metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {6,6′-dihy­dr­oxy-2,2′-[imino­bis­­(propane-1,3-diyl­nitrilo­methanylyl­­idene)]diphenolato-κ5O1,N,N′,N′′,O1′}copper(II)

aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India, bFaculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan, and cMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz-1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: shabanachem0711@gmail.com, s.kumar@msn.com

Edited by H. Ishida, Okayama University, Japan (Received 4 October 2015; accepted 17 October 2015; online 24 October 2015)

The title compound, [Cu(C20H23N3O4)], crystallizes in the space group Cc with two independent mol­ecules in the asymmetric unit. The CuII atoms are each coordinated by the penta­dentate Schiff base ligand in a distorted trigonal bipyramidal N3O2 geometry. The equatorial plane is formed by the two phenolic O atoms and the amine N atom, while the axial positions are occupied by the two imine N atoms. In the crystal, the two independent mol­ecules are each connected into a column along the b axis through inter­molecular O—H⋯O hydrogen bonds. The two independent columns are further linked through an N—H⋯O hydrogen bond, forming a double-column structure.

1. Related literature

For characteristic properties of Schiff bases and their metal complexes, see: Averseng et al. (2001[Averseng, F., Lacroix, P. J., Malfant, I., Périssé, N. & Lepetit, C. (2001). Inorg. Chem. 40, 3797-3804.]); Sanmartin et al. (2000[Sanmartin, J., Bermejo, M. R., Deide, A. M. G., Mareiro, M., Lage, C. & Filho, A. J. C. (2000). Polyhedron, 19, 185-192.]); Brown & Wardeska (1982[Brown, J. C. & Wardeska, J. G. (1982). Inorg. Chem. 21, 1530-1534.]); Lan et al. (2009[Lan, Y., Novitchi, G., Clerac, R., Tang, J. K., Madhu, N. T., Hewitt, I. J., Anson, C. E., Brooker, S. & Powell, A. K. (2009). Dalton Trans. pp. 1721-1727.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C20H23N3O4)]

  • Mr = 432.95

  • Monoclinic C c

  • a = 28.4747 (8) Å

  • b = 6.186 (5) Å

  • c = 22.925 (12) Å

  • β = 114.792 (11)°

  • V = 3666 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 100 K

  • 0.07 × 0.06 × 0.02 mm

2.2. Data collection

  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (SADABS; Bruker, 2006[Bruker (2006). DATCOL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.974

  • 26717 measured reflections

  • 12062 independent reflections

  • 11048 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.182

  • S = 1.25

  • 12062 reflections

  • 510 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 1.82 e Å−3

  • Δρmin = −1.65 e Å−3

  • Absolute structure: Parsons & Flack (2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.]), 5103 Friedel pairs

  • Absolute structure parameter: 0.10 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 1.95 2.699 (8) 147
O4—H4A⋯O1ii 0.84 1.90 2.686 (8) 156
O6—H6⋯O7i 0.84 2.08 2.758 (8) 137
O6—H6⋯O8i 0.84 2.40 3.101 (8) 142
O8—H8⋯O5ii 0.84 2.05 2.806 (7) 149
N2—H2A⋯O6 1.00 2.36 3.163 (8) 137
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: DATCOL (Bruker, 2006[Bruker (2006). DATCOL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Schiff bases and their coordination compounds play an important role in metal coordination chemistry. A large number of Schiff bases and their metal complexes have been synthesized and extensively studied because they have some characteristic properties such as manifestations of novel structures, thermal stability, relevant biological properties, high synthesis flexibility and medicinal utility (Brown & Wardeska, 1982; Averseng et al., 2001; Sanmartin et al., 2000; Lan et al., 2009).

The title compound crystallizes in the non-centrosymmetric monoclinic space group Cc with two molecules in the asymmetric unit. Since the two independent molecules have a similar geometry, we restrict the following discussion to one molecule. The Schiff ligand coordinates the metal ions as a pentadentate [ONNNO] chelating ligand through the phenolic O atoms (O1 and O2) and one aminic (N2) and two iminic N atoms (N1 and N3). The equatorial plane of the trigonal bipyramidal geometry is formed by atoms N2, O1 and O3. The Cu1—N2 [2.226 (6) Å] bond is significantly longer than the other two Cu1—O1 [2.074 (5) Å] and Cu1—O3 [2.049 (5) Å]. The two axial bond lengths are almost equal [Cu1—N1 = 1.939 (6) and Cu1—N3 = 1.942 (6) Å]. Deviation from regular trigonal bipyramid is evident from the bond angles of N2—Cu1—O1 = 113.3 (2)°, N2—Cu1—O3 = 125.3 (2)° and O1—Cu1—O3 = 121.1 (2)°. The terminal OH groups of the ligands are uncoordinated.

Related literature top

For characteristic properties of Schiff bases and their metal complexes, see: Averseng et al. (2001); Sanmartin et al. (2000); Brown & Wardeska (1982); Lan et al. (2009).

Experimental top

To a stirred solution of the Schiff base H4L (0.4 mmol, 0.148 mg) dissolved in (20 ml EtOH and 20 ml CH3CN) were added Cu(OAc)2.H2O (0.4 mmol, 0.08 g) followed by Et3N (0.12 mmol, 0.16 ml). The resulting mixture was refluxed for 5–6 h. The reaction mixture was filtered. Dark colored crystals were obtained after 2–5 days by slow diffusion of diethyl ether into the solution.

Refinement top

The structure was refined as an inversion twin. The anisotropic displacement parameters of atom C28 were restrained towards isotropy with a standard deviation of 0.005 Å. H atoms were placed at geometrically calculated positions with O—H = 0.84 Å, N—H = 1.00 Å, C(sp2)—H = 0.95 Å and C(sp3)—H = 0.99 Å and refined with a riding model. Uiso(H) was set 1.2 times Ueq(C, N) or 1.5 times Ueq(O). The initial torsion angles of the hydroxy groups were determined via circular difference Fourier syntheses and subsequently refined while maintaining a tetrahedral angle at the O atom.

Structure description top

Schiff bases and their coordination compounds play an important role in metal coordination chemistry. A large number of Schiff bases and their metal complexes have been synthesized and extensively studied because they have some characteristic properties such as manifestations of novel structures, thermal stability, relevant biological properties, high synthesis flexibility and medicinal utility (Brown & Wardeska, 1982; Averseng et al., 2001; Sanmartin et al., 2000; Lan et al., 2009).

The title compound crystallizes in the non-centrosymmetric monoclinic space group Cc with two molecules in the asymmetric unit. Since the two independent molecules have a similar geometry, we restrict the following discussion to one molecule. The Schiff ligand coordinates the metal ions as a pentadentate [ONNNO] chelating ligand through the phenolic O atoms (O1 and O2) and one aminic (N2) and two iminic N atoms (N1 and N3). The equatorial plane of the trigonal bipyramidal geometry is formed by atoms N2, O1 and O3. The Cu1—N2 [2.226 (6) Å] bond is significantly longer than the other two Cu1—O1 [2.074 (5) Å] and Cu1—O3 [2.049 (5) Å]. The two axial bond lengths are almost equal [Cu1—N1 = 1.939 (6) and Cu1—N3 = 1.942 (6) Å]. Deviation from regular trigonal bipyramid is evident from the bond angles of N2—Cu1—O1 = 113.3 (2)°, N2—Cu1—O3 = 125.3 (2)° and O1—Cu1—O3 = 121.1 (2)°. The terminal OH groups of the ligands are uncoordinated.

For characteristic properties of Schiff bases and their metal complexes, see: Averseng et al. (2001); Sanmartin et al. (2000); Brown & Wardeska (1982); Lan et al. (2009).

Computing details top

Data collection: DATCOL (Bruker, 2006); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. Carbon-bound H atoms are omitted for clarity. The intermolecular N—H···O hydrogen bond is illustrated by a dashed line.
[Figure 2] Fig. 2. Intermolecular O—H···O hydrogen bonds between symmetry-related molecules along the crystallographic b axis.
{6,6'-Dihydroxy-2,2'-[iminobis(propane-1,3-diylnitrilomethanylylidene)]diphenolato-κ5O1,N,N',N'',O1'}copper(II) top
Crystal data top
[Cu(C20H23N3O4)]F(000) = 1800
Mr = 432.95Dx = 1.569 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 28.4747 (8) ÅCell parameters from 32601 reflections
b = 6.186 (5) Åθ = 2.9–33.1°
c = 22.925 (12) ŵ = 1.23 mm1
β = 114.792 (11)°T = 100 K
V = 3666 (3) Å3Prism, grey
Z = 80.07 × 0.06 × 0.02 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
12062 independent reflections
Radiation source: 0.2 x 2mm2 focus rotating anode11048 reflections with I > 2σ(I)
Incoatec Helios focusing multilayer optics monochromatorRint = 0.050
Detector resolution: 18.02 pixels mm-1θmax = 33.1°, θmin = 2.9°
φ and ω scansh = 4343
Absorption correction: gaussian
(SADABS; Bruker, 2006)
k = 99
Tmin = 0.904, Tmax = 0.974l = 3534
26717 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + 45.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
12062 reflectionsΔρmax = 1.82 e Å3
510 parametersΔρmin = 1.65 e Å3
8 restraintsAbsolute structure: Parsons & Flack (2004), 5103 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (2)
Crystal data top
[Cu(C20H23N3O4)]V = 3666 (3) Å3
Mr = 432.95Z = 8
Monoclinic, CcMo Kα radiation
a = 28.4747 (8) ŵ = 1.23 mm1
b = 6.186 (5) ÅT = 100 K
c = 22.925 (12) Å0.07 × 0.06 × 0.02 mm
β = 114.792 (11)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
12062 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2006)
11048 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.974Rint = 0.050
26717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + 45.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.25Δρmax = 1.82 e Å3
12062 reflectionsΔρmin = 1.65 e Å3
510 parametersAbsolute structure: Parsons & Flack (2004), 5103 Friedel pairs
8 restraintsAbsolute structure parameter: 0.10 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60730 (3)0.75260 (14)0.60326 (4)0.01256 (14)
Cu20.38464 (3)0.00703 (14)0.28880 (4)0.01287 (15)
C10.6659 (2)1.0247 (11)0.7213 (3)0.0136 (11)
C20.6982 (3)1.2023 (12)0.7533 (4)0.0185 (14)
C30.7240 (3)1.2116 (14)0.8196 (4)0.0229 (16)
H30.74561.33180.83930.027*
C40.7188 (3)1.0482 (14)0.8576 (4)0.0237 (16)
H40.73721.05500.90300.028*
C50.6867 (3)0.8753 (14)0.8294 (3)0.0208 (14)
H50.68230.76510.85560.025*
C60.6601 (2)0.8606 (12)0.7615 (3)0.0156 (12)
C70.6284 (3)0.6718 (12)0.7375 (3)0.0157 (12)
H70.62490.57830.76840.019*
C80.5699 (3)0.4285 (12)0.6616 (4)0.0178 (12)
H8A0.58040.33040.69910.021*
H8B0.57230.34830.62560.021*
C90.5138 (3)0.5056 (13)0.6422 (4)0.0206 (13)
H9A0.48990.40490.60970.025*
H9B0.50590.49970.68040.025*
C100.5038 (3)0.7342 (13)0.6150 (4)0.0185 (13)
H10A0.46620.76420.59770.022*
H10B0.52170.83790.65030.022*
C110.5012 (3)0.9798 (13)0.5322 (4)0.0229 (15)
H11A0.51361.09620.56480.027*
H11B0.46300.97770.51420.027*
C120.5178 (3)1.0307 (13)0.4787 (4)0.0233 (15)
H12A0.49821.15830.45480.028*
H12B0.50830.90720.44850.028*
C130.5753 (3)1.0757 (12)0.5011 (4)0.0200 (14)
H13A0.58151.13390.46470.024*
H13B0.58621.18670.53540.024*
C140.6344 (3)0.8169 (12)0.4967 (3)0.0185 (13)
H140.63350.90550.46240.022*
C150.6668 (3)0.6281 (13)0.5102 (3)0.0164 (12)
C160.6939 (3)0.5967 (16)0.4708 (3)0.0237 (16)
H160.69180.70400.44020.028*
C170.7225 (3)0.4177 (17)0.4763 (4)0.0278 (19)
H170.74010.39960.44930.033*
C180.7265 (3)0.2608 (15)0.5208 (4)0.0247 (16)
H180.74630.13460.52380.030*
C190.7018 (3)0.2845 (12)0.5615 (4)0.0177 (13)
C200.6714 (2)0.4730 (11)0.5577 (3)0.0138 (11)
C210.3889 (2)0.2648 (11)0.3996 (3)0.0133 (11)
C220.4043 (3)0.4517 (12)0.4402 (3)0.0166 (12)
C230.3904 (3)0.4786 (14)0.4908 (4)0.0211 (14)
H230.40040.60640.51600.025*
C240.3619 (3)0.3216 (15)0.5052 (4)0.0236 (15)
H240.35330.34070.54070.028*
C250.3462 (3)0.1381 (13)0.4678 (4)0.0204 (14)
H250.32670.03060.47750.024*
C260.3591 (2)0.1099 (12)0.4149 (4)0.0151 (12)
C270.3376 (3)0.0816 (12)0.3766 (4)0.0172 (12)
H270.31750.17210.39070.021*
C280.3169 (2)0.3457 (12)0.2958 (4)0.0190 (13)
H28A0.30150.41360.32280.023*
H28B0.34290.44680.29330.023*
C290.2746 (3)0.3076 (13)0.2284 (5)0.0253 (17)
H29A0.25040.19680.23090.030*
H29B0.25480.44330.21290.030*
C300.2949 (3)0.2340 (14)0.1794 (4)0.0264 (17)
H30A0.32000.34270.17810.032*
H30B0.26570.23030.13640.032*
C310.3389 (3)0.0262 (13)0.1427 (4)0.0223 (15)
H31A0.31020.00080.10000.027*
H31B0.36690.07700.14760.027*
C320.3589 (4)0.2539 (14)0.1445 (4)0.0280 (17)
H32A0.32930.35540.13050.034*
H32B0.37460.26460.11330.034*
C330.3994 (3)0.3251 (12)0.2112 (4)0.0178 (13)
H33A0.42540.42030.20600.021*
H33B0.38220.40780.23370.021*
C340.4716 (3)0.0908 (11)0.2587 (3)0.0145 (11)
H340.48810.19100.24200.017*
C350.5015 (2)0.0938 (11)0.2915 (3)0.0125 (11)
C360.5534 (3)0.1017 (12)0.2977 (3)0.0161 (12)
H360.56600.01480.28140.019*
C370.5855 (3)0.2712 (13)0.3264 (4)0.0176 (13)
H370.61990.27320.33000.021*
C380.5663 (3)0.4425 (12)0.3503 (3)0.0160 (12)
H380.58820.56200.37010.019*
C390.5161 (2)0.4401 (10)0.3453 (3)0.0117 (10)
C400.4818 (2)0.2639 (10)0.3173 (3)0.0116 (10)
N10.6064 (2)0.8803 (10)0.5256 (3)0.0152 (11)
N20.5213 (2)0.7704 (10)0.5638 (3)0.0152 (10)
H2A0.50660.65330.53110.018*
N30.6041 (2)0.6173 (10)0.6779 (3)0.0140 (10)
N40.3424 (2)0.1445 (10)0.3259 (3)0.0147 (11)
N50.3203 (2)0.0198 (11)0.1927 (3)0.0196 (12)
H5A0.29420.09220.19010.023*
N60.4254 (2)0.1346 (10)0.2496 (3)0.0139 (10)
O10.64396 (19)1.0198 (8)0.6580 (2)0.0154 (9)
O20.7072 (2)1.3649 (9)0.7190 (3)0.0256 (13)
H20.68001.39170.68620.038*
O30.64872 (19)0.4898 (8)0.5970 (2)0.0150 (9)
O40.7093 (2)0.1270 (9)0.6058 (3)0.0232 (11)
H4A0.68390.12260.61530.035*
O50.40226 (19)0.2469 (8)0.3519 (2)0.0144 (8)
O60.4346 (2)0.6078 (9)0.4317 (3)0.0203 (10)
H60.44060.57670.39980.030*
O70.43578 (18)0.2675 (8)0.3168 (2)0.0147 (9)
O80.5012 (2)0.6116 (9)0.3707 (3)0.0177 (10)
H80.46920.60480.36010.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0175 (3)0.0105 (3)0.0090 (3)0.0002 (3)0.0049 (2)0.0018 (3)
Cu20.0123 (3)0.0117 (3)0.0148 (3)0.0012 (3)0.0059 (2)0.0003 (3)
C10.013 (2)0.011 (3)0.013 (3)0.004 (2)0.002 (2)0.002 (2)
C20.015 (3)0.013 (3)0.018 (3)0.002 (2)0.003 (2)0.004 (2)
C30.016 (3)0.025 (4)0.021 (3)0.006 (3)0.001 (2)0.008 (3)
C40.024 (3)0.031 (4)0.011 (3)0.008 (3)0.002 (2)0.005 (3)
C50.019 (3)0.029 (4)0.011 (3)0.008 (3)0.003 (2)0.001 (3)
C60.012 (3)0.022 (3)0.013 (3)0.007 (2)0.005 (2)0.001 (2)
C70.017 (3)0.019 (3)0.014 (3)0.004 (2)0.010 (2)0.004 (2)
C80.024 (3)0.018 (3)0.014 (3)0.002 (2)0.010 (2)0.001 (2)
C90.022 (3)0.021 (3)0.022 (3)0.006 (3)0.012 (3)0.001 (3)
C100.017 (3)0.018 (3)0.021 (3)0.002 (2)0.008 (2)0.004 (3)
C110.019 (3)0.015 (3)0.026 (4)0.003 (3)0.001 (3)0.002 (3)
C120.023 (3)0.019 (4)0.016 (3)0.000 (3)0.004 (2)0.004 (3)
C130.023 (3)0.015 (3)0.018 (3)0.002 (2)0.005 (3)0.006 (3)
C140.023 (3)0.017 (3)0.009 (3)0.008 (2)0.001 (2)0.002 (2)
C150.014 (3)0.026 (3)0.008 (3)0.010 (2)0.004 (2)0.003 (2)
C160.015 (3)0.049 (5)0.010 (3)0.009 (3)0.007 (2)0.003 (3)
C170.015 (3)0.052 (6)0.016 (3)0.008 (3)0.007 (2)0.014 (3)
C180.015 (3)0.034 (4)0.026 (4)0.006 (3)0.008 (3)0.014 (3)
C190.013 (3)0.017 (3)0.023 (3)0.002 (2)0.008 (2)0.006 (3)
C200.011 (2)0.014 (3)0.015 (3)0.003 (2)0.005 (2)0.003 (2)
C210.012 (2)0.013 (3)0.014 (3)0.002 (2)0.004 (2)0.001 (2)
C220.018 (3)0.016 (3)0.012 (3)0.004 (2)0.003 (2)0.000 (2)
C230.021 (3)0.027 (4)0.015 (3)0.007 (3)0.007 (2)0.006 (3)
C240.020 (3)0.036 (4)0.016 (3)0.005 (3)0.009 (3)0.003 (3)
C250.018 (3)0.025 (4)0.020 (3)0.004 (3)0.010 (2)0.002 (3)
C260.007 (2)0.018 (3)0.022 (3)0.001 (2)0.008 (2)0.002 (2)
C270.013 (3)0.016 (3)0.024 (3)0.003 (2)0.009 (2)0.000 (3)
C280.009 (2)0.018 (3)0.034 (4)0.005 (2)0.013 (2)0.005 (3)
C290.010 (3)0.021 (3)0.042 (5)0.005 (2)0.007 (3)0.013 (3)
C300.021 (3)0.020 (4)0.026 (4)0.001 (3)0.002 (3)0.008 (3)
C310.028 (3)0.021 (4)0.012 (3)0.007 (3)0.002 (2)0.001 (3)
C320.041 (4)0.023 (4)0.016 (3)0.011 (3)0.007 (3)0.006 (3)
C330.018 (3)0.014 (3)0.022 (3)0.004 (2)0.009 (3)0.001 (2)
C340.016 (3)0.013 (3)0.017 (3)0.000 (2)0.008 (2)0.002 (2)
C350.010 (2)0.016 (3)0.015 (3)0.004 (2)0.008 (2)0.002 (2)
C360.015 (3)0.019 (3)0.017 (3)0.005 (2)0.010 (2)0.005 (2)
C370.014 (3)0.022 (3)0.019 (3)0.001 (2)0.008 (2)0.004 (3)
C380.015 (3)0.017 (3)0.015 (3)0.003 (2)0.004 (2)0.002 (2)
C390.009 (2)0.010 (2)0.012 (3)0.0016 (18)0.0006 (19)0.002 (2)
C400.014 (2)0.009 (2)0.010 (2)0.001 (2)0.0035 (19)0.001 (2)
N10.018 (2)0.015 (3)0.011 (2)0.004 (2)0.0035 (19)0.003 (2)
N20.018 (2)0.011 (2)0.014 (2)0.0024 (19)0.0043 (19)0.001 (2)
N30.014 (2)0.017 (3)0.011 (2)0.001 (2)0.0052 (19)0.005 (2)
N40.010 (2)0.015 (3)0.021 (3)0.0021 (19)0.009 (2)0.001 (2)
N50.017 (2)0.015 (3)0.017 (3)0.006 (2)0.002 (2)0.004 (2)
N60.014 (2)0.014 (3)0.013 (2)0.0000 (19)0.0049 (19)0.002 (2)
O10.022 (2)0.010 (2)0.0090 (19)0.0003 (17)0.0011 (16)0.0011 (16)
O20.025 (3)0.012 (2)0.022 (3)0.001 (2)0.007 (2)0.000 (2)
O30.020 (2)0.012 (2)0.015 (2)0.0001 (18)0.0093 (17)0.0026 (17)
O40.021 (2)0.015 (2)0.036 (3)0.0031 (19)0.014 (2)0.001 (2)
O50.019 (2)0.013 (2)0.013 (2)0.0039 (17)0.0079 (16)0.0012 (17)
O60.025 (2)0.020 (3)0.017 (2)0.009 (2)0.009 (2)0.004 (2)
O70.0134 (19)0.013 (2)0.018 (2)0.0013 (16)0.0073 (16)0.0032 (18)
O80.015 (2)0.014 (2)0.021 (3)0.0033 (17)0.0051 (18)0.0062 (19)
Geometric parameters (Å, º) top
Cu1—N11.939 (6)C19—C201.433 (10)
Cu1—N31.942 (6)C20—O31.314 (8)
Cu1—O32.049 (5)C21—O51.305 (8)
Cu1—O12.074 (5)C21—C261.417 (9)
Cu1—N22.228 (6)C21—C221.434 (10)
Cu2—N41.936 (6)C22—O61.362 (9)
Cu2—N61.948 (6)C22—C231.384 (11)
Cu2—O52.050 (5)C23—C241.392 (11)
Cu2—O72.084 (5)C23—H230.9500
Cu2—N52.198 (6)C24—C251.379 (12)
C1—O11.316 (8)C24—H240.9500
C1—C21.423 (10)C25—C261.419 (10)
C1—C61.428 (10)C25—H250.9500
C2—O21.366 (10)C26—C271.449 (10)
C2—C31.385 (11)C27—N41.286 (10)
C3—C41.383 (13)C27—H270.9500
C3—H30.9500C28—N41.460 (9)
C4—C51.379 (12)C28—C291.527 (12)
C4—H40.9500C28—H28A0.9900
C5—C61.420 (10)C28—H28B0.9900
C5—H50.9500C29—C301.533 (14)
C6—C71.437 (11)C29—H29A0.9900
C7—N31.290 (9)C29—H29B0.9900
C7—H70.9500C30—N51.479 (11)
C8—N31.466 (10)C30—H30A0.9900
C8—C91.542 (11)C30—H30B0.9900
C8—H8A0.9900C31—N51.477 (11)
C8—H8B0.9900C31—C321.514 (13)
C9—C101.524 (11)C31—H31A0.9900
C9—H9A0.9900C31—H31B0.9900
C9—H9B0.9900C32—C331.543 (11)
C10—N21.471 (10)C32—H32A0.9900
C10—H10A0.9900C32—H32B0.9900
C10—H10B0.9900C33—N61.471 (9)
C11—N21.478 (10)C33—H33A0.9900
C11—C121.521 (13)C33—H33B0.9900
C11—H11A0.9900C34—N61.274 (8)
C11—H11B0.9900C34—C351.434 (10)
C12—C131.522 (11)C34—H340.9500
C12—H12A0.9900C35—C361.425 (9)
C12—H12B0.9900C35—C401.431 (9)
C13—N11.464 (10)C36—C371.365 (11)
C13—H13A0.9900C36—H360.9500
C13—H13B0.9900C37—C381.403 (11)
C14—N11.294 (10)C37—H370.9500
C14—C151.438 (11)C38—C391.386 (9)
C14—H140.9500C38—H380.9500
C15—C201.415 (10)C39—O81.361 (8)
C15—C161.428 (10)C39—C401.425 (9)
C16—C171.349 (14)C40—O71.306 (8)
C16—H160.9500N2—H2A1.0000
C17—C181.379 (14)N5—H5A1.0000
C17—H170.9500O2—H20.8400
C18—C191.391 (11)O4—H4A0.8400
C18—H180.9500O6—H60.8400
C19—O41.357 (10)O8—H80.8400
N1—Cu1—N3176.5 (3)C22—C23—C24121.1 (7)
N1—Cu1—O392.6 (2)C22—C23—H23119.5
N3—Cu1—O387.8 (2)C24—C23—H23119.5
N1—Cu1—O192.4 (2)C25—C24—C23119.7 (7)
N3—Cu1—O190.4 (2)C25—C24—H24120.1
O3—Cu1—O1121.1 (2)C23—C24—H24120.1
N1—Cu1—N291.0 (2)C24—C25—C26120.0 (7)
N3—Cu1—N285.9 (2)C24—C25—H25120.0
O3—Cu1—N2125.3 (2)C26—C25—H25120.0
O1—Cu1—N2113.3 (2)C21—C26—C25121.7 (7)
N4—Cu2—N6178.4 (3)C21—C26—C27123.2 (7)
N4—Cu2—O592.3 (2)C25—C26—C27115.1 (6)
N6—Cu2—O587.9 (2)N4—C27—C26128.1 (7)
N4—Cu2—O790.4 (2)N4—C27—H27115.9
N6—Cu2—O790.9 (2)C26—C27—H27115.9
O5—Cu2—O7116.2 (2)N4—C28—C29111.8 (6)
N4—Cu2—N590.8 (3)N4—C28—H28A109.3
N6—Cu2—N587.7 (3)C29—C28—H28A109.3
O5—Cu2—N5126.1 (2)N4—C28—H28B109.3
O7—Cu2—N5117.5 (2)C29—C28—H28B109.3
O1—C1—C2119.5 (7)H28A—C28—H28B107.9
O1—C1—C6124.4 (6)C28—C29—C30114.1 (6)
C2—C1—C6116.1 (6)C28—C29—H29A108.7
O2—C2—C3117.4 (7)C30—C29—H29A108.7
O2—C2—C1120.5 (6)C28—C29—H29B108.7
C3—C2—C1122.0 (8)C30—C29—H29B108.7
C4—C3—C2120.9 (7)H29A—C29—H29B107.6
C4—C3—H3119.5N5—C30—C29114.7 (7)
C2—C3—H3119.5N5—C30—H30A108.6
C5—C4—C3119.8 (7)C29—C30—H30A108.6
C5—C4—H4120.1N5—C30—H30B108.6
C3—C4—H4120.1C29—C30—H30B108.6
C4—C5—C6120.5 (8)H30A—C30—H30B107.6
C4—C5—H5119.7N5—C31—C32114.3 (7)
C6—C5—H5119.7N5—C31—H31A108.7
C5—C6—C1120.6 (7)C32—C31—H31A108.7
C5—C6—C7115.7 (7)N5—C31—H31B108.7
C1—C6—C7123.7 (6)C32—C31—H31B108.7
N3—C7—C6126.1 (7)H31A—C31—H31B107.6
N3—C7—H7116.9C31—C32—C33114.1 (7)
C6—C7—H7116.9C31—C32—H32A108.7
N3—C8—C9109.0 (6)C33—C32—H32A108.7
N3—C8—H8A109.9C31—C32—H32B108.7
C9—C8—H8A109.9C33—C32—H32B108.7
N3—C8—H8B109.9H32A—C32—H32B107.6
C9—C8—H8B109.9N6—C33—C32110.1 (6)
H8A—C8—H8B108.3N6—C33—H33A109.6
C10—C9—C8113.4 (6)C32—C33—H33A109.6
C10—C9—H9A108.9N6—C33—H33B109.6
C8—C9—H9A108.9C32—C33—H33B109.6
C10—C9—H9B108.9H33A—C33—H33B108.2
C8—C9—H9B108.9N6—C34—C35126.8 (6)
H9A—C9—H9B107.7N6—C34—H34116.6
N2—C10—C9113.6 (6)C35—C34—H34116.6
N2—C10—H10A108.8C36—C35—C40120.2 (6)
C9—C10—H10A108.8C36—C35—C34116.1 (6)
N2—C10—H10B108.8C40—C35—C34123.6 (6)
C9—C10—H10B108.8C37—C36—C35122.1 (7)
H10A—C10—H10B107.7C37—C36—H36118.9
N2—C11—C12112.9 (7)C35—C36—H36118.9
N2—C11—H11A109.0C36—C37—C38118.5 (6)
C12—C11—H11A109.0C36—C37—H37120.8
N2—C11—H11B109.0C38—C37—H37120.8
C12—C11—H11B109.0C39—C38—C37121.0 (6)
H11A—C11—H11B107.8C39—C38—H38119.5
C11—C12—C13114.9 (6)C37—C38—H38119.5
C11—C12—H12A108.6O8—C39—C38117.0 (6)
C13—C12—H12A108.6O8—C39—C40120.7 (6)
C11—C12—H12B108.6C38—C39—C40122.3 (6)
C13—C12—H12B108.6O7—C40—C39119.2 (6)
H12A—C12—H12B107.5O7—C40—C35125.1 (6)
N1—C13—C12111.7 (6)C39—C40—C35115.8 (6)
N1—C13—H13A109.3C14—N1—C13117.3 (6)
C12—C13—H13A109.3C14—N1—Cu1125.0 (5)
N1—C13—H13B109.3C13—N1—Cu1117.5 (5)
C12—C13—H13B109.3C10—N2—C11109.4 (6)
H13A—C13—H13B107.9C10—N2—Cu1110.6 (4)
N1—C14—C15127.7 (7)C11—N2—Cu1112.1 (4)
N1—C14—H14116.1C10—N2—H2A108.2
C15—C14—H14116.1C11—N2—H2A108.2
C20—C15—C16119.7 (7)Cu1—N2—H2A108.2
C20—C15—C14124.1 (7)C7—N3—C8118.8 (6)
C16—C15—C14116.2 (7)C7—N3—Cu1128.2 (5)
C17—C16—C15121.3 (8)C8—N3—Cu1113.0 (5)
C17—C16—H16119.4C27—N4—C28117.7 (6)
C15—C16—H16119.4C27—N4—Cu2125.8 (5)
C16—C17—C18120.3 (7)C28—N4—Cu2116.4 (5)
C16—C17—H17119.8C31—N5—C30108.4 (6)
C18—C17—H17119.8C31—N5—Cu2110.6 (4)
C17—C18—C19121.0 (8)C30—N5—Cu2111.6 (5)
C17—C18—H18119.5C31—N5—H5A108.7
C19—C18—H18119.5C30—N5—H5A108.7
O4—C19—C18117.3 (7)Cu2—N5—H5A108.7
O4—C19—C20122.1 (7)C34—N6—C33119.6 (6)
C18—C19—C20120.5 (8)C34—N6—Cu2127.1 (5)
O3—C20—C15124.1 (6)C33—N6—Cu2113.0 (4)
O3—C20—C19118.7 (6)C1—O1—Cu1124.8 (4)
C15—C20—C19117.2 (7)C2—O2—H2109.5
O5—C21—C26124.4 (6)C20—O3—Cu1125.0 (4)
O5—C21—C22119.7 (6)C19—O4—H4A109.5
C26—C21—C22115.9 (6)C21—O5—Cu2125.8 (4)
O6—C22—C23117.1 (7)C22—O6—H6109.5
O6—C22—C21121.3 (7)C40—O7—Cu2123.9 (4)
C23—C22—C21121.6 (7)C39—O8—H8109.5
O1—C1—C2—O21.2 (10)N4—C28—C29—C3067.5 (8)
C6—C1—C2—O2178.3 (6)C28—C29—C30—N565.0 (9)
O1—C1—C2—C3177.2 (7)N5—C31—C32—C3351.3 (9)
C6—C1—C2—C32.4 (10)C31—C32—C33—N624.4 (10)
O2—C2—C3—C4177.0 (7)N6—C34—C35—C36177.5 (7)
C1—C2—C3—C40.9 (12)N6—C34—C35—C402.5 (12)
C2—C3—C4—C51.3 (12)C40—C35—C36—C371.8 (10)
C3—C4—C5—C61.8 (11)C34—C35—C36—C37178.2 (7)
C4—C5—C6—C10.3 (10)C35—C36—C37—C380.1 (11)
C4—C5—C6—C7179.0 (7)C36—C37—C38—C390.3 (11)
O1—C1—C6—C5177.7 (6)C37—C38—C39—O8179.1 (6)
C2—C1—C6—C51.8 (9)C37—C38—C39—C401.4 (10)
O1—C1—C6—C71.5 (10)O8—C39—C40—O70.8 (9)
C2—C1—C6—C7179.0 (6)C38—C39—C40—O7176.9 (6)
C5—C6—C7—N3174.3 (7)O8—C39—C40—C35179.4 (6)
C1—C6—C7—N34.9 (11)C38—C39—C40—C353.0 (9)
N3—C8—C9—C1026.9 (8)C36—C35—C40—O7176.7 (6)
C8—C9—C10—N250.2 (8)C34—C35—C40—O73.4 (11)
N2—C11—C12—C1368.3 (9)C36—C35—C40—C393.2 (9)
C11—C12—C13—N169.7 (9)C34—C35—C40—C39176.8 (6)
N1—C14—C15—C202.6 (11)C15—C14—N1—C13178.0 (6)
N1—C14—C15—C16179.7 (7)C15—C14—N1—Cu18.0 (10)
C20—C15—C16—C172.5 (10)C12—C13—N1—C14119.7 (7)
C14—C15—C16—C17175.4 (7)C12—C13—N1—Cu165.8 (7)
C15—C16—C17—C180.5 (11)C9—C10—N2—C11169.2 (6)
C16—C17—C18—C190.9 (11)C9—C10—N2—Cu166.8 (6)
C17—C18—C19—O4177.3 (7)C12—C11—N2—C10179.7 (6)
C17—C18—C19—C200.3 (11)C12—C11—N2—Cu156.7 (7)
C16—C15—C20—O3178.6 (6)C6—C7—N3—C8174.8 (6)
C14—C15—C20—O33.7 (10)C6—C7—N3—Cu16.3 (10)
C16—C15—C20—C192.9 (9)C9—C8—N3—C796.8 (7)
C14—C15—C20—C19174.7 (6)C9—C8—N3—Cu184.1 (6)
O4—C19—C20—O32.4 (10)C26—C27—N4—C28179.8 (7)
C18—C19—C20—O3179.8 (6)C26—C27—N4—Cu24.6 (11)
O4—C19—C20—C15179.0 (6)C29—C28—N4—C27115.9 (8)
C18—C19—C20—C151.6 (10)C29—C28—N4—Cu268.4 (6)
O5—C21—C22—O62.7 (10)C32—C31—N5—C30171.7 (6)
C26—C21—C22—O6177.6 (6)C32—C31—N5—Cu265.7 (7)
O5—C21—C22—C23179.1 (7)C29—C30—N5—C31178.6 (6)
C26—C21—C22—C230.7 (10)C29—C30—N5—Cu256.5 (7)
O6—C22—C23—C24176.5 (7)C35—C34—N6—C33176.2 (7)
C21—C22—C23—C241.8 (12)C35—C34—N6—Cu210.9 (11)
C22—C23—C24—C251.5 (12)C32—C33—N6—C34105.9 (8)
C23—C24—C25—C260.1 (12)C32—C33—N6—Cu280.2 (7)
O5—C21—C26—C25179.5 (6)C2—C1—O1—Cu1168.1 (5)
C22—C21—C26—C250.8 (9)C6—C1—O1—Cu111.4 (9)
O5—C21—C26—C273.6 (10)C15—C20—O3—Cu15.4 (9)
C22—C21—C26—C27176.1 (6)C19—C20—O3—Cu1176.2 (4)
C24—C25—C26—C211.1 (11)C26—C21—O5—Cu20.7 (9)
C24—C25—C26—C27176.1 (7)C22—C21—O5—Cu2179.5 (5)
C21—C26—C27—N41.7 (12)C39—C40—O7—Cu2171.7 (4)
C25—C26—C27—N4178.8 (7)C35—C40—O7—Cu28.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.952.699 (8)147
O4—H4A···O1ii0.841.902.686 (8)156
O6—H6···O7i0.842.082.758 (8)137
O6—H6···O8i0.842.403.101 (8)142
O8—H8···O5ii0.842.052.806 (7)149
N2—H2A···O61.002.363.163 (8)137
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.952.699 (8)147
O4—H4A···O1ii0.841.902.686 (8)156
O6—H6···O7i0.842.082.758 (8)137
O6—H6···O8i0.842.403.101 (8)142
O8—H8···O5ii0.842.052.806 (7)149
N2—H2A···O61.002.363.163 (8)137
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported by grants from Department of Science and Technology, SERB, New Delhi, India (SERB/F/815/2014-15). SN thanks the Chairman of the Department of Chemistry, Aligarh Muslim University, India, who facilitated this research.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAverseng, F., Lacroix, P. J., Malfant, I., Périssé, N. & Lepetit, C. (2001). Inorg. Chem. 40, 3797–3804.  CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, J. C. & Wardeska, J. G. (1982). Inorg. Chem. 21, 1530–1534.  CSD CrossRef CAS Google Scholar
First citationBruker (2006). DATCOL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLan, Y., Novitchi, G., Clerac, R., Tang, J. K., Madhu, N. T., Hewitt, I. J., Anson, C. E., Brooker, S. & Powell, A. K. (2009). Dalton Trans. pp. 1721–1727.  CSD CrossRef Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSanmartin, J., Bermejo, M. R., Deide, A. M. G., Mareiro, M., Lage, C. & Filho, A. J. C. (2000). Polyhedron, 19, 185–192.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds