research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-tri­hydro­(penta­fluoro­phenyl)­borato-tetra­kis­(tetra­hydro­furan)­disodium

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
*Correspondence e-mail: rytanaka@hiroshima-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 17 December 2019; accepted 24 December 2019; online 7 January 2020)

The title compound, [Na(μ-C6F5BH3)(C4H8O)2]2, represents a dimeric structure of sodium and organoborohydride, located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å were apparently longer than the Li⋯B distances (2.403–2.537 Å) of the lithium organotri­hydro­borates in the previous reports. Moreover, an inter­action between the sodium atom and one fluorine atom on the 2-position of the benzene ring is observed [Na—F = 2.6373 (12) Å]. In the crystal, the dimeric mol­ecules are stacked along the b-axis via a ππ inter­action between the benzene rings.

1. Chemical context

A series of alkali-metal borohydride salts are known as the most important, reliable and commercially available reducing agents, especially for carbonyl compounds (Magano & Dunetz, 2012[Magano, J. & Dunetz, J. R. (2012). Org. Process Res. Dev. 16, 1156-1184.]). The reducing ability of borohydrides can easily be tuned by introducing functional groups on boron or by changing their counter-cation. To understand the relationship between reactivity and composition of borohydride species, structural understandings based on crystallographic analysis would be important. The structures of these borohydride compounds are largely affected by the number of hydrides, bulkiness of substituents on boron, and metal. For example, sodium tri­ethyl­mono­hydro­borate forms a cubic tetra­mer (Bell et al., 1980[Bell, N. A., Shearer, H. M. M. & Spencer, C. B. (1980). J. Chem. Soc. Chem. Commun. pp. 711-712.]) and lithium tri­hydro­borate with a bulky alkyl group on boron gives a monomeric structure (Eaborn et al., 1984[Eaborn, C., El-Kheli, M. N. A., Hitchcock, P. B. & Smith, J. D. (1984). J. Chem. Soc. Chem. Commun. pp. 1673-1674.]). Reports of the structures of sodium alk­yl/aryl­tri­hydro­borates are very scarce, although some dimeric lithium organotri­hydro­borates (Knizek et al., 2000[Knizek, J. & Nöth, H. (2000). J. Organomet. Chem. 614-615, 168-187.]; Franz et al., 2011[Franz, D., Ilkhechi, A. H., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Eur. J. Inorg. Chem. pp. 5414-5421.]; Pospiech et al., 2015[Pospiech, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Chem. Eur. J. 21, 8229-8236.]; Murosaki et al., 2016[Murosaki, T., Kaneda, S., Maruhashi, R., Sadamori, K., Shoji, Y., Tamao, K., Hashizume, D., Hayakawa, N. & Matsuo, T. (2016). Organometallics, 35, 3397-3405.]), monomeric lithium organotri­hydro­borate (Molitor & Gessner, 2013[Molitor, S. & Gessner, V. H. (2013). Chem. Eur. J. 19, 11858-11862.]) and potassium aryl­tri­hydro­botate (Kaese et al., 2016[Kaese, T., Hübner, A., Bolte, M., Lerner, H. W. & Wagner, M. (2016). J. Am. Chem. Soc. 138, 6224-6233.]) have previously been characterized by X-ray crystal analyses. The only example of structurally characterized sodium alkyl­tri­hydro­borate is a compound bearing three meth­oxy­eth­oxy groups, and no inter­action between the hydrides and the sodium atom was observed in this case, because the sodium cation is trapped into the cage structure of the meth­oxy­eth­oxy groups and no longer forms contacts with the borohydride anion (Thalangamaarachchige et al., 2019[Thalangamaarachchige, V. D., Silva, N. J., Unruh, D. K., Aquino, A. J. A. & Krempner, C. (2019). Tetrahedron, 75, 1861-1864.]).

Herein, we report the first crystal structure analysis of sodium aryl­tri­hydro­borate, which bears a penta­fluoro­phenyl substituent on the boron centre.

2. Structural commentary

The title compound (Fig. 1[link]) represents a dimeric structure bridged via three Na—H—B bonds, being located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å are apparently longer than the sum of covalent bond radii of sodium and boron (2.50 Å; Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]) and the previously reported lithium–boron distances (2.403–2.537 Å) in the lithium organotri­hydro­borates (Knizek et al., 2000[Knizek, J. & Nöth, H. (2000). J. Organomet. Chem. 614-615, 168-187.]; Franz et al., 2011[Franz, D., Ilkhechi, A. H., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Eur. J. Inorg. Chem. pp. 5414-5421.]; Pospiech et al., 2015[Pospiech, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Chem. Eur. J. 21, 8229-8236.]; Murosaki et al., 2016[Murosaki, T., Kaneda, S., Maruhashi, R., Sadamori, K., Shoji, Y., Tamao, K., Hashizume, D., Hayakawa, N. & Matsuo, T. (2016). Organometallics, 35, 3397-3405.]). The Na⋯H distances show that one hydride (H3) binds to both sodium atoms of the dimer [Na1⋯H3 = 2.47 (2) Å and Na1i⋯H3 = 2.40 (2) Å; symmetry code: (i) −x + 1, −y, −z] while the other two hydrides (H1 and H2) bind only to one sodium atom [Na1i⋯1 = 2.34 (2) Å and Na1⋯H2 = 2.34 (3) Å]. Such a chelation mode was also observed in the previously reported dimeric structure of lithium tri­hydro­borates.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms other than hydrides have been omitted for clarity.

The distance between the sodium atom and fluorine atom F5 at the 2-position on the benzene ring [Na1i—F5 = 2.6373 (12) Å] is much shorter than the sum of van der Waals radii (3.74 Å), indicating the presence of a sodium–halogen inter­action. Such a halogen–metal inter­action is also observed in bromoaryl-substituted lithium tri­hydro­borate (Seven et al., 2014[Seven, Ö., Bolte, M., Lerner, H.-W. & Wanger, M. (2014). Organometallics, 33, 1291-1299.]). The environment around the sodium atom can therefore be seen as having a distorted trigonal–bypiramidal geometry with one fluorine atom, two boron atoms and two THF mol­ecules. The C—B bond [C1—B1 = 1.614 (2) Å] is significantly longer than the previously reported C—B bond lengths of lithium organotri­hydro­borates (1.597–1.613 Å), probably because of the electron-withdrawing property of the C6F5 group.

3. Supra­molecular features

In the crystal, the dimeric mol­ecules are stacked along the b axis via a ππ inter­action between the neighbouring C6F5 rings as shown in Fig. 2[link]. The plane-to-plane distance, the centroid-to-centroid distance and the slippage are 3.388 (4), 3.582 (2) and 1.160 Å, respectively. The C6F5 rings are stacked in an anti-parallel manner, so that the boron atom on one C6F5 ring is close to the fluorine atom at 4-position on the other ring. However, the B⋯F distance [B1⋯F3ii = 3.589 (2) Å; symmetry code: (ii) −x + 1, −y − 1, −z] is slightly longer than the sum of van der Waals radii (3.39 Å), suggesting that the B⋯F inter­action is weak. The distance between the closest hydrogen atom (H4) and centroid of the C6F5 ring is 3.343 Å, indicating the absence of C—H⋯π inter­actions.

[Figure 2]
Figure 2
A packing diagram of the title compound, viewed approximately down the c axis, showing the ππ inter­action between the C6F5 rings. H atoms have been omitted.

4. Database survey

As described above, there is only one example of structural analysis on a sodium alkyl­tris­boronate complex (Thalangamaarachchige et al., 2019[Thalangamaarachchige, V. D., Silva, N. J., Unruh, D. K., Aquino, A. J. A. & Krempner, C. (2019). Tetrahedron, 75, 1861-1864.]). This complex exhibits a monomeric twitterionic structure without any inter­action between the borohydride and the sodium atom. Other examples of sodium tri­hydro­borates bearing a carbon-based substituent on boron, the sodium salt of boranocarbamates (Pitchumony et al., 2010[Pitchumony, T. S., Spingler, B., Motterlini, R. & Alberto, R. (2010). Org. Biomol. Chem. 8, 4849-4854.]), cyano­borohydride (Custelcean et al., 1998[Custelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935-12941.], 2002[Custelcean, R., Vlassa, M. & Jackson, J. E. (2002). Chem. Eur. J. 8, 302-308.]) and (iso­thio­cyanato)­tri­hydro­borate (Nöth & Warchhold, 2004[Nöth, H. & Warchhold, M. (2004). Eur. J. Inorg. Chem. pp. 1115-1124.]) have been structurally characterized by X-ray crystallographic analyses. In these salts, the sodium cation exists as an adduct of polyethers or polyamine and is located distant from the borohydride anion.

5. Synthesis and crystallization

The title compound was prepared by the reaction of NaH (60% oil dispersion, 1.21 g, 30 mmol, washed twice with hexane prior to use) and (C6F5)BH2·S(CH3)2 (2.10 g, 8.7 mmol) in THF (20 mL) at 333 K for 5 h. The supernatant solution of the reaction mixture was separated and dried under vacuum. The obtained colourless solid was redissolved into 1 mL of THF, and 10 mL of hexane was layered on it. This solution was stored at 243 K overnight and 1.55 g (51%) of colourless crystals were obtained. 19F NMR (C6D6, 470 MHz): δ −134.72 (br, 2F), −162.85 (t, J = 20 Hz, 1F), −165.17 (m, 2F); 11B NMR (C6D6, 160 MHz): δ −36.71 (q, J = 86 Hz).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were located in a difference-Fourier map. The tetra­hydro­furan H atoms were refined using a riding model (C—H = 0.99 Å) with Uiso(H) = 1.2Ueq(C), while the H atoms on boron were refined isotrop­ically [refined B—H = 1.08 (3)–1.13 (2) Å].

Table 1
Experimental details

Crystal data
Chemical formula [Na2(C6F5BH3)2(C4H8O)4]
Mr 696.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 7.9698 (5), 10.1104 (6), 11.5208 (7)
α, β, γ (°) 113.461 (2), 105.685 (3), 91.805 (2)
V3) 809.63 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.60 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.512, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4506, 3471, 3068
Rint 0.032
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.08
No. of reflections 3471
No. of parameters 220
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.45
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).

Di-µ-trihydro(pentafluoropheny)borato-tetrakis(tetrahydrofuran)disodium top
Crystal data top
[Na2(C6F5BH3)2(C4H8O)4]Z = 1
Mr = 696.18F(000) = 360
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.9698 (5) ÅCell parameters from 4126 reflections
b = 10.1104 (6) Åθ = 2.7–27.4°
c = 11.5208 (7) ŵ = 0.15 mm1
α = 113.461 (2)°T = 123 K
β = 105.685 (3)°Block, colourless
γ = 91.805 (2)°0.60 × 0.20 × 0.20 mm
V = 809.63 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3068 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.4°, θmin = 2.0°
Tmin = 0.512, Tmax = 0.746h = 108
4506 measured reflectionsk = 1312
3471 independent reflectionsl = 1412
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0819P)2 + 0.2169P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3471 reflectionsΔρmax = 0.31 e Å3
220 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
NA10.55346 (7)0.03356 (7)0.15797 (5)0.02597 (18)
B10.5516 (2)0.20185 (19)0.02053 (16)0.0272 (3)
H10.412 (3)0.193 (2)0.022 (2)0.043 (6)*
H20.560 (3)0.244 (3)0.120 (2)0.053 (6)*
H30.638 (3)0.092 (2)0.037 (2)0.037 (5)*
C10.63209 (18)0.30571 (15)0.04965 (13)0.0217 (3)
C20.71559 (19)0.42272 (17)0.00498 (14)0.0256 (3)
C30.78844 (19)0.50723 (17)0.05860 (16)0.0296 (3)
C40.7778 (2)0.47796 (18)0.18383 (16)0.0310 (3)
C50.6944 (2)0.36360 (18)0.24263 (14)0.0296 (3)
C60.62500 (19)0.28259 (16)0.17530 (13)0.0238 (3)
F10.72989 (14)0.45982 (12)0.12796 (10)0.0395 (3)
F20.86728 (14)0.61935 (12)0.00036 (13)0.0453 (3)
F30.84800 (15)0.55697 (12)0.24888 (12)0.0469 (3)
F40.68262 (17)0.33360 (13)0.36492 (10)0.0475 (3)
F50.54502 (14)0.17008 (11)0.23880 (9)0.0343 (2)
O10.83333 (15)0.03501 (13)0.16984 (12)0.0327 (3)
C70.9190 (3)0.0619 (2)0.2058 (2)0.0436 (4)
H41.0163340.1309840.1284740.052*
H50.8343480.1183000.2383970.052*
C80.9905 (3)0.0347 (2)0.31551 (19)0.0430 (4)
H60.9116230.0502430.4040620.052*
H71.1098270.0098040.3037140.052*
C90.9967 (3)0.1771 (2)0.30160 (18)0.0391 (4)
H81.1181060.2007100.2866540.047*
H90.9170770.2582350.3822360.047*
C100.9356 (2)0.1511 (2)0.18186 (17)0.0348 (4)
H100.8627810.2403180.1954660.042*
H111.0379240.1227990.1008030.042*
O20.40793 (15)0.18090 (12)0.37962 (10)0.0319 (3)
C110.3406 (2)0.15236 (19)0.49440 (15)0.0328 (4)
H120.4344730.1467170.5344020.039*
H130.2925660.0593500.4707370.039*
C120.1955 (3)0.2805 (2)0.59003 (16)0.0392 (4)
H140.1921100.3072110.6832410.047*
H150.0787710.2570160.5807570.047*
C130.2449 (3)0.4036 (2)0.54953 (17)0.0411 (4)
H160.1496500.4391830.5240040.049*
H170.2677840.4863330.6231720.049*
C140.4109 (2)0.33571 (19)0.43176 (16)0.0362 (4)
H180.4108100.3722730.3638100.043*
H190.5171320.3587540.4601670.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
NA10.0285 (3)0.0299 (3)0.0210 (3)0.0070 (2)0.0097 (2)0.0107 (2)
B10.0357 (8)0.0252 (8)0.0217 (7)0.0061 (7)0.0080 (6)0.0114 (6)
C10.0235 (6)0.0215 (7)0.0192 (6)0.0010 (5)0.0062 (5)0.0080 (5)
C20.0297 (7)0.0240 (7)0.0229 (7)0.0024 (6)0.0130 (5)0.0066 (6)
C30.0259 (7)0.0224 (8)0.0382 (8)0.0058 (6)0.0113 (6)0.0093 (6)
C40.0293 (7)0.0274 (8)0.0332 (8)0.0004 (6)0.0014 (6)0.0171 (7)
C50.0366 (8)0.0312 (8)0.0177 (6)0.0010 (6)0.0037 (6)0.0106 (6)
C60.0284 (7)0.0218 (7)0.0184 (6)0.0041 (5)0.0084 (5)0.0050 (5)
F10.0575 (6)0.0367 (6)0.0321 (5)0.0129 (5)0.0304 (5)0.0110 (4)
F20.0441 (6)0.0295 (6)0.0667 (7)0.0184 (4)0.0277 (5)0.0168 (5)
F30.0480 (6)0.0391 (6)0.0509 (6)0.0056 (5)0.0054 (5)0.0298 (5)
F40.0726 (8)0.0513 (7)0.0204 (5)0.0076 (6)0.0123 (5)0.0184 (5)
F50.0497 (6)0.0299 (5)0.0264 (4)0.0135 (4)0.0208 (4)0.0085 (4)
O10.0319 (6)0.0343 (6)0.0402 (6)0.0103 (5)0.0189 (5)0.0187 (5)
C70.0532 (11)0.0327 (9)0.0599 (12)0.0128 (8)0.0352 (9)0.0226 (9)
C80.0622 (11)0.0384 (10)0.0445 (10)0.0171 (9)0.0315 (9)0.0232 (8)
C90.0544 (10)0.0337 (9)0.0390 (9)0.0150 (8)0.0266 (8)0.0166 (7)
C100.0419 (9)0.0367 (9)0.0344 (8)0.0142 (7)0.0170 (7)0.0195 (7)
O20.0415 (6)0.0265 (6)0.0211 (5)0.0046 (5)0.0035 (4)0.0078 (4)
C110.0446 (9)0.0298 (8)0.0251 (7)0.0061 (7)0.0098 (6)0.0134 (6)
C120.0491 (10)0.0314 (9)0.0259 (7)0.0065 (7)0.0001 (7)0.0083 (7)
C130.0553 (11)0.0288 (9)0.0288 (8)0.0015 (8)0.0046 (7)0.0076 (7)
C140.0506 (10)0.0272 (8)0.0280 (7)0.0116 (7)0.0077 (7)0.0113 (6)
Geometric parameters (Å, º) top
NA1—O12.2714 (12)O1—C101.433 (2)
NA1—O22.3122 (12)C7—C81.522 (3)
NA1—F5i2.6373 (12)C7—H40.9900
NA1—B12.7494 (18)C7—H50.9900
NA1—B1i2.7845 (19)C8—C91.511 (3)
NA1—NA1i3.7658 (11)C8—H60.9900
NA1—H22.33 (2)C8—H70.9900
NA1—H32.47 (2)C9—C101.514 (2)
B1—C11.614 (2)C9—H80.9900
B1—NA1i2.7844 (19)C9—H90.9900
B1—H11.11 (2)C10—H100.9900
B1—H21.08 (3)C10—H110.9900
B1—H31.13 (2)O2—C111.4317 (18)
C1—C21.386 (2)O2—C141.440 (2)
C1—C61.3889 (18)C11—C121.520 (2)
C2—F11.3520 (16)C11—H120.9900
C2—C31.380 (2)C11—H130.9900
C3—F21.3431 (18)C12—C131.522 (3)
C3—C41.380 (2)C12—H140.9900
C4—F31.3384 (18)C12—H150.9900
C4—C51.380 (2)C13—C141.514 (2)
C5—F41.3486 (17)C13—H160.9900
C5—C61.371 (2)C13—H170.9900
C6—F51.3677 (17)C14—H180.9900
F5—NA1i2.6373 (12)C14—H190.9900
O1—C71.425 (2)
O1—NA1—O297.78 (5)F5—C6—C5116.66 (13)
O1—NA1—F5i101.16 (4)F5—C6—C1118.44 (13)
O2—NA1—F5i80.88 (4)C5—C6—C1124.90 (14)
O1—NA1—B1100.56 (5)C6—F5—NA1i124.58 (8)
O2—NA1—B1107.00 (5)C7—O1—C10105.86 (12)
F5i—NA1—B1155.60 (5)C7—O1—NA1124.28 (11)
O1—NA1—B1i123.38 (5)C10—O1—NA1127.60 (10)
O2—NA1—B1i129.23 (5)O1—C7—C8105.75 (15)
F5i—NA1—B1i64.36 (4)O1—C7—H4110.6
B1—NA1—B1i94.23 (5)C8—C7—H4110.6
O1—NA1—NA1i122.73 (4)O1—C7—H5110.6
O2—NA1—NA1i132.93 (4)C8—C7—H5110.6
F5i—NA1—NA1i110.18 (3)H4—C7—H5108.7
B1—NA1—NA1i47.51 (4)C9—C8—C7104.83 (14)
B1i—NA1—NA1i46.73 (4)C9—C8—H6110.8
O1—NA1—H291.5 (6)C7—C8—H6110.8
O2—NA1—H287.9 (6)C9—C8—H7110.8
F5i—NA1—H2164.1 (6)C7—C8—H7110.8
B1—NA1—H222.6 (6)H6—C8—H7108.9
B1i—NA1—H2116.2 (6)C8—C9—C10104.49 (14)
NA1i—NA1—H269.7 (6)C8—C9—H8110.9
O1—NA1—H391.0 (5)C10—C9—H8110.9
O2—NA1—H3130.7 (5)C8—C9—H9110.9
F5i—NA1—H3144.5 (5)C10—C9—H9110.9
B1—NA1—H324.2 (5)H8—C9—H9108.9
B1i—NA1—H381.0 (5)O1—C10—C9105.64 (13)
NA1i—NA1—H338.6 (5)O1—C10—H10110.6
H2—NA1—H343.3 (8)C9—C10—H10110.6
C1—B1—NA1155.20 (11)O1—C10—H11110.6
C1—B1—NA1i109.90 (9)C9—C10—H11110.6
NA1—B1—NA1i85.77 (5)H10—C10—H11108.7
C1—B1—H1111.0 (11)C11—O2—C14104.91 (11)
NA1—B1—H193.7 (11)C11—O2—NA1133.50 (10)
NA1i—B1—H155.7 (12)C14—O2—NA1119.96 (9)
C1—B1—H2109.9 (13)O2—C11—C12105.00 (13)
NA1—B1—H256.3 (13)O2—C11—H12110.7
NA1i—B1—H2140.1 (13)C12—C11—H12110.7
H1—B1—H2110.2 (17)O2—C11—H13110.7
C1—B1—H3107.0 (11)C12—C11—H13110.7
NA1—B1—H364.1 (11)H12—C11—H13108.8
NA1i—B1—H358.4 (11)C11—C12—C13104.30 (14)
H1—B1—H3111.4 (16)C11—C12—H14110.9
H2—B1—H3107.2 (16)C13—C12—H14110.9
C2—C1—C6113.31 (13)C11—C12—H15110.9
C2—C1—B1125.13 (12)C13—C12—H15110.9
C6—C1—B1121.55 (13)H14—C12—H15108.9
F1—C2—C3115.87 (14)C14—C13—C12104.48 (14)
F1—C2—C1119.98 (13)C14—C13—H16110.9
C3—C2—C1124.15 (14)C12—C13—H16110.9
F2—C3—C2121.03 (15)C14—C13—H17110.9
F2—C3—C4119.32 (15)C12—C13—H17110.9
C2—C3—C4119.64 (15)H16—C13—H17108.9
F3—C4—C5119.96 (15)O2—C14—C13105.39 (14)
F3—C4—C3121.29 (16)O2—C14—H18110.7
C5—C4—C3118.75 (15)C13—C14—H18110.7
F4—C5—C6121.25 (15)O2—C14—H19110.7
F4—C5—C4119.52 (15)C13—C14—H19110.7
C6—C5—C4119.23 (14)H18—C14—H19108.8
NA1—B1—C1—C245.4 (3)F4—C5—C6—C1179.69 (13)
NA1i—B1—C1—C2172.01 (11)C4—C5—C6—C10.3 (2)
NA1—B1—C1—C6133.6 (2)C2—C1—C6—F5179.83 (12)
NA1i—B1—C1—C67.05 (16)B1—C1—C6—F51.0 (2)
C6—C1—C2—F1178.94 (12)C2—C1—C6—C50.9 (2)
B1—C1—C2—F11.9 (2)B1—C1—C6—C5178.22 (14)
C6—C1—C2—C31.3 (2)C5—C6—F5—NA1i169.12 (10)
B1—C1—C2—C3177.85 (14)C1—C6—F5—NA1i10.18 (17)
F1—C2—C3—F20.3 (2)C10—O1—C7—C835.26 (19)
C1—C2—C3—F2179.89 (13)NA1—O1—C7—C8128.73 (14)
F1—C2—C3—C4179.20 (13)O1—C7—C8—C919.7 (2)
C1—C2—C3—C41.0 (2)C7—C8—C9—C102.2 (2)
F2—C3—C4—F31.6 (2)C7—O1—C10—C936.82 (18)
C2—C3—C4—F3179.52 (13)NA1—O1—C10—C9126.48 (13)
F2—C3—C4—C5179.17 (13)C8—C9—C10—O123.29 (19)
C2—C3—C4—C50.3 (2)C14—O2—C11—C1239.54 (17)
F3—C4—C5—F40.8 (2)NA1—O2—C11—C12155.60 (12)
C3—C4—C5—F4179.93 (13)O2—C11—C12—C1324.77 (18)
F3—C4—C5—C6179.21 (13)C11—C12—C13—C141.6 (2)
C3—C4—C5—C60.1 (2)C11—O2—C14—C1338.57 (18)
F4—C5—C6—F50.4 (2)NA1—O2—C14—C13154.06 (11)
C4—C5—C6—F5179.57 (13)C12—C13—C14—O221.94 (19)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The X-ray diffraction measurements were performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

Funding information

Funding for this research was provided by: Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (JSPS) (grant No. 18K14276).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBell, N. A., Shearer, H. M. M. & Spencer, C. B. (1980). J. Chem. Soc. Chem. Commun. pp. 711–712.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationCustelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935–12941.  Web of Science CSD CrossRef CAS Google Scholar
First citationCustelcean, R., Vlassa, M. & Jackson, J. E. (2002). Chem. Eur. J. 8, 302–308.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEaborn, C., El-Kheli, M. N. A., Hitchcock, P. B. & Smith, J. D. (1984). J. Chem. Soc. Chem. Commun. pp. 1673–1674.  CrossRef Web of Science Google Scholar
First citationFranz, D., Ilkhechi, A. H., Bolte, M., Lerner, H.-W. & Wagner, M. (2011). Eur. J. Inorg. Chem. pp. 5414–5421.  Web of Science CSD CrossRef Google Scholar
First citationKaese, T., Hübner, A., Bolte, M., Lerner, H. W. & Wagner, M. (2016). J. Am. Chem. Soc. 138, 6224–6233.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnizek, J. & Nöth, H. (2000). J. Organomet. Chem. 614–615, 168–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagano, J. & Dunetz, J. R. (2012). Org. Process Res. Dev. 16, 1156–1184.  Web of Science CrossRef CAS Google Scholar
First citationMolitor, S. & Gessner, V. H. (2013). Chem. Eur. J. 19, 11858–11862.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMurosaki, T., Kaneda, S., Maruhashi, R., Sadamori, K., Shoji, Y., Tamao, K., Hashizume, D., Hayakawa, N. & Matsuo, T. (2016). Organometallics, 35, 3397–3405.  Web of Science CSD CrossRef CAS Google Scholar
First citationNöth, H. & Warchhold, M. (2004). Eur. J. Inorg. Chem. pp. 1115–1124.  Google Scholar
First citationPitchumony, T. S., Spingler, B., Motterlini, R. & Alberto, R. (2010). Org. Biomol. Chem. 8, 4849–4854.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPospiech, S., Bolte, M., Lerner, H.-W. & Wagner, M. (2015). Chem. Eur. J. 21, 8229–8236.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeven, Ö., Bolte, M., Lerner, H.-W. & Wanger, M. (2014). Organometallics, 33, 1291–1299.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThalangamaarachchige, V. D., Silva, N. J., Unruh, D. K., Aquino, A. J. A. & Krempner, C. (2019). Tetrahedron, 75, 1861–1864.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds