—K3—S5xi129.69 (6)C4—N4—K3iv136.0 (2)
N2—K3—S3xii73.26 (6)C4—N4—K1ix89.8 (2)
N4iv—K3—S3xii125.54 (6)K3iv—N4—K1ix131.31 (10)
N1xi—K3—S3xii84.18 (6)C4—N4—K2vi94.7 (2)
N5iv—K3—S3xii161.45 (7)K3iv—N4—K2vi86.05 (8)
N3—K3—S3xii83.82 (7)K1ix—N4—K2vi109.87 (9)
C2—K3—S3xii93.10 (5)C5—S5—Ag2106.54 (11)
S5xi—K3—S3xii80.06 (3)C5—S5—K2xvii92.03 (11)
N2—K3—C1xi143.97 (8)Ag2—S5—K2xvii113.57 (4)
N4iv—K3—C1xi130.50 (8)C5—S5—K3xiv106.12 (11)
N1xi—K3—C1xi18.66 (8)Ag2—S5—K3xiv145.99 (3)
N5iv—K3—C1xi88.90 (8)K2xvii—S5—K3xiv74.36 (2)
N3—K3—C1xi89.92 (8)N5—C5—S5179.3 (3)
C2—K3—C1xi158.99 (7)N5—C5—K3iv53.82 (19)
S5xi—K3—C1xi64.29 (5)S5—C5—K3iv125.75 (14)
S3xii—K3—C1xi72.70 (5)N5—C5—K1xviii44.31 (19)
N2—K3—C5iv107.22 (8)S5—C5—K1xviii135.34 (14)
N4iv—K3—C5iv68.91 (7)K3iv—C5—K1xviii79.75 (7)
N1xi—K3—C5iv87.78 (8)C5—N5—K1xviii119.0 (2)
N5iv—K3—C5iv18.65 (8)C5—N5—K2vi137.4 (2)
N3—K3—C5iv81.53 (8)K1xviii—N5—K2vi93.49 (9)
C2—K3—C5iv87.09 (7)C5—N5—K3iv107.5 (2)
S5xi—K3—C5iv111.50 (6)K1xviii—N5—K3iv102.43 (10)
S3xii—K3—C5iv164.61 (5)K2vi—N5—K3iv89.48 (8)
C1xi—K3—C5iv102.51 (7)C6—S6—Ag297.75 (10)
N2—K3—K2iii128.83 (6)C6—S6—K1iv83.08 (10)
N4iv—K3—K2iii48.77 (6)Ag2—S6—K1iv95.85 (2)
N1xi—K3—K2iii86.09 (6)C6—S6—K4ix104.93 (10)
N5iv—K3—K2iii44.60 (6)Ag2—S6—K4ix82.01 (2)
N3—K3—K2iii138.19 (7)K1iv—S6—K4ix171.90 (3)
C2—K3—K2iii116.96 (5)C6—S6—K4xv102.29 (10)
S5xi—K3—K2iii52.21 (2)Ag2—S6—K4xv159.57 (3)
S3xii—K3—K2iii132.25 (3)K1iv—S6—K4xv82.74 (2)
C1xi—K3—K2iii83.88 (5)K4ix—S6—K4xv96.52 (2)
C5iv—K3—K2iii59.88 (5)N6—C6—S6179.0 (3)
N2—K3—K2xii43.02 (6)N6—C6—K2xvii51.7 (2)
N4iv—K3—K2xii123.07 (6)S6—C6—K2xvii127.29 (13)
N1xi—K3—K2xii102.03 (6)N6—C6—K1iv112.1 (2)
N5iv—K3—K2xii135.83 (6)S6—C6—K1iv68.72 (10)
N3—K3—K2xii45.01 (6)K2xvii—C6—K1iv155.04 (9)
C2—K3—K2xii55.15 (5)C6—N6—K1xvi154.2 (3)
S5xi—K3—K2xii129.61 (3)C6—N6—K2xvii110.1 (2)
S3xii—K3—K2xii50.756 (19)K1xvi—N6—K2xvii94.60 (9)
C1xi—K3—K2xii104.12 (5)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x1/2, y+1/2, z1/2; (viii) x+3/2, y1/2, z+1/2; (ix) x, y, z1; (x) x+1/2, y1/2, z+1/2; (xi) x+3/2, y1/2, z+3/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+2, y+1, z+2; (xiv) x+3/2, y+1/2, z+3/2; (xv) x+2, y+1, z+1; (xvi) x+1, y, z; (xvii) x+3/2, y+1/2, z+1/2; (xviii) x+1/2, y+3/2, z1/2.
(III) Potassium [silver(I)-di-µ-thiocyanato-S:S] top
Crystal data top
K[Ag(SCN)2]F(000) = 992
Mr = 263.13Dx = 2.703 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 50 reflections
a = 17.9382 (14) Åθ = 10–12.5°
b = 10.7801 (8) ŵ = 4.29 mm1
c = 6.6879 (6) ÅT = 213 K
V = 1293.28 (18) Å3Triangular fragment of a plate, colourless
Z = 80.35 × 0.25 × 0.12 mm
Data collection top
Stoe STADI4
diffractometer
1458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
ω scansh = 023
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
k = 1414
Tmin = 0.315, Tmax = 0.627l = 88
4667 measured reflections2 standard reflections every 120 min
1561 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0161P)2 + 1.391P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.003
S = 1.13Δρmax = 0.96 e Å3
1561 reflectionsΔρmin = 0.57 e Å3
74 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0193 (4)
Crystal data top
K[Ag(SCN)2]V = 1293.28 (18) Å3
Mr = 263.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.9382 (14) ŵ = 4.29 mm1
b = 10.7801 (8) ÅT = 213 K
c = 6.6879 (6) Å0.35 × 0.25 × 0.12 mm
Data collection top
Stoe STADI4
diffractometer
1458 reflections with I > 2σ(I)
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
Rint = 0.022
Tmin = 0.315, Tmax = 0.6272 standard reflections every 120 min
4667 measured reflections intensity decay: none
1561 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02074 parameters
wR(F2) = 0.0460 restraints
S = 1.13Δρmax = 0.96 e Å3
1561 reflectionsΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.73048 (3)0.87369 (4)0.14962 (7)0.02603 (12)
Ag0.502185 (9)0.373394 (18)0.17302 (3)0.03114 (9)
S10.53232 (3)0.34921 (5)0.54781 (8)0.02320 (12)
C10.62483 (12)0.34788 (19)0.5243 (3)0.0230 (4)
N10.68910 (12)0.3514 (2)0.5103 (3)0.0347 (5)
S20.60890 (3)0.50945 (4)0.01708 (7)0.02115 (12)
C20.63177 (11)0.60326 (19)0.1715 (3)0.0208 (4)
N20.64928 (12)0.6663 (2)0.3036 (3)0.0323 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0267 (2)0.0306 (2)0.0208 (2)0.00223 (17)0.00096 (18)0.00045 (16)
Ag0.02897 (12)0.03269 (12)0.03175 (13)0.00046 (6)0.00933 (7)0.00370 (7)
S10.0232 (2)0.0241 (2)0.0223 (2)0.00463 (19)0.0007 (2)0.00023 (19)
C10.0283 (10)0.0233 (9)0.0174 (9)0.0010 (8)0.0013 (8)0.0015 (8)
N10.0287 (10)0.0452 (11)0.0303 (10)0.0007 (9)0.0017 (9)0.0045 (9)
S20.0203 (2)0.0230 (2)0.0201 (2)0.00031 (17)0.00082 (18)0.00133 (18)
C20.0159 (8)0.0256 (9)0.0209 (10)0.0023 (7)0.0011 (7)0.0045 (8)
N20.0341 (10)0.0394 (10)0.0234 (9)0.0107 (9)0.0047 (8)0.0011 (8)
Geometric parameters (Å, º) top
K—N2i2.768 (2)Ag—S22.7262 (5)
K—N1ii2.821 (2)S1—C11.667 (2)
K—N22.860 (2)S1—Agviii2.5984 (6)
K—N1iii2.973 (2)C1—N11.157 (3)
K—N1i3.194 (2)N1—Kix2.821 (2)
K—S2iv3.3633 (7)N1—Kx2.973 (2)
K—C23.414 (2)N1—Kiv3.194 (2)
K—S2ii3.4186 (7)S2—C21.668 (2)
K—C2ii3.500 (2)S2—Agvi2.5794 (5)
K—Ki4.2771 (6)S2—Ki3.3633 (7)
K—Kiv4.2771 (6)S2—Kix3.4186 (7)
K—Kv4.3691 (7)C2—N21.158 (3)
Ag—S12.5774 (6)C2—Kix3.500 (2)
Ag—S2vi2.5794 (5)N2—Kiv2.768 (2)
Ag—S1vii2.5984 (6)
N2i—K—N1ii166.09 (7)C2—K—Kiv55.53 (3)
N2i—K—N284.91 (6)S2ii—K—Kiv121.460 (11)
N1ii—K—N283.46 (6)C2ii—K—Kiv114.09 (3)
N2i—K—N1iii82.31 (6)Ki—K—Kiv102.86 (2)
N1ii—K—N1iii87.15 (6)N2i—K—Kv145.21 (5)
N2—K—N1iii73.86 (6)N1ii—K—Kv46.90 (5)
N2i—K—N1i77.18 (6)N2—K—Kv107.06 (4)
N1ii—K—N1i116.58 (5)N1iii—K—Kv132.14 (4)
N2—K—N1i135.40 (6)N1i—K—Kv71.47 (4)
N1iii—K—N1i141.13 (7)S2iv—K—Kv50.449 (12)
N2i—K—S2iv105.74 (5)C2—K—Kv125.63 (4)
N1ii—K—S2iv78.28 (5)S2ii—K—Kv81.236 (17)
N2—K—S2iv73.98 (5)C2ii—K—Kv54.13 (3)
N1iii—K—S2iv145.92 (5)Ki—K—Kv170.756 (13)
N1i—K—S2iv72.25 (4)Kiv—K—Kv77.892 (6)
N2i—K—C268.29 (6)S1—Ag—S2vi127.211 (17)
N1ii—K—C298.96 (6)S1—Ag—S1vii100.157 (14)
N2—K—C218.72 (5)S2vi—Ag—S1vii118.855 (17)
N1iii—K—C264.42 (5)S1—Ag—S2111.142 (17)
N1i—K—C2133.18 (5)S2vi—Ag—S295.192 (17)
S2iv—K—C287.43 (4)S1vii—Ag—S2101.565 (17)
N2i—K—S2ii103.73 (5)C1—S1—Ag96.76 (8)
N1ii—K—S2ii83.36 (5)C1—S1—Agviii103.28 (7)
N2—K—S2ii151.80 (5)Ag—S1—Agviii111.30 (2)
N1iii—K—S2ii80.68 (4)N1—C1—S1177.5 (2)
N1i—K—S2ii72.75 (4)C1—N1—Kix125.55 (17)
S2iv—K—S2ii127.035 (17)C1—N1—Kx115.57 (17)
C2—K—S2ii144.75 (4)Kix—N1—Kx95.13 (6)
N2i—K—C2ii121.09 (6)C1—N1—Kiv103.77 (16)
N1ii—K—C2ii70.34 (5)Kix—N1—Kiv92.95 (6)
N2—K—C2ii153.79 (5)Kx—N1—Kiv123.57 (7)
N1iii—K—C2ii104.33 (5)C2—S2—Agvi101.47 (7)
N1i—K—C2ii61.33 (5)C2—S2—Ag98.41 (7)
S2iv—K—C2ii99.51 (4)Agvi—S2—Ag84.808 (17)
C2—K—C2ii165.48 (5)C2—S2—Ki96.58 (7)
S2ii—K—C2ii27.87 (3)Agvi—S2—Ki92.842 (17)
N2i—K—Ki41.35 (4)Ag—S2—Ki165.00 (2)
N1ii—K—Ki127.97 (5)C2—S2—Kix78.79 (7)
N2—K—Ki78.11 (4)Agvi—S2—Kix173.02 (2)
N1iii—K—Ki41.06 (4)Ag—S2—Kix102.087 (17)
N1i—K—Ki110.51 (4)Ki—S2—Kix80.211 (15)
S2iv—K—Ki138.738 (13)N2—C2—S2178.1 (2)
C2—K—Ki60.07 (4)N2—C2—K52.48 (13)
S2ii—K—Ki90.685 (11)S2—C2—K127.80 (9)
C2ii—K—Ki118.26 (3)N2—C2—Kix104.79 (16)
N2i—K—Kiv123.82 (5)S2—C2—Kix73.34 (7)
N1ii—K—Kiv43.81 (4)K—C2—Kix103.64 (5)
N2—K—Kiv39.75 (4)C2—N2—Kiv133.57 (18)
N1iii—K—Kiv74.71 (4)C2—N2—K108.80 (15)
N1i—K—Kiv143.77 (4)Kiv—N2—K98.89 (6)
S2iv—K—Kiv73.463 (11)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y+1, z1/2; (iv) x, y+3/2, z+1/2; (v) x+3/2, y+2, z+1/2; (vi) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x+3/2, y1/2, z; (x) x+3/2, y+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaK3[Ag(SCN)4]K4[Ag2(SCN)6]K[Ag(SCN)2]
Mr457.49720.62263.13
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nOrthorhombic, Pbca
Temperature (K)293213213
a, b, c (Å)14.343 (2), 12.778 (3), 7.798 (2)9.8701 (6), 20.0893 (8), 10.6229 (7)17.9382 (14), 10.7801 (8), 6.6879 (6)
α, β, γ (°)90, 102.772 (18), 9090, 105.494 (8), 9090, 90, 90
V3)1393.7 (6)2029.8 (2)1293.28 (18)
Z448
Radiation typeMo KαAg Kα, λ = 0.56087 ÅMo Kα
µ (mm1)2.921.754.29
Crystal size (mm)0.33 × 0.15 × 0.120.22 × 0.18 × 0.150.35 × 0.25 × 0.12
Data collection
DiffractometerStoe STADI4
diffractometer
Stoe IPDS
diffractometer
Stoe STADI4
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1996)
Numerical
(X-RED; Stoe & Cie, 1996)
Numerical
(X-RED; Stoe & Cie, 1996)
Tmin, Tmax0.604, 0.6880.741, 0.8030.315, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
7208, 2446, 1944 31846, 5096, 4557 4667, 1561, 1458
Rint0.0330.0360.022
(sin θ/λ)max1)0.5950.6790.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 1.10 0.035, 0.085, 1.05 0.020, 0.046, 1.13
No. of reflections244650961561
No. of parameters14621774
Δρmax, Δρmin (e Å3)0.58, 0.502.23, 2.080.96, 0.57

Computer programs: STADI4 (Stoe & Cie, 1996), IPDS (Stoe & Cie, 1995), STADI4, IPDS and X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998).

Selected geometric parameters (Å, º) for (I) top
Ag1—S12.5798 (11)S1—C11.653 (4)
Ag1—S22.5953 (12)C1—N11.154 (4)
S1—Ag1—S2106.06 (4)C2—S2—Ag1100.95 (13)
C1—S1—Ag1104.97 (13)N1—C1—S1178.2 (3)
Selected geometric parameters (Å, º) for (II) top
Ag1—S22.4914 (9)Ag2—S52.5839 (9)
Ag1—S12.7083 (8)Ag2—S42.6601 (9)
Ag1—S1i2.6538 (8)Ag2—S4ii2.7400 (9)
S1—C11.660 (3)S4—C41.660 (3)
C1—N11.158 (4)C4—N41.153 (4)
S2—C21.650 (3)S5—C51.653 (3)
S2—Ag1—S1113.66 (3)S5—Ag2—S4110.08 (3)
S2—Ag1—S1i105.83 (3)S5—Ag2—S4ii138.07 (3)
S1i—Ag1—S192.70 (2)S4—Ag2—S4ii96.31 (3)
C1—S1—Ag1100.18 (10)C4—S4—Ag2102.26 (10)
C1—S1—Ag1i101.13 (10)C4—S4—Ag2ii105.03 (10)
N1—C1—S1178.7 (3)N4—C4—S4177.4 (3)
C2—S2—Ag1106.95 (10)C5—S5—Ag2106.54 (11)
N2—C2—S2177.7 (3)N5—C5—S5179.3 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Selected geometric parameters (Å, º) for (III) top
Ag—S12.5774 (6)S1—C11.667 (2)
Ag—S2i2.5794 (5)C1—N11.157 (3)
Ag—S1ii2.5984 (6)S2—C21.668 (2)
Ag—S22.7262 (5)C2—N21.158 (3)
S1—Ag—S2i127.211 (17)C1—S1—Agiii103.28 (7)
S1—Ag—S1ii100.157 (14)Ag—S1—Agiii111.30 (2)
S2i—Ag—S1ii118.855 (17)N1—C1—S1177.5 (2)
S1—Ag—S2111.142 (17)C2—S2—Agi101.47 (7)
S2i—Ag—S295.192 (17)C2—S2—Ag98.41 (7)
S1ii—Ag—S2101.565 (17)Agi—S2—Ag84.808 (17)
C1—S1—Ag96.76 (8)N2—C2—S2178.1 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds