organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2S,4S)-5,5-di­methyl-2-(pyridin-2-yl)-1,3-thia­zolidine-4-carb­­oxy­lic acid

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and bCREST, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kuwamuran12@chem.sci.osaka-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 18 October 2014; accepted 12 November 2014; online 15 November 2014)

In the title compound, C11H14N2O2S, the thia­zolidine ring has an envelope conformation with the C atom bonded to the carb­oxy­lic acid group at the flap. Two C atoms of the thia­zolidine ring adopt S conformations. In the crystal, O—H⋯N hydrogen bonds between the amine and carb­oxy­lic acid groups construct a helical chain structure along the a-axis direction. The chains are further connected via weak C—H⋯π contacts, forming a layer parallel to the ac plane.

1. Related literature

For background to compounds containing thia­zoline or thia­zolidine rings, see: Bolos et al. (2002[Bolos, C. A., Papazisis, K. T., Kortsaris, A. H., Voyatzi, S., Zambouli, D. & Kyriakidis, D. A. (2002). J. Inorg. Biochem. 88, 25-36.]); Pontiki et al. (2006[Pontiki, E., Hadjipavlou-Litina, D., Chaviara, A. T. & Bolos, C. A. (2006). Bioorg. Med. Chem. Lett. 16, 2234-2237.]); Shih & Ke (2004[Shih, M.-H. & Ke, F.-Y. (2004). Bioorg. Med. Chem. 12, 4633-4643.]). For related structures, see: Brunner et al. (1984[Brunner, H., Becker, R. & Riepl, G. (1984). Organometallics, 3, 1354-1359.], 2001[Brunner, H., Mijolović, D. & Zabel, M. (2001). Synthesis, pp. 1671-1680.]). For the preparation of D-penicillamine-coordinated metal complexes, see: Igashira-Kamiyama & Konno (2011[Igashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249-7263.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H14N2O2S

  • Mr = 238.30

  • Orthorhombic, P 21 21 21

  • a = 7.906 (4) Å

  • b = 11.306 (5) Å

  • c = 13.504 (7) Å

  • V = 1207.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 200 K

  • 0.25 × 0.25 × 0.25 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.785, Tmax = 0.938

  • 9629 measured reflections

  • 2767 independent reflections

  • 2711 reflections with F2 > 2σ(F2)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.10

  • 2767 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x determined using 1118 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H13⋯N2i 0.79 (3) 1.87 (3) 2.654 (2) 173 (3)
C3—H3⋯Cgii 0.95 2.81 3.629 (2) 145
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

The compounds containing thia­zoline or thia­zolidine rings are of attractive attention for their coordination chemistry and potential anti­biotic and anti­tumoral activities (Pontiki et al., 2006; Shih & Ke, 2004; Bolos et al., 2002). As part of our continuing study to create sulfur coordinated coordination compounds (Igashira-Kamiyama & Konno, 2011), we synthesized a novel thia­zolidine compound, which is prepared from the condensation of D-penicillamine and 2-pyridine carboxaldehyde. Herein the structure and synthesis of (2S,4S)-5,5-di­methyl-2-(pyridin-2-yl)thia­zolidine-4-carb­oxy­lic acid are reported.

The title compound is enanti­ometrically pure and the absolute structure was determined by the refinement of the Flack parameter [0.01 (9)]. The chiral C-2 and C-4 atoms (atoms C6 and C7, respectively) have S configurations (Fig. 1). In the crystal, the molecules are inter­acted through O—H···N hydrogen bonds and weak C–H···π contacts (Table 1), forming a layer parallel to the ac plane (Fig. 2).

Synthesis and crystallization top

To a white suspension of D-penicillamine (60 mg, 0.40 mmol) in MeOH (2.5 mL) was added 2-pyridine carboxaldehyde (43 mg, 0.40 mmol). The mixture was stirred at 50 °C for 2 h to give a pale yellow solution. The reaction mixture was allowed to stand at room temperature. Colorless crystals were obtained by slow evaporation of the reaction mixture after 10 days. Yield: 38 mg (40%). Anal Calcd for C11H14N2O2S: C 55.44, H 5.92, N 11.71%. Found: C 55.20, H 5.82, N 11.71%. IR: νmax (cm-1): 1570, 1591.

Refinement top

C-bound H atoms were placed at calculated positions (C—H = 0.95, 0.98, or 1.00 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). N and O-bound H atoms were located in a difference Fourier map and their positions were refined with Uiso(H) = 1.5Ueq(N or O).

Related literature top

For background to compounds containing thiazoline or thiazolidine rings, see: Bolos et al. (2002); Pontiki et al. (2006); Shih & Ke (2004). For related structures, see: Brunner et al. (1984, 2001). For the preparation of D-penicillamine-coordinated metal complexes, see: Igashira-Kamiyama & Konno (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.

Crystal packing diagram of the title compound, viewed along with the a axis. Orange and blue dotted lines indicate the weak C—H···π contact and the O—H···N hydrogen bond, respectively.
(2S,4S)-5,5-Dimethyl-2-(pyridin-2-yl)-1,3-thiazolidine-4-carboxylic acid top
Crystal data top
C11H14N2O2SDx = 1.311 Mg m3
Mr = 238.30Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121Cell parameters from 606 reflections
a = 7.906 (4) Åθ = 3.0–21.8°
b = 11.306 (5) ŵ = 0.26 mm1
c = 13.504 (7) ÅT = 200 K
V = 1207.1 (10) Å3Block, colorless
Z = 40.25 × 0.25 × 0.25 mm
F(000) = 504.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2711 reflections with F2 > 2σ(F2)
ω scansRint = 0.020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.785, Tmax = 0.938h = 1010
9629 measured reflectionsk = 1413
2767 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1433P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2767 reflectionsΔρmax = 0.23 e Å3
152 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack x determined using 1118 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C11H14N2O2SV = 1207.1 (10) Å3
Mr = 238.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.906 (4) ŵ = 0.26 mm1
b = 11.306 (5) ÅT = 200 K
c = 13.504 (7) Å0.25 × 0.25 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2767 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2711 reflections with F2 > 2σ(F2)
Tmin = 0.785, Tmax = 0.938Rint = 0.020
9629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.23 e Å3
S = 1.10Δρmin = 0.18 e Å3
2767 reflectionsAbsolute structure: Flack x determined using 1118 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
152 parametersAbsolute structure parameter: 0.01 (9)
0 restraints
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73917 (6)0.55168 (4)0.77596 (3)0.03414 (14)
O10.8795 (2)0.83178 (13)0.53057 (12)0.0499 (4)
O20.9289 (2)0.65820 (14)0.45666 (11)0.0409 (4)
N10.63325 (18)0.85167 (14)0.83052 (11)0.0277 (3)
N20.65342 (19)0.73327 (14)0.65780 (10)0.0261 (3)
C10.5500 (2)0.74879 (16)0.82907 (12)0.0256 (3)
C20.4421 (3)0.71255 (17)0.90457 (14)0.0334 (4)
C30.4220 (3)0.78569 (19)0.98617 (14)0.0363 (4)
C40.5073 (3)0.89258 (17)0.98869 (14)0.0335 (4)
C50.6099 (2)0.92190 (16)0.90928 (14)0.0308 (4)
C60.5841 (2)0.66856 (16)0.74195 (12)0.0263 (3)
C70.7626 (2)0.65411 (15)0.60028 (11)0.0242 (3)
C80.8809 (2)0.58482 (16)0.67186 (13)0.0265 (3)
C90.8626 (2)0.72556 (17)0.52484 (12)0.0295 (4)
C100.9418 (3)0.46896 (18)0.62677 (16)0.0390 (4)
C111.0304 (3)0.6594 (2)0.70700 (16)0.0407 (5)
H20.383440.639380.900330.0401*
H30.350910.762781.039530.0436*
H40.495630.944571.043530.0402*
H50.666950.995840.910740.0369*
H60.475790.630080.721420.0315*
H70.689720.596160.564090.0290*
H10A0.844180.422480.604740.0468*
H10B1.015260.485770.570030.0468*
H10C1.005220.424060.676520.0468*
H11A0.988530.733480.735720.0488*
H11B1.094240.615520.757160.0488*
H11C1.104270.677220.650670.0488*
H120.711 (3)0.790 (2)0.6820 (17)0.0392*
H130.992 (4)0.696 (3)0.424 (2)0.0614*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0440 (3)0.0322 (2)0.0262 (2)0.0066 (2)0.00704 (19)0.00796 (16)
O10.0704 (11)0.0304 (8)0.0487 (9)0.0018 (7)0.0192 (8)0.0082 (7)
O20.0512 (9)0.0432 (8)0.0282 (7)0.0165 (7)0.0152 (6)0.0046 (6)
N10.0281 (7)0.0288 (8)0.0263 (7)0.0001 (6)0.0014 (6)0.0008 (6)
N20.0305 (7)0.0296 (8)0.0183 (6)0.0036 (6)0.0018 (6)0.0012 (6)
C10.0241 (7)0.0314 (9)0.0214 (7)0.0026 (6)0.0028 (6)0.0014 (6)
C20.0336 (9)0.0336 (10)0.0331 (9)0.0037 (8)0.0061 (8)0.0012 (8)
C30.0391 (10)0.0418 (11)0.0281 (9)0.0034 (9)0.0105 (8)0.0032 (8)
C40.0402 (10)0.0344 (10)0.0259 (8)0.0106 (8)0.0019 (7)0.0020 (7)
C50.0331 (9)0.0274 (9)0.0318 (9)0.0026 (7)0.0001 (7)0.0002 (7)
C60.0262 (8)0.0310 (8)0.0216 (8)0.0017 (7)0.0010 (6)0.0010 (7)
C70.0269 (7)0.0273 (7)0.0184 (6)0.0040 (7)0.0009 (6)0.0005 (6)
C80.0289 (8)0.0267 (8)0.0238 (8)0.0004 (6)0.0015 (7)0.0013 (6)
C90.0331 (8)0.0333 (9)0.0222 (8)0.0035 (7)0.0001 (7)0.0044 (7)
C100.0444 (11)0.0324 (10)0.0402 (11)0.0066 (9)0.0088 (9)0.0016 (8)
C110.0365 (10)0.0435 (11)0.0421 (11)0.0056 (9)0.0132 (9)0.0019 (9)
Geometric parameters (Å, º) top
S1—C61.8599 (19)C8—C111.528 (3)
S1—C81.8362 (19)O2—H130.79 (3)
O1—C91.211 (2)N2—H120.85 (2)
O2—C91.305 (2)C2—H20.950
N1—C11.337 (2)C3—H30.950
N1—C51.340 (2)C4—H40.950
N2—C61.458 (2)C5—H50.950
N2—C71.466 (2)C6—H61.000
C1—C21.391 (3)C7—H71.000
C1—C61.510 (2)C10—H10A0.980
C2—C31.387 (3)C10—H10B0.980
C3—C41.384 (3)C10—H10C0.980
C4—C51.385 (3)C11—H11A0.980
C7—C81.556 (2)C11—H11B0.980
C7—C91.522 (2)C11—H11C0.980
C8—C101.523 (3)
C6—S1—C893.90 (8)C7—N2—H12110.5 (16)
C1—N1—C5117.35 (15)C1—C2—H2120.764
C6—N2—C7109.13 (14)C3—C2—H2120.760
N1—C1—C2123.21 (16)C2—C3—H3120.513
N1—C1—C6116.48 (15)C4—C3—H3120.502
C2—C1—C6120.26 (16)C3—C4—H4120.818
C1—C2—C3118.48 (18)C5—C4—H4120.808
C2—C3—C4118.98 (18)N1—C5—H5118.207
C3—C4—C5118.37 (18)C4—C5—H5118.203
N1—C5—C4123.59 (17)S1—C6—H6108.899
S1—C6—N2107.54 (12)N2—C6—H6108.902
S1—C6—C1110.63 (12)C1—C6—H6108.903
N2—C6—C1111.90 (15)N2—C7—H7108.652
N2—C7—C8109.38 (13)C8—C7—H7108.655
N2—C7—C9109.66 (14)C9—C7—H7108.656
C8—C7—C9111.77 (14)C8—C10—H10A109.475
S1—C8—C7102.22 (12)C8—C10—H10B109.471
S1—C8—C10108.89 (13)C8—C10—H10C109.472
S1—C8—C11110.30 (13)H10A—C10—H10B109.472
C7—C8—C10112.01 (15)H10A—C10—H10C109.467
C7—C8—C11112.32 (15)H10B—C10—H10C109.470
C10—C8—C11110.76 (16)C8—C11—H11A109.470
O1—C9—O2125.42 (18)C8—C11—H11B109.475
O1—C9—C7122.76 (16)C8—C11—H11C109.473
O2—C9—C7111.80 (16)H11A—C11—H11B109.465
C9—O2—H13109 (2)H11A—C11—H11C109.474
C6—N2—H12106.1 (15)H11B—C11—H11C109.470
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O2—H13···N2i0.79 (3)1.87 (3)2.654 (2)173 (3)
C3—H3···Cgii0.952.813.629 (2)145
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O2—H13···N2i0.79 (3)1.87 (3)2.654 (2)173 (3)
C3—H3···Cgii0.952.813.629 (2)145
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+2.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research (grant No. 23350026) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBolos, C. A., Papazisis, K. T., Kortsaris, A. H., Voyatzi, S., Zambouli, D. & Kyriakidis, D. A. (2002). J. Inorg. Biochem. 88, 25–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrunner, H., Becker, R. & Riepl, G. (1984). Organometallics, 3, 1354–1359.  CrossRef CAS Web of Science Google Scholar
First citationBrunner, H., Mijolović, D. & Zabel, M. (2001). Synthesis, pp. 1671–1680.  CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIgashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249–7263.  Web of Science CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPontiki, E., Hadjipavlou-Litina, D., Chaviara, A. T. & Bolos, C. A. (2006). Bioorg. Med. Chem. Lett. 16, 2234–2237.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, M.-H. & Ke, F.-Y. (2004). Bioorg. Med. Chem. 12, 4633–4643.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds