research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (±)-(1SR,5SR,6SR,7SR,10SR,11SR,13SR)-13-benz­yl­oxy-7-meth­­oxy­meth­­oxy-11,15,18,18-tetra­methyl-3-oxo-2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-14,16-dien-10-yl benzoate

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp

Edited by H. Ishida, Okayama University, Japan (Received 2 April 2015; accepted 9 April 2015; online 18 April 2015)

In the title compound, C36H42O8, the dioxolane ring adopts a twist conformation; the two adjacent C atoms deviate alternately from the mean plane of other atoms by −0.287 (5) and 0.174 (5) Å. The cyclo­hexane, cyclo­hexa­diene and central cyclo­octane rings show chair, half-chair and boat–chair forms, respectively. As a result of the strained ring system, the tetra­subsituted olefin in the cyclo­hexa­diene is skewed from an ideal planar structure. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into a sheet parallel to (100). The sheets are further linked by other weak C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

Paclitaxel is a well-known natural diterpenoid containing a taxane framework (tri­cyclo­[9.3.1.03,8]penta­decane; Fig. 1[link]), with a potent anti­tumor activity (Wall & Wani, 1995[Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18-30.]). The complicated structure and significant bioactivity have attracted chemical and medicinal inter­est. Previously, we have reported the crystal structures of the precursor for cyclization to build the taxane skeleton (Oishi, Yamaguchi et al., 2015[Oishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8-11.]), and cyclized compounds (Oishi, Fukaya et al., 2015[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 466-472.]) obtained in the synthetic study of paclitaxel. The title compound was afforded by further manipulation of functional groups of the cyclized compounds (Fukaya et al., 2015[Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2015). In preparation.]).

[Scheme 1]
[Figure 1]
Figure 1
Left: Structure of the tri­cyclo­[9.3.1.03,8]penta­decane (taxane) skeleton; Right: The title compound, indicating the taxane skeleton with red lines. R1 = OC(=O)Ph, R2 = OCH2OCH3, R3 = OCH2Ph.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The dioxolane ring (C1/C2/O20/C21/O22) adopts a twist form with puckering parameters of Q(2) = 0.272 (2) Å and φ(2) = 58.3 (5)°. Atoms C1 and C2 deviate from the mean plane of the other atoms by −0.287 (5) and 0.174 (5) Å, respectively. The cyclo­hexane ring (C3–C8) adopts a chair form with puckering parameters of Q = 0.590 (2) Å, θ = 10.97 (19)°, φ = 294.8 (12)°, Q(2) = 0.110 (2) Å and Q(3) = 0.579 (2) Å. The large substituents (C3—C2, C7—O24 and C8—C9) are in equatorial positions, while the meth­oxy­meth­oxy group (C4–O41) is slightly tilted from the ideal equatorial position with an angle to the Cremer & Pople plane of 59.01 (14)°.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. The purple dotted line indicates the intra­molecular short contact. For clarity, only the H atoms attached to the chiral C atoms and related to the short contact are shown.

The cyclo­hexa­diene ring (C1/C14/C13/C12/C11/C15) adopts a half-boat form with puckering parameters of Q = 0.598 (2) Å, θ = 115.68 (19)°, φ = 131.4 (3)°, Q(2) = 0.539 (2)° and Q(3) = 0.259 (2)°. The tetra­substituted olefin (C10/C15/C11=C12/C13/C18) is skewed from an ideal planar structure as a result of the strain in the fused-ring system, the C10—C11=C12—C18, C15—C11=C12—C13, C10—C11=C12—C13 and C15—C11=C12—C18 torsion angles being −19.5 (3), −18.4 (3), 150.34 (18) and 171.80 (18)°, respectively. The dihedral angle between the C10/C11/C15 and C18/C12/C13 planes is 26.4 (3)°. The other olefin (C12/C13=C14/C1) slightly deviates from planarity with a C12—C13=C14—C1 torsion angle of 9.1 (3)°. The diene moiety shows a C11=C12—C13=C14 torsion angle of −17.7 (3)°. The central cyclo­octane ring (C1–C3/C8–C11/C15) adopts a boat-chair form with puckering parameters of Q = 1.182 (2) Å, Q(2) = 0.897 (2) Å, φ(2) = 179.75 (15)°, Q(3) = 0.627 (2) Å, φ(3) = 2.7 (2)° and Q(4) = 0.441 (2) Å. There is an intra­molecular short contact of 1.98 Å between atoms H2 and H9B (Fig. 2[link]).

3. Supra­molecular features

Inter­molecular C—H⋯O inter­actions (C34—H34A⋯O43i and C38—H38⋯O23ii; Table 1[link] and Fig. 3[link]) lead to the formation of a sheet parallel to (100). These sheets are further linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions (C31—H31⋯O33iii, C2—H2⋯O23iv, C16—H16A⋯O23iv, C19—H19C⋯O23iv and C18—H18CCgv; Table 1[link], Figs. 4[link] and 5[link]) into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C35–C40 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H34A⋯O43i 0.99 2.42 3.377 (3) 163
C38—H38⋯O23ii 0.95 2.44 3.295 (3) 149
C31—H31⋯O33iii 0.95 2.49 3.426 (3) 168
C2—H2⋯O23iv 1.00 2.51 3.433 (3) 153
C16—H16A⋯O23iv 0.98 2.53 3.357 (3) 142
C19—H19C⋯O23iv 0.98 2.54 3.477 (3) 160
C18—H18CCgv 0.98 2.89 3.492 (3) 121
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+2; (v) -x, -y+1, -z+1.
[Figure 3]
Figure 3
A partial packing view showing a sheet parallel to (100). Black dashed lines indicate the inter­molecular C—H⋯O inter­actions. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) x, y + 1, z − 1.]
[Figure 4]
Figure 4
A packing diagram showing the connections between enanti­omers. Black dashed lines indicate the inter­molecular C—H⋯O inter­actions. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (ii) x, y + 1, z − 1; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y, −z + 2.]
[Figure 5]
Figure 5
A packing diagram viewed down the c axis. Black dashed lines indicate the inter­molecular C—H⋯O and C—H⋯π inter­actions. Cg is the centroid of the C35–C40 benzene ring. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (v) −x, −y + 1, −z + 1.]

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), 85 structures containing a tri­cyclo­[9.3.1.03,8]penta­dec-11-ene skeleton, (a), are registered (Fig. 6[link]). These include a large number of paclitaxels and its analogues, and one compound (NEGBOQ; Poujol et al., 1997[Poujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169-5184.]) containing a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­dec-14-ene skeleton, (e), which is a di­hydro derivative for the tetra­cyclic core of the title compound, (d). Another related structure (SOJWOD; Paquette & Zhao, 1998[Paquette, L. A. & Zhao, M. (1998). J. Am. Chem. Soc. 120, 5203-5212.]) containing a tri­cyclo­[9.3.1.03,8]penta­dec-13-ene skeleton, (b), has also been reported.

[Figure 6]
Figure 6
Core structures for database survey; tri­cyclo­[9.3.1.03,8]penta­decane (taxane) and its (a) 11-ene and (b) 13-ene derivatives, (c) bi­cyclo­[5.3.1]undeca-7,9-diene, (d) the tetra­cyclic core of the title compound with ring labelling and (e) its di­hydro derivative and (f) the regioisomer of olefin. The ring-fusion geometries are similar to the title compound in each of the related structures, as cis-AB, trans-BC and trans-BD.

On the other hand, there are two related structures (GOQBET and GOQBIX; Keil et al., 1994[Keil, J. M., Massa, W., Riedel, R., Seitz, G. & Wocadlo, S. (1994). Tetrahedron Lett. 35, 7923-7926.]) containing a bi­cyclo­[5.3.1]undeca-7,9-diene skeleton, (c). Additionally, related tetra­cyclic taxoid (ILIQUP; Ohba et al., 2003[Ohba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476-o1477.]) and cyclic precursors for a taxane framework (NOTROF; Oishi, Yamaguchi et al., 2015[Oishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8-11.]) were obtained in our previous study. Furthermore, the structures of the three related tetra­cyclic compounds have been reported (Oishi, Fukaya et al., 2015[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 466-472.]). There are other crystalline compounds, closely related to the title compound with 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-8,14-diene skeleton, (f) (Nicolaou, Ueno et al., 1995[Nicolaou, K. C., Ueno, H., Liu, J.-J., Nantermet, P. G., Yang, Z., Renaud, J., Paulvannan, K. & Chadha, R. (1995). J. Am. Chem. Soc. 117, 653-659.]; Nicolaou, Yang et al., 1995[Nicolaou, K. C., Yang, Z., Liu, J.-J., Nantermet, P. G., Claiborne, C. F., Renaud, J., Guy, R. K. & Shibayama, K. (1995). J. Am. Chem. Soc. 117, 645-652.]), but they have not been deposited in the CSD.

5. Synthesis and crystallization

The title compound was provided in a synthetic study on paclitaxel (Fukaya et al., 2015[Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2015). In preparation.]). The cyclo­hexa­diene unit (C1/C14/C13/C12/C11/C15) was synthesized according to the reported procedure (Nicolaou, Liu et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]), and coupled with the substituted cyclo­hexane unit (C3–C8) prepared from 3-methyl­anisole by a Shapiro reaction (Nicolaou, Liu et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]). A cyclization reaction followed by further manipulations of the functional groups afforded the title compound. Purification was carried out by silica gel chromatography, and colorless crystals were obtained from a benzene solution under a pentane-saturated atmosphere by slow evaporation at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C36H42O8
Mr 602.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 10.9358 (6), 11.6121 (6), 13.6833 (7)
α, β, γ (°) 72.148 (2), 86.447 (2), 66.766 (2)
V3) 1516.36 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.32 × 0.27 × 0.16
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 27885, 5346, 4078
Rint 0.052
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 1.04
No. of reflections 5346
No. of parameters 402
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(±)-(1SR,5SR,6SR,7SR,10SR,11SR,13SR)-13-Benzyloxy-7-methoxymethoxy-11,15,18,18-tetramethyl-3-oxo-2,4-dioxatetracyclo[12.3.1.01,5.06,11]octadeca-14,16-dien-10-yl benzoate top
Crystal data top
C36H42O8F(000) = 644
Mr = 602.69Dx = 1.320 Mg m3
Triclinic, P1Melting point: 465.2 K
a = 10.9358 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6121 (6) ÅCell parameters from 9212 reflections
c = 13.6833 (7) Åθ = 2.2–25.0°
α = 72.148 (2)°µ = 0.09 mm1
β = 86.447 (2)°T = 90 K
γ = 66.766 (2)°Prism, colorless
V = 1516.36 (14) Å30.32 × 0.27 × 0.16 mm
Z = 2
Data collection top
Bruker D8 Venture
diffractometer
5346 independent reflections
Radiation source: fine-focus sealed tube4078 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.052
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1313
Tmin = 0.97, Tmax = 0.98l = 1616
27885 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.0416P]
where P = (Fo2 + 2Fc2)/3
5346 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. M.p. 462.2–465.2 K (not corrected); IR (film): 2940, 1806, 1716, 1274, 1109, 1043, 713 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.03 (dd, J = 8.3, 1.2 Hz, 2H), 7.61 (tt, J = 7.5, 1.2 Hz, 1H), 7.49 (ddd, J = 8.3, 7.5, 1.7 Hz, 2H), 7.23–7.12 (m, 5H), 6.17 (d, J = 9.2 Hz, 1H), 5.63 (d, J = 9.2 Hz, 1H), 4.94 (d, J = 4.9 Hz, 1H), 4.90 (dd, J = 11.3, 5.2 Hz, 1H), 4.75 (d, J = 6.9 Hz, 1H), 4.65 (dd, J = 11.7, 5.4 Hz, 1H), 4.50 (d, J = 6.9 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.24 (d, J = 12.0 Hz, 1H), 3.70 (ddd, J = 10.5, 10.5, 4.9 Hz, 1H), 3.33 (s, 3H), 2.26 (dddd, J = 13.4, 5.0, 4.9, 2.6 Hz, 1H), 2.12 (dd, J = 15.9, 5.4 Hz, 1H), 2.04 (dd, J = 10.5, 4.9 Hz, 1H), 1.99 (dd, J = 15.9, 11.7 Hz, 1H), 1.91–1.85 (m, 1H), 1.84–1.73 (m, 1H), 1.80 (s, 3H), 1.58 (s, 3H), 1.50 (s, 3H), 1.35–1.24 (m, 1H), 1.18 (s, 3H); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 165.9 (C), 154.6 (C), 138.3 (C), 138.2 (C), 137.8 (C), 135.5 (CH), 133.5 (CH), 130.6 (CH), 130.1 (C), 129.8 (CH), 128.7 (CH), 128.5 (CH), 127.7 (CH), 127.4 (CH), 97.6 (CH2), 93.1 (C), 79.7 (CH), 74.2 (CH), 74.1 (CH), 73.4 (CH), 69.9 (CH2), 56.0 (CH3), 45.7 (CH), 42.8 (C), 39.8 (CH2), 37.9 (C), 32.5 (CH2), 29.5 (CH3), 25.8 (CH2), 19.33 (CH3), 19.27 (CH3), 17.7 (CH3); HRMS (ESI): calcd for C36H42O8Na+ [M+Na]+ 625.2777, found 625.2777.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Problematic one reflection with |I(obs)-I(calc)|/σW(I) greater than 10 (–2 3 1) has been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2090 (2)0.1750 (2)0.91158 (15)0.0210 (5)
C20.3204 (2)0.0817 (2)0.86310 (15)0.0198 (5)
H20.39380.11430.84980.024*
C30.2821 (2)0.0698 (2)0.76154 (15)0.0184 (4)
H30.18580.12950.74470.022*
C40.2914 (2)0.0675 (2)0.76837 (15)0.0207 (5)
H40.38480.13440.78830.025*
C50.2414 (2)0.0651 (2)0.66551 (15)0.0225 (5)
H5B0.26270.15690.66720.027*
H5A0.14310.01820.65780.027*
C60.2999 (2)0.0002 (2)0.57150 (15)0.0214 (5)
H6A0.39510.05650.57040.026*
H6B0.25230.01040.50820.026*
C70.2877 (2)0.1337 (2)0.57361 (15)0.0191 (5)
H70.1910.1910.57170.023*
C80.3583 (2)0.1246 (2)0.67110 (15)0.0183 (4)
C90.3595 (2)0.2595 (2)0.66630 (16)0.0199 (5)
H9B0.42030.2420.72460.024*
H9A0.40280.28710.60280.024*
C100.2330 (2)0.3811 (2)0.66790 (16)0.0198 (5)
H100.17780.4130.6020.024*
C110.1476 (2)0.35654 (19)0.75632 (16)0.0197 (5)
C120.0331 (2)0.3454 (2)0.73994 (15)0.0204 (5)
C130.0137 (2)0.2618 (2)0.82427 (16)0.0230 (5)
H130.10380.27050.82280.028*
C140.0722 (2)0.1738 (2)0.90249 (16)0.0229 (5)
H140.04790.11050.95250.027*
C150.1993 (2)0.3171 (2)0.86995 (15)0.0207 (5)
C160.3299 (2)0.3293 (2)0.88962 (16)0.0229 (5)
H16B0.35550.29380.96360.034*
H16C0.3170.42220.8650.034*
H16A0.40050.27950.85290.034*
C170.0958 (2)0.4076 (2)0.92429 (16)0.0243 (5)
H17A0.00790.40770.91380.036*
H17B0.0920.49740.89550.036*
H17C0.12160.37530.99810.036*
C180.0437 (2)0.3934 (2)0.63817 (16)0.0255 (5)
H18A0.02150.46380.59080.038*
H18B0.13960.42730.6480.038*
H18C0.02020.32040.60940.038*
C190.5062 (2)0.0313 (2)0.68131 (16)0.0211 (5)
H19B0.51350.05610.68270.032*
H19C0.54820.02440.74520.032*
H19A0.55120.06590.62250.032*
O200.36857 (14)0.04110 (14)0.94740 (10)0.0226 (3)
C210.3358 (2)0.0133 (2)1.03550 (16)0.0229 (5)
O220.25645 (14)0.11453 (14)1.01974 (10)0.0241 (3)
O230.37257 (15)0.09211 (15)1.11907 (11)0.0301 (4)
O240.34533 (13)0.19559 (14)0.48470 (10)0.0200 (3)
C250.2682 (2)0.2569 (2)0.39610 (15)0.0204 (5)
O260.16003 (15)0.25445 (15)0.38570 (11)0.0290 (4)
C270.3292 (2)0.3303 (2)0.31322 (15)0.0192 (4)
C280.2699 (2)0.3799 (2)0.21389 (16)0.0269 (5)
H280.19640.3620.19990.032*
C290.3180 (2)0.4553 (2)0.13538 (17)0.0300 (5)
H290.27850.48790.06730.036*
C300.4233 (2)0.4832 (2)0.15603 (17)0.0299 (5)
H300.45530.53630.10230.036*
C310.4824 (2)0.4342 (2)0.25464 (17)0.0279 (5)
H310.55520.45340.26840.033*
C320.4363 (2)0.3575 (2)0.33317 (16)0.0218 (5)
H320.47760.32340.40080.026*
O330.28434 (14)0.47725 (14)0.66845 (11)0.0239 (3)
C340.1863 (2)0.6092 (2)0.63828 (16)0.0246 (5)
H34A0.19140.6530.68870.029*
H34B0.09640.60750.63890.029*
C350.2054 (2)0.6865 (2)0.53358 (16)0.0217 (5)
C360.1191 (2)0.8177 (2)0.49309 (17)0.0260 (5)
H360.04810.85620.53170.031*
C370.1356 (2)0.8926 (2)0.39732 (17)0.0313 (5)
H370.07730.98270.37120.038*
C380.2363 (2)0.8373 (3)0.33917 (18)0.0346 (6)
H380.24650.88850.27270.041*
C390.3217 (2)0.7074 (3)0.37825 (18)0.0334 (6)
H390.39090.66890.33830.04*
C400.3080 (2)0.6325 (2)0.47451 (17)0.0269 (5)
H400.36880.54330.5010.032*
O410.20301 (14)0.09407 (14)0.84612 (10)0.0234 (3)
C420.2292 (2)0.2270 (2)0.89614 (17)0.0287 (5)
H42B0.1940.23590.96530.034*
H42A0.32690.27780.90540.034*
O430.17233 (17)0.28080 (15)0.84205 (12)0.0328 (4)
C440.0307 (2)0.2202 (2)0.83398 (19)0.0352 (6)
H44C0.00290.24010.90260.053*
H44A0.00460.2540.78990.053*
H44B0.00190.12460.80390.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (11)0.0233 (12)0.0175 (11)0.0112 (9)0.0021 (9)0.0108 (9)
C20.0242 (11)0.0197 (11)0.0184 (11)0.0102 (9)0.0022 (9)0.0081 (9)
C30.0212 (10)0.0200 (11)0.0184 (10)0.0088 (9)0.0023 (8)0.0110 (9)
C40.0234 (11)0.0212 (12)0.0221 (11)0.0102 (9)0.0056 (9)0.0118 (9)
C50.0293 (12)0.0228 (12)0.0238 (11)0.0148 (10)0.0043 (9)0.0129 (9)
C60.0250 (11)0.0233 (12)0.0208 (11)0.0103 (9)0.0021 (9)0.0124 (9)
C70.0210 (11)0.0224 (11)0.0182 (11)0.0104 (9)0.0059 (9)0.0102 (9)
C80.0208 (11)0.0191 (11)0.0191 (10)0.0086 (9)0.0026 (8)0.0108 (9)
C90.0224 (11)0.0222 (12)0.0201 (11)0.0115 (9)0.0036 (9)0.0102 (9)
C100.0230 (11)0.0192 (11)0.0232 (11)0.0112 (9)0.0006 (9)0.0105 (9)
C110.0204 (11)0.0151 (11)0.0264 (11)0.0057 (9)0.0014 (9)0.0118 (9)
C120.0216 (11)0.0181 (11)0.0244 (11)0.0058 (9)0.0037 (9)0.0137 (9)
C130.0203 (11)0.0268 (12)0.0281 (12)0.0094 (10)0.0054 (9)0.0176 (10)
C140.0256 (12)0.0237 (12)0.0271 (12)0.0122 (10)0.0105 (10)0.0168 (10)
C150.0224 (11)0.0222 (12)0.0228 (11)0.0097 (9)0.0032 (9)0.0132 (9)
C160.0272 (12)0.0264 (12)0.0225 (11)0.0127 (10)0.0007 (9)0.0143 (9)
C170.0287 (12)0.0237 (12)0.0256 (12)0.0107 (10)0.0043 (9)0.0146 (10)
C180.0238 (11)0.0270 (13)0.0300 (12)0.0107 (10)0.0004 (10)0.0136 (10)
C190.0236 (11)0.0244 (12)0.0206 (11)0.0104 (9)0.0040 (9)0.0135 (9)
O200.0280 (8)0.0228 (8)0.0176 (7)0.0086 (7)0.0013 (6)0.0086 (6)
C210.0209 (11)0.0281 (13)0.0234 (12)0.0109 (10)0.0025 (9)0.0115 (10)
O220.0316 (8)0.0251 (9)0.0187 (8)0.0111 (7)0.0022 (6)0.0112 (6)
O230.0337 (9)0.0333 (9)0.0214 (9)0.0122 (7)0.0010 (7)0.0064 (7)
O240.0216 (7)0.0235 (8)0.0181 (7)0.0104 (6)0.0018 (6)0.0088 (6)
C250.0211 (11)0.0186 (11)0.0229 (11)0.0053 (9)0.0003 (9)0.0112 (9)
O260.0252 (9)0.0362 (10)0.0278 (8)0.0154 (7)0.0016 (7)0.0080 (7)
C270.0208 (11)0.0173 (11)0.0211 (11)0.0066 (9)0.0018 (9)0.0095 (9)
C280.0292 (12)0.0304 (13)0.0271 (12)0.0163 (11)0.0025 (10)0.0098 (10)
C290.0380 (14)0.0318 (14)0.0219 (12)0.0148 (11)0.0017 (10)0.0084 (10)
C300.0365 (13)0.0330 (13)0.0246 (12)0.0198 (11)0.0044 (10)0.0073 (10)
C310.0286 (12)0.0316 (13)0.0308 (13)0.0171 (11)0.0036 (10)0.0130 (10)
C320.0218 (11)0.0227 (12)0.0209 (11)0.0065 (9)0.0013 (9)0.0092 (9)
O330.0247 (8)0.0195 (8)0.0317 (8)0.0110 (7)0.0002 (6)0.0101 (7)
C340.0248 (11)0.0210 (12)0.0322 (12)0.0088 (10)0.0035 (10)0.0146 (10)
C350.0232 (11)0.0249 (12)0.0252 (11)0.0134 (9)0.0005 (9)0.0131 (9)
C360.0247 (12)0.0270 (13)0.0317 (13)0.0109 (10)0.0004 (10)0.0153 (10)
C370.0319 (13)0.0323 (14)0.0318 (13)0.0165 (11)0.0032 (11)0.0065 (11)
C380.0395 (14)0.0462 (16)0.0291 (13)0.0300 (13)0.0020 (11)0.0090 (12)
C390.0321 (13)0.0495 (17)0.0345 (14)0.0269 (13)0.0136 (11)0.0221 (12)
C400.0232 (12)0.0292 (13)0.0371 (13)0.0128 (10)0.0031 (10)0.0191 (11)
O410.0320 (8)0.0214 (8)0.0227 (8)0.0143 (7)0.0076 (6)0.0108 (6)
C420.0376 (13)0.0233 (13)0.0267 (12)0.0149 (11)0.0049 (10)0.0063 (10)
O430.0443 (10)0.0288 (9)0.0386 (9)0.0219 (8)0.0153 (8)0.0207 (7)
C440.0416 (15)0.0379 (15)0.0379 (14)0.0252 (12)0.0096 (11)0.0164 (12)
Geometric parameters (Å, º) top
C1—O221.457 (2)C18—H18B0.98
C1—C141.514 (3)C18—H18C0.98
C1—C151.533 (3)C19—H19B0.98
C1—C21.548 (3)C19—H19C0.98
C2—O201.454 (2)C19—H19A0.98
C2—C31.537 (3)O20—C211.334 (2)
C2—H21.0C21—O231.196 (3)
C3—C41.530 (3)C21—O221.347 (3)
C3—C81.561 (3)O24—C251.346 (2)
C3—H31.0C25—O261.213 (2)
C4—O411.438 (2)C25—C271.490 (3)
C4—C51.530 (3)C27—C321.389 (3)
C4—H41.0C27—C281.391 (3)
C5—C61.524 (3)C28—C291.383 (3)
C5—H5B0.99C28—H280.95
C5—H5A0.99C29—C301.379 (3)
C6—C71.512 (3)C29—H290.95
C6—H6A0.99C30—C311.382 (3)
C6—H6B0.99C30—H300.95
C7—O241.456 (2)C31—C321.379 (3)
C7—C81.537 (3)C31—H310.95
C7—H71.0C32—H320.95
C8—C191.537 (3)O33—C341.428 (2)
C8—C91.553 (3)C34—C351.491 (3)
C9—C101.543 (3)C34—H34A0.99
C9—H9B0.99C34—H34B0.99
C9—H9A0.99C35—C361.390 (3)
C10—O331.436 (2)C35—C401.396 (3)
C10—C111.508 (3)C36—C371.379 (3)
C10—H101.0C36—H360.95
C11—C121.348 (3)C37—C381.380 (3)
C11—C151.554 (3)C37—H370.95
C12—C131.473 (3)C38—C391.374 (4)
C12—C181.502 (3)C38—H380.95
C13—C141.330 (3)C39—C401.375 (3)
C13—H130.95C39—H390.95
C14—H140.95C40—H400.95
C15—C161.537 (3)O41—C421.400 (3)
C15—C171.541 (3)C42—O431.405 (3)
C16—H16B0.98C42—H42B0.99
C16—H16C0.98C42—H42A0.99
C16—H16A0.98O43—C441.421 (3)
C17—H17A0.98C44—H44C0.98
C17—H17B0.98C44—H44A0.98
C17—H17C0.98C44—H44B0.98
C18—H18A0.98
O22—C1—C14107.39 (16)C15—C17—H17A109.5
O22—C1—C15112.26 (16)C15—C17—H17B109.5
C14—C1—C15109.44 (17)H17A—C17—H17B109.5
O22—C1—C2100.39 (15)C15—C17—H17C109.5
C14—C1—C2115.12 (16)H17A—C17—H17C109.5
C15—C1—C2111.91 (17)H17B—C17—H17C109.5
O20—C2—C3114.77 (16)C12—C18—H18A109.5
O20—C2—C1102.39 (15)C12—C18—H18B109.5
C3—C2—C1116.91 (17)H18A—C18—H18B109.5
O20—C2—H2107.4C12—C18—H18C109.5
C3—C2—H2107.4H18A—C18—H18C109.5
C1—C2—H2107.4H18B—C18—H18C109.5
C4—C3—C2114.36 (16)C8—C19—H19B109.5
C4—C3—C8112.76 (16)C8—C19—H19C109.5
C2—C3—C8111.37 (16)H19B—C19—H19C109.5
C4—C3—H3105.9C8—C19—H19A109.5
C2—C3—H3105.9H19B—C19—H19A109.5
C8—C3—H3105.9H19C—C19—H19A109.5
O41—C4—C3104.79 (15)C21—O20—C2108.37 (16)
O41—C4—C5109.40 (16)O23—C21—O20124.3 (2)
C3—C4—C5109.75 (17)O23—C21—O22123.56 (19)
O41—C4—H4110.9O20—C21—O22112.13 (18)
C3—C4—H4110.9C21—O22—C1108.85 (15)
C5—C4—H4110.9C25—O24—C7116.56 (15)
C6—C5—C4114.71 (17)O26—C25—O24123.60 (19)
C6—C5—H5B108.6O26—C25—C27123.88 (19)
C4—C5—H5B108.6O24—C25—C27112.51 (17)
C6—C5—H5A108.6C32—C27—C28119.65 (19)
C4—C5—H5A108.6C32—C27—C25122.37 (18)
H5B—C5—H5A107.6C28—C27—C25117.85 (19)
C7—C6—C5110.62 (16)C29—C28—C27120.1 (2)
C7—C6—H6A109.5C29—C28—H28120.0
C5—C6—H6A109.5C27—C28—H28120.0
C7—C6—H6B109.5C30—C29—C28120.0 (2)
C5—C6—H6B109.5C30—C29—H29120.0
H6A—C6—H6B108.1C28—C29—H29120.0
O24—C7—C6110.82 (15)C29—C30—C31120.2 (2)
O24—C7—C8108.01 (15)C29—C30—H30119.9
C6—C7—C8112.06 (17)C31—C30—H30119.9
O24—C7—H7108.6C32—C31—C30120.3 (2)
C6—C7—H7108.6C32—C31—H31119.8
C8—C7—H7108.6C30—C31—H31119.8
C19—C8—C7110.94 (16)C31—C32—C27119.86 (19)
C19—C8—C9104.78 (16)C31—C32—H32120.1
C7—C8—C9111.49 (16)C27—C32—H32120.1
C19—C8—C3110.89 (16)C34—O33—C10113.59 (15)
C7—C8—C3104.62 (15)O33—C34—C35111.86 (17)
C9—C8—C3114.26 (16)O33—C34—H34A109.2
C10—C9—C8123.76 (17)C35—C34—H34A109.2
C10—C9—H9B106.4O33—C34—H34B109.2
C8—C9—H9B106.4C35—C34—H34B109.2
C10—C9—H9A106.4H34A—C34—H34B107.9
C8—C9—H9A106.4C36—C35—C40118.3 (2)
H9B—C9—H9A106.5C36—C35—C34119.20 (19)
O33—C10—C11113.16 (16)C40—C35—C34122.5 (2)
O33—C10—C9103.42 (15)C37—C36—C35120.6 (2)
C11—C10—C9114.58 (17)C37—C36—H36119.7
O33—C10—H10108.5C35—C36—H36119.7
C11—C10—H10108.5C36—C37—C38120.4 (2)
C9—C10—H10108.5C36—C37—H37119.8
C12—C11—C10119.94 (18)C38—C37—H37119.8
C12—C11—C15117.22 (18)C39—C38—C37119.4 (2)
C10—C11—C15121.82 (17)C39—C38—H38120.3
C11—C12—C13118.68 (19)C37—C38—H38120.3
C11—C12—C18126.2 (2)C38—C39—C40120.7 (2)
C13—C12—C18114.38 (18)C38—C39—H39119.6
C14—C13—C12118.85 (19)C40—C39—H39119.6
C14—C13—H13120.6C39—C40—C35120.5 (2)
C12—C13—H13120.6C39—C40—H40119.8
C13—C14—C1119.8 (2)C35—C40—H40119.8
C13—C14—H14120.1C42—O41—C4116.28 (16)
C1—C14—H14120.1O41—C42—O43112.97 (18)
C1—C15—C16112.74 (17)O41—C42—H42B109.0
C1—C15—C17111.81 (17)O43—C42—H42B109.0
C16—C15—C17104.00 (16)O41—C42—H42A109.0
C1—C15—C11101.58 (15)O43—C42—H42A109.0
C16—C15—C11117.71 (17)H42B—C42—H42A107.8
C17—C15—C11109.19 (17)C42—O43—C44112.09 (17)
C15—C16—H16B109.5O43—C44—H44C109.5
C15—C16—H16C109.5O43—C44—H44A109.5
H16B—C16—H16C109.5H44C—C44—H44A109.5
C15—C16—H16A109.5O43—C44—H44B109.5
H16B—C16—H16A109.5H44C—C44—H44B109.5
H16C—C16—H16A109.5H44A—C44—H44B109.5
O22—C1—C2—O2026.87 (18)C3—C8—C9—C1051.5 (3)
C14—C1—C2—O2088.07 (19)C8—C9—C10—O33176.60 (17)
C15—C1—C2—O20146.14 (16)C8—C9—C10—C1153.0 (3)
O22—C1—C2—C3153.21 (16)O33—C10—C11—C12137.37 (19)
C14—C1—C2—C338.3 (3)C9—C10—C11—C12104.4 (2)
C15—C1—C2—C387.5 (2)O33—C10—C11—C1554.5 (2)
O20—C2—C3—C44.3 (2)C9—C10—C11—C1563.8 (2)
C1—C2—C3—C4115.6 (2)C10—C11—C12—C13150.34 (18)
O20—C2—C3—C8124.98 (18)C15—C11—C12—C1318.4 (3)
C1—C2—C3—C8115.07 (19)C10—C11—C12—C1819.5 (3)
C2—C3—C4—O4158.5 (2)C15—C11—C12—C18171.80 (18)
C8—C3—C4—O41172.95 (15)C11—C12—C13—C1417.7 (3)
C2—C3—C4—C5175.84 (17)C18—C12—C13—C14153.33 (19)
C8—C3—C4—C555.6 (2)C12—C13—C14—C19.1 (3)
O41—C4—C5—C6163.01 (17)O22—C1—C14—C13155.28 (18)
C3—C4—C5—C648.5 (2)C15—C1—C14—C1333.2 (2)
C4—C5—C6—C750.2 (2)C2—C1—C14—C1393.9 (2)
C5—C6—C7—O24179.13 (16)O22—C1—C15—C1653.1 (2)
C5—C6—C7—C858.4 (2)C14—C1—C15—C16172.27 (16)
O24—C7—C8—C1965.5 (2)C2—C1—C15—C1658.9 (2)
C6—C7—C8—C1956.9 (2)O22—C1—C15—C1763.6 (2)
O24—C7—C8—C950.9 (2)C14—C1—C15—C1755.5 (2)
C6—C7—C8—C9173.24 (16)C2—C1—C15—C17175.65 (16)
O24—C7—C8—C3174.89 (15)O22—C1—C15—C11179.97 (16)
C6—C7—C8—C362.8 (2)C14—C1—C15—C1160.82 (19)
C4—C3—C8—C1957.8 (2)C2—C1—C15—C1168.0 (2)
C2—C3—C8—C1972.3 (2)C12—C11—C15—C156.4 (2)
C4—C3—C8—C761.8 (2)C10—C11—C15—C1112.1 (2)
C2—C3—C8—C7168.02 (16)C12—C11—C15—C16179.97 (18)
C4—C3—C8—C9175.95 (16)C10—C11—C15—C1611.5 (3)
C2—C3—C8—C945.8 (2)C12—C11—C15—C1761.8 (2)
C19—C8—C9—C10173.02 (18)C10—C11—C15—C17129.69 (19)
C7—C8—C9—C1066.9 (2)C3—C2—O20—C21149.52 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C35–C40 benzene ring.
D—H···AD—HH···AD···AD—H···A
C34—H34A···O43i0.992.423.377 (3)163
C38—H38···O23ii0.952.443.295 (3)149
C31—H31···O33iii0.952.493.426 (3)168
C2—H2···O23iv1.002.513.433 (3)153
C16—H16A···O23iv0.982.533.357 (3)142
C19—H19C···O23iv0.982.543.477 (3)160
C18—H18C···Cgv0.982.893.492 (3)121
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+2; (v) x, y+1, z+1.
 

Acknowledgements

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We thank Professor T. Noda (Kanagawa Institute of Technology, Japan) for providing a mass spectrom­etry apparatus for our use. We also thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2015). In preparation.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeil, J. M., Massa, W., Riedel, R., Seitz, G. & Wocadlo, S. (1994). Tetrahedron Lett. 35, 7923–7926.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634–644.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., Ueno, H., Liu, J.-J., Nantermet, P. G., Yang, Z., Renaud, J., Paulvannan, K. & Chadha, R. (1995). J. Am. Chem. Soc. 117, 653–659.  CrossRef CAS Google Scholar
First citationNicolaou, K. C., Yang, Z., Liu, J.-J., Nantermet, P. G., Claiborne, C. F., Renaud, J., Guy, R. K. & Shibayama, K. (1995). J. Am. Chem. Soc. 117, 645–652.  CrossRef CAS Google Scholar
First citationOhba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476–o1477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 466–472.  CSD CrossRef IUCr Journals Google Scholar
First citationOishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8–11.  CSD CrossRef IUCr Journals Google Scholar
First citationPaquette, L. A. & Zhao, M. (1998). J. Am. Chem. Soc. 120, 5203–5212.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169–5184.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds