organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of β-D,L-allose

aDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, bDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, and cDepartment of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: tishii@eng.kagawa-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 4 December 2014; accepted 8 January 2015; online 31 January 2015)

The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of D- and L-allose. It was confirmed that D-allose (L-allose) formed β-pyran­ose with a 4C1 (1C4) conformation in the crystal. In the crystal, molecules are linked by O—H⋯O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic β-D,L-allose is 739.36 (3) Å3, which is about 10 Å3 smaller than that of chiral β-D-allose [V = 751.0 (2) Å3].

1. Related literature

For the crystal structure of the chiral β-D-allose, see: Kroon-Batenburg et al. (1984[Kroon-Batenburg, L. M. J., van der Sluis, P. & Kanters, J. A. (1984). Acta Cryst. C40, 1863-1865.]). For the crystal structure of racemic D,L-arabinose, see: Longchambon et al. (1985[Longchambon, F., Gillier-Pandraud, H., Wiest, R., Rees, B., Mitschler, A., Feld, R., Lehmann, M. & Becker, P. (1985). Acta Cryst. B41, 47-56.]) and of chiral L-arabinose, see: Takagi & Jeffrey (1977[Takagi, S. & Jeffrey, G. A. (1977). Acta Cryst. B33, 3033-3040.]). For the synthesis of chiral D- or L-allose, see: Menavuvu et al. (2006[Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granström, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340-345.]); Morimoto et al. (2006[Morimoto, K., Park, C.-S., Ozaki, M., Takeshita, K., Shimonishi, T., Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2006). Enzyme Microb. Technol. 38, 855-859.], 2013[Morimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G. & Izumori, K. (2013). J. Biosci. Bioeng. 115, 377-381.]); Shimonishi & Izumori (1996[Shimonishi, T. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 493-497.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H12O6

  • Mr = 180.16

  • Monoclinic, P 21 /c

  • a = 4.98211 (10) Å

  • b = 12.5624 (3) Å

  • c = 11.8156 (3) Å

  • β = 91.1262 (14)°

  • V = 739.36 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.29 mm−1

  • T = 295 K

  • 0.10 × 0.10 × 0.10 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.687, Tmax = 0.879

  • 12963 measured reflections

  • 1350 independent reflections

  • 1232 reflections with F2 > 2σ(F2)

  • Rint = 0.075

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.07

  • 1350 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.82 1.88 2.6884 (16) 171
O2—H2A⋯O6i 0.82 1.99 2.8044 (16) 172
O3—H3A⋯O2ii 0.82 1.94 2.7494 (16) 169
O4—H4A⋯O1iii 0.82 1.94 2.7384 (16) 163
O6—H6A⋯O5iv 0.82 2.03 2.8439 (15) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+2, -z+2; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2009[Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Orientations of three hydrogen atoms (H1A, H2A, H4A) located on three equatorial OH groups at C-1, C-2 and C-4 positions are perpendicular to the pyranose ring. A hydrogen atom (H3A) on the axial OH group at C-3 position is located along to the radial direction. Therefore, it is inconvenient to obtain the intramolecular hydrogen bonding. Only a weak intramolecular hydrogen bonding (O4—H4A···O3) is found in the racemic β-D,L-allose, with long interatomic distance (H4A···O3; 2.49 Å) and the small bond angle (O4—H4A···O3; 106°). In the case of the chiral β-D-allose, there are five hydrogen bonding (O1—H1A···O4, O2—H2A···O6, O3—H3A···O2, O4—H4A···O1, O6—H6A···O5) observed between two adjacent D-allose molecules (Kroon-Batenburg et al., 1984). These five hydrogen bondings are also observed in the racemic β-D,L-allose with a same corresponding sequential number. Three of them (O1—H1A···O4i, O2—H2A···O6i and O4—H4A···O1iii; Table 1) are used for creating the hydrogen bonding network between two adjacent D-molecules or L-molecules, forming a homochiral layer parallel to the ab-plane. The remaining hydrogen bonds (O3—H3A···O2ii and O6—H6A···O5iv; Table 1) are used for connecting between the D- and L-allose molecules. An example of the unit cell volume of racemic compound less than that of chiral one was also found in the case of racemic D,L-arabinose (V = 596.516 Å3 at 175 K; Longchambon et al., 1985) and chiral L-arabinose (V = 598.661 Å3 at 123 K; Takagi et al., 1977).

Related literature top

For the crystal structure of the chiral β-D-allose, see: Kroon-Batenburg et al. (1984). For the crystal structure of racemic D,L-arabinose, see: Longchambon et al. (1985) and of chiral L-arabinose, see: Takagi & Jeffrey (1977). For the synthesis of chiral D- or L-allose, see: Menavuvu et al. (2006); Morimoto et al. (2006, 2013); Shimonishi & Izumori (1996).

Experimental top

D-Allose and L-allose were biosynthesized from D-psicose and L-psicose using L-rhammose isomerase (Menavuvu et al., 2006; Morimoto et al., 2006) and L-ribose isomerase (Shimonishi et al., 1996; Morimoto et al., 2013), respectively. Equimolar mixture of D-allose and L-allose was dissolved in water to give 15 wt% solution, and then it was kept at 30 °C. After two days, small crystals appeared and they were grown at 25 °C for two weeks yielded prism-shaped crystals of sufficient size. Melting point of the obtained crystals was confirmed to be 181 °C, which was 30–35 °C higher than the melting point of β-D-allose.

Refinement top

H atoms bounded to methine-type C (H1B, H2B, H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H6A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen-bonding network represented as light green dashed lines, viewed down the tilted a axis. The hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of the chiral β-D-allose (Kroon-Batenburg et al., 1984) with hydrogen-bonding network represented as light blue dashed lines, viewed down the a axis. The hydrogen atoms are omitted for clarity.
β-D,L-Allose top
Crystal data top
C6H12O6F(000) = 384.00
Mr = 180.16Dx = 1.618 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 11709 reflections
a = 4.98211 (10) Åθ = 3.5–68.2°
b = 12.5624 (3) ŵ = 1.29 mm1
c = 11.8156 (3) ÅT = 295 K
β = 91.1262 (14)°Block, colorless
V = 739.36 (3) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1232 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.075
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.687, Tmax = 0.879k = 1515
12963 measured reflectionsl = 1414
1350 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3535P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1350 reflectionsΔρmax = 0.37 e Å3
115 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0159 (15)
Secondary atom site location: difference Fourier map
Crystal data top
C6H12O6V = 739.36 (3) Å3
Mr = 180.16Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.98211 (10) ŵ = 1.29 mm1
b = 12.5624 (3) ÅT = 295 K
c = 11.8156 (3) Å0.10 × 0.10 × 0.10 mm
β = 91.1262 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1350 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1232 reflections with F2 > 2σ(F2)
Tmin = 0.687, Tmax = 0.879Rint = 0.075
12963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
1350 reflectionsΔρmin = 0.22 e Å3
115 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1621 (3)0.79703 (8)0.67894 (10)0.0283 (3)
O20.1676 (3)0.85269 (9)0.91826 (9)0.0311 (4)
O30.0213 (2)1.05723 (8)0.88005 (9)0.0244 (3)
O40.3426 (3)1.21319 (8)0.80258 (10)0.0270 (3)
O50.2673 (2)0.96785 (8)0.63757 (8)0.0219 (3)
O60.6115 (3)1.14807 (9)0.56175 (9)0.0282 (3)
C10.1454 (3)0.90015 (11)0.71937 (12)0.0211 (4)
C20.2848 (3)0.91736 (11)0.83377 (12)0.0207 (4)
C30.2552 (3)1.03366 (11)0.86734 (12)0.0195 (4)
C40.3680 (3)1.10357 (11)0.77418 (12)0.0189 (4)
C50.2263 (3)1.07910 (11)0.66196 (12)0.0197 (4)
C60.3259 (4)1.14427 (12)0.56431 (13)0.0259 (4)
H1A0.31910.77740.68120.0340*
H1B0.04420.91960.72540.0254*
H2A0.23770.79360.91800.0373*
H2B0.47580.89980.82800.0248*
H3A0.04401.08470.94210.0293*
H3B0.35291.04700.93870.0234*
H4B0.55921.08720.76680.0226*
H4A0.18491.22680.81510.0324*
H5A0.03361.09200.66990.0237*
H6A0.66401.11460.50690.0339*
H6C0.25771.11400.49390.0311*
H6B0.25651.21620.57020.0311*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (7)0.0177 (6)0.0386 (7)0.0020 (5)0.0058 (5)0.0067 (5)
O20.0465 (8)0.0190 (6)0.0283 (6)0.0071 (5)0.0162 (5)0.0067 (5)
O30.0230 (6)0.0284 (6)0.0222 (6)0.0063 (5)0.0066 (4)0.0025 (5)
O40.0271 (6)0.0147 (6)0.0393 (7)0.0005 (4)0.0044 (5)0.0042 (5)
O50.0292 (7)0.0174 (6)0.0193 (6)0.0019 (4)0.0049 (5)0.0011 (4)
O60.0303 (7)0.0300 (7)0.0247 (6)0.0063 (5)0.0089 (5)0.0044 (5)
C10.0232 (8)0.0154 (8)0.0250 (8)0.0019 (6)0.0047 (6)0.0016 (6)
C20.0233 (8)0.0182 (8)0.0207 (8)0.0035 (6)0.0054 (6)0.0030 (6)
C30.0202 (8)0.0195 (8)0.0187 (7)0.0025 (6)0.0005 (6)0.0010 (6)
C40.0187 (8)0.0139 (7)0.0240 (8)0.0013 (6)0.0013 (6)0.0023 (6)
C50.0199 (8)0.0165 (8)0.0229 (8)0.0017 (6)0.0022 (6)0.0002 (6)
C60.0282 (9)0.0251 (8)0.0245 (8)0.0008 (6)0.0025 (6)0.0052 (7)
Geometric parameters (Å, º) top
O1—C11.3837 (18)O1—H1A0.820
O2—C21.4216 (19)O2—H2A0.820
O3—C31.4199 (18)O3—H3A0.820
O4—C41.4236 (18)O4—H4A0.820
O5—C11.4314 (18)O6—H6A0.820
O5—C51.4423 (18)C1—H1B0.980
O6—C61.425 (2)C2—H2B0.980
C1—C21.523 (2)C3—H3B0.980
C2—C31.522 (2)C4—H4B0.980
C3—C41.524 (2)C5—H5A0.980
C4—C51.521 (2)C6—H6C0.970
C5—C61.507 (2)C6—H6B0.970
C1—O5—C5112.16 (11)C6—O6—H6A109.474
O1—C1—O5107.10 (12)O1—C1—H1B108.857
O1—C1—C2114.20 (12)O5—C1—H1B108.860
O5—C1—C2108.84 (12)C2—C1—H1B108.859
O2—C2—C1110.83 (12)O2—C2—H2B109.452
O2—C2—C3108.80 (12)C1—C2—H2B109.449
C1—C2—C3108.83 (12)C3—C2—H2B109.458
O3—C3—C2109.09 (12)O3—C3—H3B109.847
O3—C3—C4109.17 (12)C2—C3—H3B109.848
C2—C3—C4109.02 (12)C4—C3—H3B109.842
O4—C4—C3110.57 (12)O4—C4—H4B108.392
O4—C4—C5111.04 (12)C3—C4—H4B108.388
C3—C4—C5109.98 (12)C5—C4—H4B108.388
O5—C5—C4107.75 (11)O5—C5—H5A108.775
O5—C5—C6108.87 (12)C4—C5—H5A108.778
C4—C5—C6113.79 (12)C6—C5—H5A108.780
O6—C6—C5112.25 (13)O6—C6—H6C109.153
C1—O1—H1A109.467O6—C6—H6B109.157
C2—O2—H2A109.472C5—C6—H6C109.152
C3—O3—H3A109.470C5—C6—H6B109.146
C4—O4—H4A109.476H6C—C6—H6B107.880
C1—O5—C5—C463.92 (13)C1—C2—C3—C456.31 (14)
C1—O5—C5—C6172.24 (10)O3—C3—C4—O460.68 (14)
C5—O5—C1—O1171.24 (10)O3—C3—C4—C562.31 (13)
C5—O5—C1—C264.83 (13)C2—C3—C4—O4179.76 (11)
O1—C1—C2—O261.24 (16)C2—C3—C4—C556.77 (14)
O1—C1—C2—C3179.15 (11)O4—C4—C5—O5178.40 (10)
O5—C1—C2—O2179.15 (10)O4—C4—C5—C657.59 (15)
O5—C1—C2—C359.54 (14)C3—C4—C5—O558.88 (14)
O2—C2—C3—O358.04 (14)C3—C4—C5—C6179.69 (10)
O2—C2—C3—C4177.17 (10)O5—C5—C6—O674.12 (14)
C1—C2—C3—O362.82 (14)C4—C5—C6—O646.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.882.6884 (16)171
O2—H2A···O6i0.821.992.8044 (16)172
O3—H3A···O2ii0.821.942.7494 (16)169
O4—H4A···O1iii0.821.942.7384 (16)163
O4—H4A···O30.822.492.8333 (15)106
O6—H6A···O5iv0.822.032.8439 (15)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+2, z+2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.882.6884 (16)171
O2—H2A···O6i0.821.992.8044 (16)172
O3—H3A···O2ii0.821.942.7494 (16)169
O4—H4A···O1iii0.821.942.7384 (16)163
O4—H4A···O30.822.492.8333 (15)106
O6—H6A···O5iv0.822.032.8439 (15)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+2, z+2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+2, z+1.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKroon-Batenburg, L. M. J., van der Sluis, P. & Kanters, J. A. (1984). Acta Cryst. C40, 1863–1865.  Google Scholar
First citationLongchambon, F., Gillier-Pandraud, H., Wiest, R., Rees, B., Mitschler, A., Feld, R., Lehmann, M. & Becker, P. (1985). Acta Cryst. B41, 47–56.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMenavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granström, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345.  Google Scholar
First citationMorimoto, K., Park, C.-S., Ozaki, M., Takeshita, K., Shimonishi, T., Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2006). Enzyme Microb. Technol. 38, 855–859.  Google Scholar
First citationMorimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G. & Izumori, K. (2013). J. Biosci. Bioeng. 115, 377–381.  Google Scholar
First citationRigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimonishi, T. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 493–497.  CrossRef CAS Web of Science Google Scholar
First citationTakagi, S. & Jeffrey, G. A. (1977). Acta Cryst. B33, 3033–3040.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds